Chuck: a Strongly Timed Computer Music Language
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computer-Assisted Composition a Short Historical Review
MUMT 303 New Media Production II Charalampos Saitis Winter 2010 Computer-Assisted Composition A short historical review Computer-assisted composition is considered amongst the major musical developments that characterized the twentieth century. The quest for ‘new music’ started with Erik Satie and the early electronic instruments (Telharmonium, Theremin), explored the use of electricity, moved into the magnetic tape recording (Stockhausen, Varese, Cage), and soon arrived to the computer era. Computers, science, and technology promised new perspectives into sound, music, and composition. In this context computer-assisted composition soon became a creative challenge – if not necessity. After all, composers were the first artists to make substantive use of computers. The first traces of computer-assisted composition are found in the Bells Labs, in the U.S.A, at the late 50s. It was Max Matthews, an engineer there, who saw the possibilities of computer music while experimenting on digital transmission of telephone calls. In 1957, the first ever computer programme to create sounds was built. It was named Music I. Of course, this first attempt had many problems, e.g. it was monophonic and had no attack or decay. Max Matthews went on improving the programme, introducing a series of programmes named Music II, Music III, and so on until Music V. The idea of unit generators that could be put together to from bigger blocks was introduced in Music III. Meanwhile, Lejaren Hiller was creating the first ever computer-composed musical work: The Illiac Suit for String Quartet. This marked also a first attempt towards algorithmic composition. A binary code was processed in the Illiac Computer at the University of Illinois, producing the very first computer algorithmic composition. -
Synchronous Programming in Audio Processing Karim Barkati, Pierre Jouvelot
Synchronous programming in audio processing Karim Barkati, Pierre Jouvelot To cite this version: Karim Barkati, Pierre Jouvelot. Synchronous programming in audio processing. ACM Computing Surveys, Association for Computing Machinery, 2013, 46 (2), pp.24. 10.1145/2543581.2543591. hal- 01540047 HAL Id: hal-01540047 https://hal-mines-paristech.archives-ouvertes.fr/hal-01540047 Submitted on 15 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Synchronous Programming in Audio Processing: A Lookup Table Oscillator Case Study KARIM BARKATI and PIERRE JOUVELOT, CRI, Mathématiques et systèmes, MINES ParisTech, France The adequacy of a programming language to a given software project or application domain is often con- sidered a key factor of success in software development and engineering, even though little theoretical or practical information is readily available to help make an informed decision. In this paper, we address a particular version of this issue by comparing the adequacy of general-purpose synchronous programming languages to more domain-specific -
Peter Blasser CV
Peter Blasser – [email protected] - 410 362 8364 Experience Ten years running a synthesizer business, ciat-lonbarde, with a focus on touch, gesture, and spatial expression into audio. All the while, documenting inventions and creations in digital video, audio, and still image. Disseminating this information via HTML web page design and YouTube. Leading workshops at various skill levels, through manual labor exploring how synthesizers work hand and hand with acoustics, culminating in montage of participants’ pieces. Performance as touring musician, conceptual lecturer, or anything in between. As an undergraduate, served as apprentice to guild pipe organ builders. Experience as racquetball coach. Low brass wind instrumentalist. Fluent in Java, Max/MSP, Supercollider, CSound, ProTools, C++, Sketchup, Osmond PCB, Dreamweaver, and Javascript. Education/Awards • 2002 Oberlin College, BA in Chinese, BM in TIMARA (Technology in Music and Related Arts), minors in Computer Science and Classics. • 