Phosphor Materials Phosphor Materials

Total Page:16

File Type:pdf, Size:1020Kb

Phosphor Materials Phosphor Materials ADVANCED MATERIALS Phosphor Materials Phosphor Materials The Challenge BENEFITS n Reactive gas processing produces the The LED industry is rapidly evolving to meet market demands for better colorization, broadest variety of unique materials improved performance/price ratios, longer lifetime and superior energy efficiency. n Controlled atmosphere handling of A critical component in LEDs is phosphor material, which is difficult to produce. environmentally sensitive materials Manufacturers must meet stringent requirements for purity, oxygen levels & moisture improves performance protection. Innovative companies are in need of high quality products with improved n Particle size, purity & packaging shelf life as well as trusted partners to assist with new product development. optimized for customer processes n Convenient worldwide facilities n Scaled manufacturing quantities from The Solution R&D to full production levels n Customized phosphor processing, Materion offers a full line of high purity phosphor precursors for the fabrication of LED material synthesis & chemical analysis phosphors and services to support the development of new products. Improved Material Characteristics Research & Development MATERIALS n Granules & powders available from 20 n Broad range of chemistries n Partnering from prototype to full mesh to -325 mesh production n Unique manufacturing capabilities n Purities up to 99.9% to produce higher n Materials expertise n Richer color displays yields with less down time n Customizable alloys, size and purity n Increased levels of luminous output n Oxygen levels typically <0.75 wt% with n New experimental materials with n High quality alkali earth nitrides; rare lower available upon request tailored physical properties earth nitrides and hydrides n Compositions Available: n Aluminum Nitride, n Lanthanum Nitride, AIN LaN n n Barium Hydride, BaH2 Lutetium Nitride, LuN n n Barium Nitride, Ba3N2 Magnesium Nitride, n Mg N Calcium Hydride, 3 2 n CaH2 Silicon Nitride, Si3N4 n Calcium Nitride, n Strontium Hydride, Ca3N2 SrH2 n Cerium Nitride, CeN n Strontium Nitride, Sr-N* n Europium Nitride, EuN n Ytterbium Nitride, YbN n Gadolinium Nitride, GdN n Yttrium Nitride, YN n Gallium Nitride, GaN *Multiple Stoichiometries Note: Additional Rare Earth Hydrides and Nitrides Available by Request. ADVANCED MATERIALS 2978 Main Street Buffalo, NY 14214 USA Phone: +1 800.327.1355 [email protected] MATERION CORPORATION www.materion.com/advanced-materials www.materion.com MATERION ADVANCED MATERIALS is a global supplier of over 2,000+ inorganic chemicals manufactured to meet your exact specifications. Our offerings include: Borides, Carbides, Fluorides, Hydrides, Nitrides, Oxides, Phosphides, Selenides, Silicides, Sulfides, Tellurides plus customized compounds. Our inorganic chemicals are available in a range of forms from granules, pellets to powders and can be produced in small R&D quantities to full production lots. Because of our industry experts and extensive manufacturing capabilities, we are able to meet our customers’ requirements for consistent quality, reliability and repeatability..
Recommended publications
  • Design and Discovery of New Piezoelectric Materials Using Density Functional Theory
    DESIGN AND DISCOVERY OF NEW PIEZOELECTRIC MATERIALS USING DENSITY FUNCTIONAL THEORY by Sukriti Manna © Copyright by Sukriti Manna, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering). Golden, Colorado Date Signed: Sukriti Manna Signed: Dr. Cristian V. Ciobanu Thesis Advisor Signed: Dr. Vladan Stevanovi´c Thesis Advisor Golden, Colorado Date Signed: Dr. John Berger Professor and Head Department of Mechanical Engineering ii ABSTRACT Piezoelectric materials find applications in microelectromechanical systems (MEMS), such as surface acoustic wave (SAW) resonators, radio frequency (RF) filters, resonators, and energy harvesters. Using density functional theory calculations, the present study illus- trates the influence of alloying and co-alloying with different nitrides on piezoelectric and mechanical properties of an existing piezoelectric material such as aluminum nitride (AlN). Besides improving the performance of existing piezoelectric material, a high-throughput screening method is used to discover new piezoelectric materials. AlN has several beneficial properties such as high temperature stability, low dielectric permittivity, high hardness, large stiffness constant, high sound velocity, and complementary metal-oxide-semiconductor (CMOS) compatibility. This makes it widely accepted material in RF and resonant devices. However, it remains a challenge to enhance the piezoelectric modulus of AlN. The first part of this thesis establishes that the piezoelectric modulus of AlN could be improved by alloying with rocksalt transition metal nitrides such as scandium nitride (ScN), yttrium nitride (YN), and chromium nitride (CrN). As the content of the rocksalt end member in the alloy increases, the accompanying structural frustration enables a greater piezoelectric response.
