ABSTRACT Greg Albery

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT Greg Albery ABSTRACT Greg Albery - Georgetown University - US Age-related changes in social behaviour shape disease dynamics in a wild ungulate Gregory F Albery; Tim H Clutton-Brock; Alison Morris; Sean Morris; Josephine M Pemberton; Daniel H Nussey; Josh A Firth Georgetown University As they near the end of their lifespan, wild animals often experience profound declines in quality known as “senescence”. When older individuals exhibit weaker immunity (“immunosenescence”), they may be able to compensate by becoming less social, thereby reducing their exposure to pathogens. To date, despite an ever-expanding wealth of information on social networks in disease ecology, it is unclear whether wild animals experience age-related declines in social behaviours, how these changes alter exposure rates, and whether this process might compensate for immunosenescence. Here, I use a wild population of red deer (Cervus elaphus) on the Isle of Rum, Scotland, to investigate the links between ageing, social behaviour, helminth infection, and fitness. I employ a suite of novel spatial and social network analyses to show that a range of intrinsic and extrinsic processes contribute to age-related declines in social network centrality over the course of an adult deer’s lifespan. I further demonstrate that within-individual reductions in social behaviour are associated with reduced burdens of nematode parasites. Taken together, these results demonstrate that parasite infection is a potentially important driver of age-related behaviour changes that ultimately determine large-scale demographic structuring in this wild population. Moreover, they imply that age-related behavioural changes may be adaptive, functioning to balance the costs of a waning immune system, rather than emerging from physiological weakness and an inability to compete with younger conspecifics. ABSTRACT Brent Allman - Emory University - US Heterogeneity in viral infections increases the rate of deleterious mutation accumulation Brent Allman, Katia Koelle, Daniel Weissman Emory University RNA viruses have high mutation rates, with the majority of mutations being deleterious. We examine patterns of deleterious mutation accumulation over multiple rounds of viral replication, with a focus on how cellular coinfection and heterogeneity in viral output affect these patterns. When unique viral genotypes with differential fitness coinfect a cell, the production of viral progeny is likely to use proteins from multiple parental viral genotypes. This results in group-level phenotypes that have the potential to influence selection. Specifically, using agent-based intercellular simulations we find, in agreement with previous studies, that coinfection of cells by viruses relaxes the strength of purifying selection, and thereby increases the rate of deleterious mutation accumulation. We further find that cellular heterogeneity in viral output exacerbates the rate of deleterious mutation accumulation, regardless of whether this heterogeneity in viral output is stochastic or is due to variation in cellular multiplicity of infection. These results highlight the need to consider the unique life histories of viruses and their population structure to better understand observed patterns of viral evolution. ABSTRACT Maria Luiza Andreani - Univesity of Campinas – Brazil MCR bearing Salmonella enterica phylogeny and the evolution of antibiotic resistance Maria Luiza Andreani, Juliana José, Marcelo Brocchi University of Campinas The emergence of new antibiotic resistance mechanisms is a major public health concern. Colistin is a last resort antibiotic to which resistance genes have increasingly been reported, with at least 10 different variations registered to date. Although colistin is not a preference for clinical treatment, it is widely used in animal production, creating an environment where resistance can rise, spread, and be undetected. Salmonella enterica is a gram-negative bacterium that can infect both humans and livestock and has been shown to carry mobilized colistin resistance (mcr) genes, posing as a potential threat to public health. In order to control mcr spread and antibiotic resistance rise on Salmonella enterica a better understanding of evolutionary context is necessary. Here, we analyze the