2004 Fondation Daniel Langlois, Art and Technology Grant for the project “Shinths” • 2007 Baltimore City Grant for Artists, Craft Category • 2008 Baltimore City Grant for Community Arts Projects, Urban Gardening List of Appearances "Visiting Professor, TIMARA dep't, Environmental Studies dep't", Oberlin College, Oberlin, Ohio, Spring 2011 “Babier, piece for Dancer, Elasticity Transducer, and Max/MSP”, High Zero Festival of Experimental Improvised Music, Theatre Project, Baltimore, September 2010. "Sejayno:Cezanno (Opera)", CEZANNE FAST FORWARD. Baltimore Museum of Art, May 21, 2010. “Deerhorn Tapestry Installation”, Curators Incubator, 2009. MAP Maryland Art Place, September 15 – October 24, 2009. Curated by Shelly Blake-Pock, teachpaperless.blogspot.com “Deerhorn Micro-Cottage and Radionic Fish Drier”, Electro-Music Gathering, New Jersey, October 28-29, 2009. -
Chuck: a Strongly Timed Computer Music Language
Ge Wang,∗ Perry R. Cook,† ChucK: A Strongly Timed and Spencer Salazar∗ ∗Center for Computer Research in Music Computer Music Language and Acoustics (CCRMA) Stanford University 660 Lomita Drive, Stanford, California 94306, USA {ge, spencer}@ccrma.stanford.edu †Department of Computer Science Princeton University 35 Olden Street, Princeton, New Jersey 08540, USA [email protected] Abstract: ChucK is a programming language designed for computer music. It aims to be expressive and straightforward to read and write with respect to time and concurrency, and to provide a platform for precise audio synthesis and analysis and for rapid experimentation in computer music. In particular, ChucK defines the notion of a strongly timed audio programming language, comprising a versatile time-based programming model that allows programmers to flexibly and precisely control the flow of time in code and use the keyword now as a time-aware control construct, and gives programmers the ability to use the timing mechanism to realize sample-accurate concurrent programming. Several case studies are presented that illustrate the workings, properties, and personality of the language. We also discuss applications of ChucK in laptop orchestras, computer music pedagogy, and mobile music instruments. Properties and affordances of the language and its future directions are outlined. What Is ChucK? form the notion of a strongly timed computer music programming language. ChucK (Wang 2008) is a computer music program- ming language. First released in 2003, it is designed to support a wide array of real-time and interactive Two Observations about Audio Programming tasks such as sound synthesis, physical modeling, gesture mapping, algorithmic composition, sonifi- Time is intimately connected with sound and is cation, audio analysis, and live performance. -
Confessions-Of-A-Live-Coder.Pdf
Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011 CONFESSIONS OF A LIVE CODER Thor Magnusson ixi audio & Faculty of Arts and Media University of Brighton Grand Parade, BN2 0JY, UK ABSTRACT upon writing music with programming languages for very specific reasons and those are rarely comparable. This paper describes the process involved when a live At ICMC 2007, in Copenhagen, I met Andrew coder decides to learn a new musical programming Sorensen, the author of Impromptu and member of the language of another paradigm. The paper introduces the aa-cell ensemble that performed at the conference. We problems of running comparative experiments, or user discussed how one would explore and analyse the studies, within the field of live coding. It suggests that process of learning a new programming environment an autoethnographic account of the process can be for music. One of the prominent questions here is how a helpful for understanding the technological conditioning functional programming language like Impromptu of contemporary musical tools. The author is conducting would influence the thinking of a computer musician a larger research project on this theme: the part with background in an object orientated programming presented in this paper describes the adoption of a new language, such as SuperCollider? Being an avid user of musical programming environment, Impromptu [35], SuperCollider, I was intrigued by the perplexing code and how this affects the author’s musical practice. structure and work patterns demonstrated in the aa-cell performances using Impromptu [36]. I subsequently 1. INTRODUCTION decided to embark upon studying this environment and perform a reflexive study of the process. -