    [Show full text]
  • Metastable Scaln and Yaln Thin Films Grown by Reactive Magnetron Sputter Epitaxy
    Linköping Studies in Science and Technology Dissertation No. 1566 Metastable ScAlN and YAlN Thin Films Grown by Reactive Magnetron Sputter Epitaxy Agnė Žukauskaitė Thin Film Physics Division Department of Physics, Chemistry, and Biologylogy (IFM)(IFM) Linköping University, Sweden 2014 The cover image The image on the cover is based on an elemental energy dispersive x-ray spectroscopy map of Sc0.2Al0.8N deposited at 400°C obtained in a transmission electron microscope. Each individual square represents an area of ~1x1 nm. Here, scandium was assigned the green color, and aluminum is mapped using purple. No tendencies to cluster into Sc-rich or Al-rich regions can be seen, indicating a solid solution. A special Thank You for recording this data goes to Dr. Justinas Pališaitis! © Agnė Žukauskaitė ISBN: 978-91-7519-434-9 ISSN: 0345-7524 Printed by LiU-Tryck Linköping, Sweden, 2014 Abstract Metastable ScxAl1-xN and YxAl1-xN thin films were deposited in an ultra high vacuum system using reactive magnetron sputter epitaxy from elemental Al, Sc, and Y targets in Ar/N2 gas mixture. Their structural, electrical, optical, mechanical, and piezoelectrical properties were investigated by using the transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, I-V and C-V measurements, nanoindentation, and two different techniques for piezoelectric characterization: piezoresponse force microscopy and double beam interferometry. Compared to AlN, improved electromechanical coupling and increase in piezoelectric response was found in ScxAl1-xN/TiN/Al2O3 structures with Sc content up to x=0.2. Decreasing the growth temperature down to 400 °C improved the microstructure and crystalline quality of the material.
    [Show full text]
  • Microstructure and Piezoelectric Response of Yxal1âˆ'xn Thin Films
    Acta Materialia 100 (2015) 81–89 Contents lists available at ScienceDirect Acta Materialia journal homepage: www.elsevier.com/locate/actamat Microstructure and piezoelectric response of YxAl1ÀxN thin films ⇑ P.M. Mayrhofer a, , H. Riedl b, H. Euchner b, M. Stöger-Pollach c, P.H. Mayrhofer b, A. Bittner a, U. Schmid a a Institute of Sensor and Actuator Systems, TU Wien, Floragasse 7, 1040 Vienna, Austria b Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria c University Service Center for Transmission Electron Microscopy (USTEM), TU Wien, Wiedner Hauptstrasse 8-10/052, 1040 Vienna, Austria article info abstract Article history: Transition metal doping of aluminium nitride (AlN) type thin films was recently employed to increase the Received 6 July 2015 piezoelectric constants for application in micro electromechanical systems. YxAl1ÀxN thin films were Revised 7 August 2015 synthesized with varying x up to 11.6% by reactive co-sputtering from elemental Al and Y targets. Ab initio Accepted 11 August 2015 density functional theory studies up to x = 50% yttrium in YxAl1ÀxN suggest increasing piezoelectric constants d33 and d31 with increasing yttrium content. Experimental measurements of d33 yield increasing values for increasing yttrium content though, remaining below the prediction from ab initio Keywords: calculations. Detailed X-ray diffraction and transmission electron microscopy studies prove that, Yttrium aluminum nitride although the thin films are highly c-axis oriented, their nucleation at the Si (100) substrates leads to Piezoelectric the formation of an amorphous interface region with increasing Y. d33 PFM Ó 2015 Acta Materialia Inc. Published by Elsevier Ltd.