phylogenetic relationship among Salmonella enterica isolates coming from environmental and clinical context and harboring at least one plasmid with mcr genes (mcr-1 to mcr-9) as well as their pangenome. Moreover, we also analyze the phylogenetic relationship of the plasmids present on those isolates, unraveling the relationship among different mcr variants in Salmonella. This data provide a better understanding of colistin resistance spread and status on Salmonella and can be useful to prevent it by public health measures. ABSTRACT Callum Arnold - Pennsylvania State University - US Data4Action: SARS-CoV-2 Seroprevalence in a University Community *Arnold, Callum R.K. (MSc)1,2; *Srinivasan, Sreenidhi (PhD)2,3; Herzog, Catherine M. (PhD)2,3; Gontu, Abhinay (MVSc)4; Bharti, Nita (PhD)1,2; Small, Meg (PhD)5,6; Rogers, Connie J. (PhD)7; Schade, Margeaux M. (PhD)5; Kuchipudi, Suresh V2,4 (PhD); Kapur, Vivek (PhD)2,3,8; Read, Andrew (D.Phil)1,2,3; Ferrari, Matthew J. (PhD)1,2 1Department of Biology, Pennsylvania State University, University Park, PA, USA 16802; 2Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA 16802; 3Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA 16802; 4Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA 16802; 5College of Health and Human Development, Pennsylvania State University, University Park, PA, USA 16802; 6Social Science Research Institute, Pennsylvania State University, University Park, PA, USA 16802; 7Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA 16802; 8Department of Animal Science, Pennsylvania State University, University Park, PA, USA 16802; * Contributed equally The COVID-19 pandemic has been characterized by great uncertainty, particularly during the earlier stages when less was known about transmission dynamics and the efficacy of preventative actions. Prior infectious disease research had highlighted the potential for large outbreaks in highly structured transient populations, such as returning University students interacting with local communities. Concern at Pennsylvania State University, home to approximately 35,000 returning students, prompted the development of a longitudinal cohort study to examine the communication and interaction between the two cohorts, and the effect on SARS-CoV-2 incidence within each, surrounding and during the 2020 Fall term. Despite high incidence observed within the returning student cohort (31.2% of 625 returned positive IgG titers), the seroprevalence within the surrounding community remained low and stable either side of the Fall 2020 term (5.5% prior; 8.2% post). Correcting for plausible values of antibody test specificity and sensitivity, no scenarios demonstrated a significant increase in community seroprevalence. 94.1% of students reported PCR tests prior to study enrollment, with only 15.8% listing a positive result, of which 93.3% occurred after the start of the Fall term. Only contact with a known COVID-positive individual, and attendance of gatherings up to 50 individuals, were significant predictors of antibodies among returning students. These results indicate that the majority of infections among returning students occurred on campus, and the potential for local-scale heterogeneity in mixing with rare transmission between cohorts. The underlying mechanism of the disparate transmission dynamics is currently not known, but is the subject of ongoing components of the Data4Action project: multiple waves of student and community resident serology samples and behavioral survey responses will allow for a deeper exploration of the individual risk factors within each cohort. ABSTRACT Tal Azagi - National Institute for Public Health and the Environment, RIVM. Academic Medical Center, AMC - The Netherlands Circulation of Babesia Species and Their Exposure to Humans through Ixodes Ricinus Tal Azagi *,Ryanne I. Jaarsma Arieke Docters van Leeuwen Manoj Fonville Miriam Maas ,Frits F. J. Franssen Marja Kik Jolianne M. Rijks Margriet G. Montizaan Margit Groenevelt Mark Hoyer Helen J. Esser Aleksandra I. Krawczyk ,David Modrý,Hein Sprong and Samiye Demir Centre for Zoonoses & Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health an Human babesiosis in Europe has been attributed to infection with Babesia divergens and, to a lesser extent, with Babesia venatorum and Babesia microti, which are all transmitted to humans by Ixodes