Proceedings of the Fourth International Csound Conference
Proceedings of the Fourth International Csound Conference Edited by: Luis Jure [email protected] Published by: Escuela Universitaria de Música, Universidad de la República Av. 18 de Julio 1772, CP 11200 Montevideo, Uruguay ISSN 2393-7580 © 2017 International Csound Conference Conference Chairs Paper Review Committee Luis Jure (Chair) +yvind Brandtsegg Martín Rocamora (Co-Chair) Pablo Di Liscia John -tch Organization Team Michael Gogins Jimena Arruti Joachim )eintz Pablo Cancela Alex )ofmann Guillermo Carter /armo Johannes Guzmán Calzada 0ictor Lazzarini Ignacio Irigaray Iain McCurdy Lucía Chamorro Rory 1alsh "eli#e Lamolle Juan Martín L$#ez Music Review Committee Gusta%o Sansone Pablo Cetta Sofía Scheps Joel Chadabe Ricardo Dal "arra Sessions Chairs Pablo Di Liscia Pablo Cancela "olkmar )ein Pablo Di Liscia Joachim )eintz Michael Gogins Clara Ma3da Joachim )eintz Iain McCurdy Luis Jure "lo Menezes Iain McCurdy Daniel 4##enheim Martín Rocamora Juan Pampin Steven *i Carmelo Saitta Music Curator Rodrigo Sigal Luis Jure Clemens %on Reusner Index Preface Keynote talks The 60 years leading to Csound 6.09 Victor Lazzarini Don Quijote, the Island and the Golden Age Joachim Heintz The ATS technique in Csound: theoretical background, present state and prospective Oscar Pablo Di Liscia Csound – The Swiss Army Synthesiser Iain McCurdy How and Why I Use Csound Today Steven Yi Conference papers Working with pch2csd – Clavia NM G2 to Csound Converter Gleb Rogozinsky, Eugene Cherny and Michael Chesnokov Daria: A New Framework for Composing, Rehearsing and Performing Mixed Media Music Guillermo Senna and Juan Nava Aroza Interactive Csound Coding with Emacs Hlöðver Sigurðsson Chunking: A new Approach to Algorithmic Composition of Rhythm and Metre for Csound Georg Boenn Interactive Visual Music with Csound and HTML5 Michael Gogins Spectral and 3D spatial granular synthesis in Csound Oscar Pablo Di Liscia Preface The International Csound Conference (ICSC) is the principal biennial meeting for members of the Csound community and typically attracts worldwide attendance. -
Computer Music
THE OXFORD HANDBOOK OF COMPUTER MUSIC Edited by ROGER T. DEAN OXFORD UNIVERSITY PRESS OXFORD UNIVERSITY PRESS Oxford University Press, Inc., publishes works that further Oxford University's objective of excellence in research, scholarship, and education. Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 2009 by Oxford University Press, Inc. First published as an Oxford University Press paperback ion Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data The Oxford handbook of computer music / edited by Roger T. Dean. p. cm. Includes bibliographical references and index. ISBN 978-0-19-979103-0 (alk. paper) i. Computer music—History and criticism. I. Dean, R. T. MI T 1.80.09 1009 i 1008046594 789.99 OXF tin Printed in the United Stares of America on acid-free paper CHAPTER 12 SENSOR-BASED MUSICAL INSTRUMENTS AND INTERACTIVE MUSIC ATAU TANAKA MUSICIANS, composers, and instrument builders have been fascinated by the expres- sive potential of electrical and electronic technologies since the advent of electricity itself. -
FAUST Tutorial for Functional Programmers