ricinus ticks. These Babesia species circulate in the Netherlands, but autochthonous human babesiosis cases have not been reported so far. To gain more insight into the natural sources of these Babesia species, their presence in reservoir hosts and in I. ricinus was examined. In a cross-sectional study, qPCR-detection was used to determine the presence of Babesia in 4611 tissue samples from 27 mammalian species and 13 bird species. Reverse line blotting and qPCR detection of Babesia species were used to test 2849 questing I. ricinus. Babesia microti was found in two rodent species: Myodes glareolus and Apodemus sylvaticus, whereas B. divergens was detected in the geographically restricted
Recommended publications
  • Anura: Brachycephalidae) Com Base Em Dados Morfológicos
    Pós-graduação em Biologia Animal Laboratório de Anatomia Comparada de Vertebrados Departamento de Ciências Fisiológicas Instituto de Ciências Biológicas da Universidade de Brasília Sistemática filogenética do gênero Brachycephalus Fitzinger, 1826 (Anura: Brachycephalidae) com base em dados morfológicos Tese apresentada ao Programa de pós-graduação em Biologia Animal para a obtenção do título de doutor em Biologia Animal Leandro Ambrósio Campos Orientador: Antonio Sebben Co-orientador: Helio Ricardo da Silva Maio de 2011 Universidade de Brasília Instituto de Ciências Biológicas Programa de Pós-graduação em Biologia Animal TESE DE DOUTORADO LEANDRO AMBRÓSIO CAMPOS Título: “Sistemática filogenética do gêneroBrachycephalus Fitzinger, 1826 (Anura: Brachycephalidae) com base em dados morfológicos.” Comissão Examinadora: Prof. Dr. Antonio Sebben Presidente / Orientador UnB Prof. Dr. José Peres Pombal Jr. Prof. Dr. Lílian Gimenes Giugliano Membro Titular Externo não Vinculado ao Programa Membro Titular Interno Vinculado ao Programa Museu Nacional - UFRJ UnB Prof. Dr. Cristiano de Campos Nogueira Prof. Dr. Rosana Tidon Membro Titular Interno Vinculado ao Programa Membro Titular Interno Vinculado ao Programa UnB UnB Brasília, 30 de maio de 2011 Dedico esse trabalho à minha mãe Corina e aos meus irmãos Flávio, Luciano e Eliane i Agradecimentos Ao Prof. Dr. Antônio Sebben, pela orientação, dedicação, paciência e companheirismo ao longo do trabalho. Ao Prof. Dr. Helio Ricardo da Silva pela orientação, companheirismo e pelo auxílio imprescindível nas expedições de campo. Aos professores Carlos Alberto Schwartz, Elizabeth Ferroni Schwartz, Mácia Renata Mortari e Osmindo Pires Jr. pelos auxílios prestados ao longo do trabalho. Aos técnicos Pedro Ivo Mollina Pelicano, Washington José de Oliveira e Valter Cézar Fernandes Silveira pelo companheirismo e auxílio ao longo do trabalho.
    [Show full text]
  • Amphibiaweb's Illustrated Amphibians of the Earth
    AmphibiaWeb's Illustrated Amphibians of the Earth Created and Illustrated by the 2020-2021 AmphibiaWeb URAP Team: Alice Drozd, Arjun Mehta, Ash Reining, Kira Wiesinger, and Ann T. Chang This introduction to amphibians was written by University of California, Berkeley AmphibiaWeb Undergraduate Research Apprentices for people who love amphibians. Thank you to the many AmphibiaWeb apprentices over the last 21 years for their efforts. Edited by members of the AmphibiaWeb Steering Committee CC BY-NC-SA 2 Dedicated in loving memory of David B. Wake Founding Director of AmphibiaWeb (8 June 1936 - 29 April 2021) Dave Wake was a dedicated amphibian biologist who mentored and educated countless people. With the launch of AmphibiaWeb in 2000, Dave sought to bring the conservation science and basic fact-based biology of all amphibians to a single place where everyone could access the information freely. Until his last day, David remained a tirelessly dedicated scientist and ally of the amphibians of the world. 3 Table of Contents What are Amphibians? Their Characteristics ...................................................................................... 7 Orders of Amphibians.................................................................................... 7 Where are Amphibians? Where are Amphibians? ............................................................................... 9 What are Bioregions? ..................................................................................10 Conservation of Amphibians Why Save Amphibians? .............................................................................
    [Show full text]
  • Detection and Genetic Characterization of Puumala
    Detection and Genetic Characterization of Puumala Orthohantavirus S-Segment in Areas of France Non-Endemic for Nephropathia Epidemica Séverine Murri, Sarah Madrières, Caroline Tatard, Sylvain Piry, Laure Benoit, Anne Loiseau, Julien Pradel, Emmanuelle Artige, Philippe Audiot, Nicolas Leménager, et al. To cite this version: Séverine Murri, Sarah Madrières, Caroline Tatard, Sylvain Piry, Laure Benoit, et al.. Detection and Genetic Characterization of Puumala Orthohantavirus S-Segment in Areas of France Non-Endemic for Nephropathia Epidemica. Pathogens, MDPI, 2020, 9 (9), pp.721. 10.3390/pathogens9090721. hal-03275200 HAL Id: hal-03275200 https://hal.inrae.fr/hal-03275200 Submitted on 30 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License pathogens Article Detection and Genetic Characterization of Puumala Orthohantavirus S-Segment in Areas of France Non-Endemic for Nephropathia Epidemica Séverine Murri 1, Sarah Madrières 1,2, Caroline Tatard 2, Sylvain Piry 2 , Laure Benoit
    [Show full text]
  • Taxonomy of the Order Bunyavirales: Update 2019
    Archives of Virology (2019) 164:1949–1965 https://doi.org/10.1007/s00705-019-04253-6 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: update 2019 Abulikemu Abudurexiti1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Tatjana Avšič‑Županc5 · Matthew J. Ballinger6 · Dennis A. Bente7 · Martin Beer8 · Éric Bergeron9 · Carol D. Blair10 · Thomas Briese11 · Michael J. Buchmeier12 · Felicity J. Burt13 · Charles H. Calisher10 · Chénchén Cháng14 · Rémi N. Charrel15 · Il Ryong Choi16 · J. Christopher S. Clegg17 · Juan Carlos de la Torre18 · Xavier de Lamballerie15 · Fēi Dèng19 · Francesco Di Serio20 · Michele Digiaro21 · Michael A. Drebot22 · Xiaˇoméi Duàn14 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst7 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28 · Stephan Günther29 · Anne‑Lise Haenni30 · Roy A. Hall31 · Jussi Hepojoki32,33 · Roger Hewson34 · Zhìhóng Hú19 · Holly R. Hughes35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa39 · Jonas Klingström40 · Chūn Kòu14 · Lies Laenen41,42 · Amy J. Lambert35 · Stanley A. Langevin43 · Dan Liu44 · Igor S. Lukashevich45 · Tāo Luò1 · Chuánwèi Lüˇ 19 · Piet Maes41 · William Marciel de Souza46 · Marco Marklewitz37,38 · Giovanni P. Martelli47 · Keita Matsuno48,49 · Nicole Mielke‑Ehret50 · Maria Minutolo3 · Ali Mirazimi51 · Abulimiti Moming14 · Hans‑Peter Mühlbach50 · Rayapati Naidu52 · Beatriz Navarro20 · Márcio Roberto Teixeira Nunes53 · Gustavo Palacios25 · Anna Papa54 · Alex Pauvolid‑Corrêa55 · Janusz T. Pawęska56,57 · Jié Qiáo19 · Sheli R. Radoshitzky25 · Renato O. Resende58 · Víctor Romanowski59 · Amadou Alpha Sall60 · Maria S. Salvato61 · Takahide Sasaya62 · Shū Shěn19 · Xiǎohóng Shí63 · Yukio Shirako64 · Peter Simmonds65 · Manuela Sironi66 · Jin‑Won Song67 · Jessica R. Spengler9 · Mark D. Stenglein68 · Zhèngyuán Sū19 · Sùróng Sūn14 · Shuāng Táng19 · Massimo Turina69 · Bó Wáng19 · Chéng Wáng1 · Huálín Wáng19 · Jūn Wáng19 · Tàiyún Wèi70 · Anna E.