FAUST Tutorial for Functional Programmers Y. Orlarey, S. Letz, D. Fober, R. Michon ICFP 2017 / FARM 2017 What is Faust ? What is Faust? A programming language (DSL) to build electronic music instruments Some Music Programming Languages DARMS Kyma 4CED MCL DCMP LOCO PLAY2 Adagio MUSIC III/IV/V DMIX LPC PMX AML Elody Mars MusicLogo POCO AMPLE EsAC MASC Music1000 POD6 Antescofo Euterpea Max MUSIC7 POD7 Arctic Extempore Musictex PROD Autoklang MidiLisp Faust MUSIGOL Puredata Bang MidiLogo MusicXML PWGL Canon Flavors Band MODE Musixtex Ravel CHANT Fluxus MOM NIFF FOIL Moxc SALIERI Chuck NOTELIST FORMES MSX SCORE CLCE Nyquist FORMULA MUS10 ScoreFile CMIX OPAL Fugue MUS8 SCRIPT Cmusic OpenMusic Gibber MUSCMP SIREN CMUSIC Organum1 GROOVE MuseData SMDL Common Lisp Outperform SMOKE Music GUIDO MusES Overtone SSP Common HARP MUSIC 10 PE Music Haskore MUSIC 11 SSSP Patchwork Common HMSL MUSIC 360 ST Music PILE Notation INV MUSIC 4B Supercollider Pla invokator MUSIC 4BF Symbolic Composer Csound PLACOMP KERN MUSIC 4F Tidal CyberBand PLAY1 Keynote MUSIC 6 Brief Overview to Faust Faust offers end-users a high-level alternative to C to develop audio applications for a large variety of platforms. The role of the Faust compiler is to synthesize the most efficient implementations for the target language (C, C++, LLVM, Javascript, etc.). Faust is used on stage for concerts and artistic productions, for education and research, for open sources projects and commercial applications : What Is Faust Used For ? Artistic Applications Sonik Cube (Trafik/Orlarey), Smartfaust (Gracia), etc. Open-Source projects Guitarix: Hermann Meyer WebAudio Applications YC20 Emulator Thanks to the HTML5/WebAudio API and Asm.js it is now possible to run synthesizers and audio effects from a simple web page ! Sound Spatialization Ambitools: Pierre Lecomte, CNAM Ambitools (Faust Award 2016), 3-D sound spatialization using Ambisonic techniques. -
Isupercolliderkit: a Toolkit for Ios Using an Internal Supercollider Server As a Sound Engine
ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas iSuperColliderKit: A Toolkit for iOS Using an Internal SuperCollider Server as a Sound Engine Akinori Ito Kengo Watanabe Genki Kuroda Ken’ichiro Ito Tokyo University of Tech- Watanabe-DENKI Inc. Tokyo University of Tech- Tokyo University of Tech- nology [email protected] nology nology [email protected]. [email protected]. [email protected]. ac.jp ac.jp ac.jp The editor client sends the OSC code-fragments to its server. ABSTRACT Due to adopting the model, SuperCollider has feature that a iSuperColliderKit is a toolkit for iOS using an internal programmer can dynamically change some musical ele- SuperCollider Server as a sound engine. Through this re- ments, phrases, rhythms, scales and so on. The real-time search, we have adapted the exiting SuperCollider source interactivity is effectively utilized mainly in the live-coding code for iOS to the latest environment. Further we attempt- field. If the iOS developers would make their application ed to detach the UI from the sound engine so that the native adopting the “sound-server” model, using SuperCollider iOS visual objects built by objective-C or Swift, send to the seems to be a reasonable choice. However, the porting situa- internal SuperCollider server with any user interaction tion is not so good. SonicPi[5] is the one of a musical pro- events. As a result, iSuperColliderKit makes it possible to gramming environment that has SuperCollider server inter- utilize the vast resources of dynamic real-time changing nally. However, it is only for Raspberry Pi, Windows and musical elements or algorithmic composition on SuperCol- OSX. -
Pynchon's Sound of Music
Pynchon’s Sound of Music Christian Hänggi Pynchon’s Sound of Music DIAPHANES PUBLISHED WITH SUPPORT BY THE SWISS NATIONAL SCIENCE FOUNDATION 1ST EDITION ISBN 978-3-0358-0233-7 10.4472/9783035802337 DIESES WERK IST LIZENZIERT UNTER EINER CREATIVE COMMONS NAMENSNENNUNG 3.0 SCHWEIZ LIZENZ. LAYOUT AND PREPRESS: 2EDIT, ZURICH WWW.DIAPHANES.NET Contents Preface 7 Introduction 9 1 The Job of Sorting It All Out 17 A Brief Biography in Music 17 An Inventory of Pynchon’s Musical Techniques and Strategies 26 Pynchon on Record, Vol. 4 51 2 Lessons in Organology 53 The Harmonica 56 The Kazoo 79 The Saxophone 93 3 The Sounds of Societies to Come 121 The Age of Representation 127 The Age of Repetition 149 The Age of Composition 165 4 Analyzing the Pynchon Playlist 183 Conclusion 227 Appendix 231 Index of Musical Instruments 233 The Pynchon Playlist 239 Bibliography 289 Index of