    [Show full text]
  • Geographical Distribution and Genetic Diversity of Bank Vole
    Edinburgh Research Explorer Geographical Distribution and Genetic Diversity of Bank Vole Hepaciviruses in Europe Citation for published version: Schneider, J, Hoffmann, B, Fevola, C, Schmidt, ML, Imholt, C, Fischer, S, Ecke, F, Hörnfeldt, B, Magnusson, M, Olsson, GE, Rizzoli, A, Tagliapietra, V, Chiari, M, Reusken, C, Bužan, E, Kazimirova, M, Stanko, M, White, TA, Reil, D, Obiegala, A, Meredith, A, Drexler, JF, Essbauer, S, Henttonen, H, Jacob, J, Hauffe, HC, Beer, M, Heckel, G & Ulrich, RG 2021, 'Geographical Distribution and Genetic Diversity of Bank Vole Hepaciviruses in Europe', Viruses, vol. 13, no. 7. https://doi.org/10.3390/v13071258 Digital Object Identifier (DOI): 10.3390/v13071258 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Viruses General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 viruses Article Geographical Distribution and Genetic Diversity of Bank Vole Hepaciviruses in Europe Julia Schneider 1,2,*,† , Bernd Hoffmann 3 , Cristina Fevola 4,5 , Marie Luisa Schmidt 1,2,†, Christian Imholt 6, Stefan Fischer 1, Frauke Ecke 7, Birger Hörnfeldt 7, Magnus Magnusson 7, Gert E.
    [Show full text]
  • Downloaded Via Ensembl While Using HISAT2
    viruses Article Interactions of Viral Proteins from Pathogenic and Low or Non-Pathogenic Orthohantaviruses with Human Type I Interferon Signaling Giulia Gallo 1,2, Grégory Caignard 3, Karine Badonnel 4, Guillaume Chevreux 5, Samuel Terrier 5, Agnieszka Szemiel 6, Gleyder Roman-Sosa 7,†, Florian Binder 8, Quan Gu 6, Ana Da Silva Filipe 6, Rainer G. Ulrich 8 , Alain Kohl 6, Damien Vitour 3 , Noël Tordo 1,9 and Myriam Ermonval 1,* 1 Unité des Stratégies Antivirales, Institut Pasteur, 75015 Paris, France; [email protected] (G.G.); [email protected] (N.T.) 2 Ecole Doctorale Complexité du Vivant, Sorbonne Université, 75006 Paris, France 3 UMR 1161 Virologie, Anses-INRAE-EnvA, 94700 Maisons-Alfort, France; [email protected] (G.C.); [email protected] (D.V.) 4 BREED, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; [email protected] 5 Institut Jacques Monod, CNRS UMR 7592, ProteoSeine Mass Spectrometry Plateform, Université de Paris, 75013 Paris, France; [email protected] (G.C.); [email protected] (S.T.) 6 MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; [email protected] (A.S.); [email protected] (Q.G.); ana.dasilvafi[email protected] (A.D.S.F.); [email protected] (A.K.) 7 Unité de Biologie Structurale, Institut Pasteur, 75015 Paris, France; [email protected] 8 Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; binderfl[email protected] (F.B.); rainer.ulrich@fli.de (R.G.U.) Citation: Gallo, G.; Caignard, G.; 9 Institut Pasteur de Guinée, BP 4416 Conakry, Guinea Badonnel, K.; Chevreux, G.; Terrier, S.; * Correspondence: [email protected] Szemiel, A.; Roman-Sosa, G.; † Current address: Institut Für Virologie, Justus-Liebig-Universität, 35390 Giessen, Germany.
    [Show full text]
  • Puumala Virus Infection in Family, Switzerland
    RESEARCH LETTERS 7. Zehnder AM, Hawkins MG, Koski MA, Lifland B, Byrne BA, World hantaviruses ranges from 1%–10% for Do- Swanson AA, et al. Burkholderia pseudomallei isolates in 2 pet brava-Belgrade and Hantaan orthohantaviruses to iguanas, California, USA. Emerg Infect Dis. 2014;20:304–6. https://doi.org/10.3201/eid2002.131314 <1% for PUUV. Infection is transmitted by direct 8. Elschner MC, Hnizdo J, Stamm I, El-Adawy H, Mertens K, inhalation of virion-containing aerosols from ro- Melzer F. Isolation of the highly pathogenic and zoonotic dent urine and feces. PUUV causes nephropathia agent Burkholderia pseudomallei from a pet green iguana in epidemica, a limited form of hemorrhagic fever Prague, Czech Republic. BMC Vet Res. 2014;10:283. https://doi.org/10.1186/s12917-014-0283-7 with renal syndrome (1). In Russia, 6,000–8,000 cases of hemorrhagic fever with renal syndrome Address for correspondence: Jay E. Gee, Centers for Disease are reported annually. Most cases occur in Western Control and Prevention, 1600 Clifton Rd NE, Mailstop H17-2, Russia and are caused by PUUV and Dobrava-Bel- Atlanta, GA 30329-4027, USA; email: [email protected] grade orthohantaviruses (2). Asthenia, fever, chills, diffuse myalgia, and lum- bar pain developed in a man 45 years of age 4 days after he returned to Switzerland from Samara, his hometown in central Russia (Appendix, https:// wwwnc.cdc.gov/EID/article/27/2/20-3770-App1. pdf). Four days later, he sought treatment at the Ge- neva University Hospitals (Geneva, Switzerland) for septic shock with disseminated intravascular coagu- lation and kidney and liver failure.
    [Show full text]
  • Wellcome Trust Annual Report and Financial Statements 2019 Is © the Wellcome Trust and Is Licensed Under Creative Commons Attribution 2.0 UK
    Annual Report and Financial Statements 2019 Table of contents Report from Chair 3 Report from Director 5 Trustee’s Report 7 What we do 8 Review of Charitable Activities 9 Review of Investment Activities 21 Financial Review 31 Structure and Governance 36 Social Responsibility 40 Risk Management 42 Remuneration Report 44 Remuneration Committee Report 46 Nomination Committee Report 47 Investment Committee Report 48 Audit and Risk Committee Report 49 Independent Auditor’s Report 52 Financial Statements 61 Consolidated Statement of Financial Activities 62 Consolidated Balance Sheet 63 Statement of Financial Activities of the Trust 64 Balance Sheet of the Trust 65 Consolidated Cash Flow Statement 66 Notes to the Financial Statements 67 Alternative Performance Measures and Key Performance Indicators 114 Glossary of Terms 115 Reference and Administrative Details 116 Table of Contents Wellcome Trust Annual Report 2019 | 2 Report from Chair During my tenure at Wellcome, which ends in The macro environment is increasingly challenging, 2020, I count myself lucky to have had the which has created volatility in financial markets. opportunity to meet inspiring people from a rich Q4 2018 was a very difficult quarter, but the diversity of sectors, backgrounds, specialisms resumption of interest rate cuts by the US Federal and scientific fields. Reserve underpinned another year of gains for our portfolio. We recognise that the cycle is extended, Wellcome’s achievements belong to the people and that the portfolio is likely to face more who work here and to the people we fund – it is challenging times ahead. a partnership that continues to grow stronger, more influential and more ambitious, spurred by The team is working hard to ensure that our independence.
    [Show full text]
  • A Look Into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins
    viruses Review A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins Shanna S. Leventhal, Drew Wilson, Heinz Feldmann and David W. Hawman * Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; [email protected] (S.S.L.); [email protected] (D.W.); [email protected] (H.F.) * Correspondence: [email protected]; Tel.: +1-406-802-6120 Abstract: In 2016, the Bunyavirales order was established by the International Committee on Taxon- omy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcrip- tional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these Citation: Leventhal, S.S.; Wilson, D.; human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral Feldmann, H.; Hawman, D.W.