Musicians 309 Acknowledgments 315 Preface When I first read Gravity’s Rainbow, back in the days before I started to study literature more systematically, I noticed the nov- el’s many references to saxophones. Having played the instru- ment for, then, almost two decades, I thought that a novelist would not, could not, feature specialty instruments such as the C-melody sax if he did not play the horn himself. Once the saxophone had caught my attention, I noticed all sorts of uncommon references that seemed to confirm my hunch that Thomas Pynchon himself played the instrument: McClintic Sphere’s 4½ reed, the contra- bass sax of Against the Day, Gravity’s Rainbow’s Charlie Parker passage. -
Chunking: a New Approach to Algorithmic Composition of Rhythm and Metre for Csound
Chunking: A new Approach to Algorithmic Composition of Rhythm and Metre for Csound Georg Boenn University of Lethbridge, Faculty of Fine Arts, Music Department [email protected] Abstract. A new concept for generating non-isochronous musical me- tres is introduced, which produces complete rhythmic sequences on the basis of integer partitions and combinatorics. It was realized as a command- line tool called chunking, written in C++ and published under the GPL licence. Chunking 1 produces scores for Csound2 and standard notation output using Lilypond3. A new shorthand notation for rhythm is pre- sented as intermediate data that can be sent to different backends. The algorithm uses a musical hierarchy of sentences, phrases, patterns and rhythmic chunks. The design of the algorithms was influenced by recent studies in music phenomenology, and makes references to psychology and cognition as well. Keywords: Rhythm, NI-Metre, Musical Sentence, Algorithmic Compo- sition, Symmetry, Csound Score Generators. 1 Introduction There are a large number of powerful tools that enable algorithmic composition with Csound: CsoundAC [8], blue[11], or Common Music[9], for example. For a good overview about the subject, the reader is also referred to the book by Nierhaus[7]. This paper focuses on a specific algorithm written in C++ to produce musical sentences and to generate input files for Csound and lilypond. Non-isochronous metres (NI metres) are metres that have different beat lengths, which alternate in very specific patterns. They have been analyzed by London[5] who defines them with a series of well-formedness rules. With the software presented in this paper (from now on called chunking) it is possible to generate NI metres. -
Interactive Csound Coding with Emacs
Interactive Csound coding with Emacs Hlöðver Sigurðsson Abstract. This paper will cover the features of the Emacs package csound-mode, a new major-mode for Csound coding. The package is in most part a typical emacs major mode where indentation rules, comple- tions, docstrings and syntax highlighting are provided. With an extra feature of a REPL1, that is based on running csound instance through the csound-api. Similar to csound-repl.vim[1] csound- mode strives to enable the Csound user a faster feedback loop by offering a REPL instance inside of the text editor. Making the gap between de- velopment and the final output reachable within a real-time interaction. 1 Introduction After reading the changelog of Emacs 25.1[2] I discovered a new Emacs feature of dynamic modules, enabling the possibility of Foreign Function Interface(FFI). Being insired by Gogins’s recent Common Lisp FFI for the CsoundAPI[3], I decided to use this new feature and develop an FFI for Csound. I made the dynamic module which ports the greater part of the C-lang’s csound-api and wrote some of Steven Yi’s csound-api examples for Elisp, which can be found on the Gihub page for CsoundAPI-emacsLisp[4]. This sparked my idea of creating a new REPL based Csound major mode for Emacs. As a composer using Csound, I feel the need to be close to that which I’m composing at any given moment. From previous Csound front-end tools I’ve used, the time between writing a Csound statement and hearing its output has been for me a too long process of mouseclicking and/or changing windows.