    [Show full text]
  • Annual Report 2003
    ANNUAL REPORT 2003 Published by the Marketing and Communications Division The Australian National University Published by The Marketing and Communications Division The Australian National University Produced by ANU Publications Unit Marketing and Communications Division The Australian National University Printed by University Printing Service The Australian National University ISSN 1327-7227 April 2004 Contents Council and University Office rs 7 Review of 2003 10 Council and Council Committee Meetings 20 University Statistics 22 Cooperation with Government and other Public Institutions 30 Joint Research Projects undertaken with Universities, CSIRO and other Institutions 76 Principal Grants and Donations 147 University Public Lectures 168 Freedom of Information Act 1982 Statement 172 Auditor-General’s Report 175 Financial Statements 179 University Organisational Structure 222 Academic Structure 223 ANU Acronyms 224 Index 225 Further information about ANU Detailed information about the achievements of ANU in 2003, especially research and teaching outcomes, is contained in the annual reports of the University’s Research Schools, Faculties, Centres and Administrative Divisions. For course and other academic information, contact: Director Student and Academic Services The Australian National University Canberra ACT 0200 T: 02 6125 3339 F: 02 6125 0751 For general information, contact: Director Marketing and Communications Division The Australian National University Canberra ACT 0200 T: 02 6125 2229 F: 02 6125 5568 The Council and University
    [Show full text]
  • Parliamentary Inquiry
    February 9, 2004 Science and Technology Committee House of Commons 7 Millbank London SW1P 3JA UNITED KINGDOM Dear Dr Gibson and Members of the Science and Technology Committee: On behalf of the Public Library of Science, I am pleased to submit the following written evidence to the Science and Technology Committee's inquiry into scientific publication practices. I congratulate you and your colleagues for your initiative and leadership in pursuing this timely and important inquiry. The Public Library of Science (PLoS) is a grassroots, world-wide, not-for-profit organization of scientists, physicians, and members of the public working to make the world's scientific and medical literature a freely available resource, easily accessible to anyone, anywhere, with an Internet connection through open, online public libraries. The deepening crisis in scientific publishing as journal prices continue to escalate will restrict comprehensive access to the scientific literature to a dwindling elite at a handful of wealthy research institutions in the advanced economies. While action to reduce subscription costs would be welcome, it will ultimately be necessary for the scientific community to abandon the unstable, outdated, restrictive and fundamentally anti- competitive fee-for-access publication system. Only when we transition to an open access system - in which publishers are paid a fair price for the services they provide to the scientific community, and all reports become immediately freely available online - will we have a sustainable and equitable system for publishing science that serves the interests of the public, the public institutions that support scientific research, and scientists themselves. My colleagues and I at PLoS have been advocating for open access for over five years.
    [Show full text]
  • Final Program
    Final Program The SIAM Conference on the Life Sciences is sponsored by the SIAM Activity Group on Life Sciences (SIAG/LS) The SIAM Activity Group on the Life Sciences was established to foster the application of mathematics to the life sciences and research in mathematics that leads to new methods and techniques useful in the life sciences. The life sciences have become quantitative as new technologies facilitate collection and analysis of vast amounts of data ranging from complete genomic sequences of organisms to satellite imagery of forest landscapes on continental scales. Computers enable the study of complex models of biological processes. The activity group brings together researchers who seek to develop and apply mathematical and computational methods in all areas of the life sciences. It provides a forum that cuts across disciplines to catalyze mathematical research relevant to the life sciences and rapid diffusion of advances in mathematical and computational methods. AN16/LS16 Mobile App Scan the QR code with any QR reader and download the TripBulder EventMobileTM app to your iPhone, iPad, iTouch, or Android devices. You can also visit www.tripbuildermedia.com/apps/siam2016events Society for Industrial and Applied Mathematics 3600 Market Street, 6th Floor Philadelphia, PA 19104-2688 USA Telephone: +1-215-382-9800 Fax: +1-215- 386-7999 Conference E-mail: [email protected] Conference Web: www.siam.org/meetings/ Membership and Customer Service: (800) 447-7426 (US & Canada) or +1-215-382-9800 (worldwide) www.siam.org/meetings 2 2016 SIAM Annual Meeting General Information Table of Contents C. David Levermore SIAM Registration Desk University of Maryland, College Park, USA General Information ...............................2 The SIAM registration desk is located on Rachel Levy Exhibitor and Sponsor Information .6 the Concourse Level of the Westin Boston Harvey Mudd College, USA Waterfront.
    [Show full text]