    [Show full text]
  • Develop and Characterization of Transparent Glass Matrix Composites
    DEVELOPMENT AND CHARACTERIZATION OF TRANSPARENT GLASS MATRIX COMPOSITES Bo Pang A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy Imperial College London Department of Materials LONDON, 2011 Preface This thesis describes research carried out by the author in the Department of Materials of Imperial College during the period from January 2008 to January 2010, under the supervision of Dr. David McPhail and Prof. Aldo R. Boccaccini. No part of this work has been accepted or is being currently submitted for any other qualification in this college or elsewhere. Some of the results presented in this thesis have been published and presented in various journals and conferences. Journal publications B. Pang, D. McPhail, D.D. Jayaseelan, and A.R. Boccaccini, Development and Characterization of Transparent Glass Matrix Composites. Advances in Science and Technology, 2011. 71: p. 102-107. B. Pang, D. McPhail and A.R. Boccaccini, Glass Matrix Composites for Transparent Security Measures. Materials World, February 2011: p.20-22. Conference contributions Development and characterisation of transparent glass matrix composite. B. Pang, D. McPhail and A.R. Boccaccini. Oral presentation at the Annual Meeting of Society of Glass Technology, Murray Edwards College, Cambridge, UK. 6-10 September 2010. Development and characterisation of transparent glass matrix composite. B. Pang, D. McPhail and A.R. Boccaccini. Oral presentation at CIMTEC 2010 - 12th International Ceramics Congress, Montecatini Terme, Italy. 6-11 June 2010. 1 Abstract Glass matrix composites based on NextelTM alumina fibre reinforced borosilicate glass have been fabricated to improve their mechanical property and fracture toughness. In this work, a novel processing technique, which is called “sandwich” hot-pressing, has been used.
    [Show full text]
  • First Principles Study on the Formation of Yttrium Nitride in Cubic and Hexagonal Phases
    Manuscript including Title Page & Abstract First Principles Study on the Formation of Yttrium Nitride in Cubic and Hexagonal Phases G. Soto, M.G. Moreno-Armenta and A. Reyes-Serrato Centro de Ciencias de la Materia Condensada, Universidad Nacional Autónoma de México, Apartado Postal 356, Ensenada, Baja California. CP 22800, México. Abstract We have studied the formation of yttrium nitride in which the Y-atoms were arranged in two common close-packed stacking: The AB-stacking (hcp-symmetry) is the ground state of metallic yttrium; while the ABC-stacking (fcc-symmetry) is the ground state of yttrium nitride. Given the different symmetries between YN and Y, there must be a phase transition (hcp → fcc) as N is incorporated in the Y-lattice. By means of first principles calculations we have made a systematical investigation where N was gradually incorporated in octahedral interstices in AB and ABC stacking of Y. We report the heat of formation, bulk modulus, lattice parameter and electronic structure of the resultant nitrides. We found that both metal arrangements are physically achievable. Furthermore, for low nitrogen incorporation the two phases may coexist. However for high nitrogen concentration the cubic phases are favored by a 30 kJ mol-1 margi n. These results are important since fcc-YN is semiconducting and could be utilized as active layer in electronic devices. PACS: 71.15.Nc; 71.20.-b; 71.20.Be; 71.20.Lp; 71.20.Nr; 72.80.Ga Keywords: Yttrium nitride; Interstitial alloys; Transition metal nitrides; Ab initio; DFT; LAPW 1 Introduction The Transition (T) Metal (M) Nitrides (N) are valuable for several technological applications.
    [Show full text]
  • LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, E.G. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE {(Roofi
    CPC - C04B - 2021.08 C04B LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE {(roofing granules E04D 7/005)}; CERAMICS (devitrified glass-ceramics C03C 10/00); REFRACTORIES; TREATMENT OF NATURAL STONE Definition statement This place covers: Chemical aspects of the processing of lime, magnesia or dolomite and of molten slag. Compositional aspects of: • inorganic binders, such as hydraulic cements ; • mortars, concrete and artificial stone, e.g. the choice of fillers or active ingredients therefore; • shaped ceramic products, e.g. clay-wares, refractories , non-oxides. Physico-chemical aspects of methods for obtaining mortars, concrete, artificial stones or ceramics , e.g. for delaying the setting time of mortar compositions. Treatment including defibrillating of materials such as fillers , agglomerated or waste materials, or refuse to enhance their filling properties in mortars, concrete or artificial stone. Porous mortars, concrete, artificial stone or ceramic ware, and the preparation thereof. Methods and apparatus for: • burning or slaking lime; • obtaining mineral binders, e.g. Portland cement or hemihydrate plaster; • the expansion of mineral fillers , such as clay, perlite or vermiculite. After- treatment of artificial stones, mortars, concrete and ceramics , e.g. coating or impregnation of green concrete after primary shaping. Non-mechanical treatment of natural stone. Processing powders of inorganic compounds in preparation to the manufacturing of ceramic products . 1 C04B (continued) CPC - C04B - 2021.08 Definition statement The joining of burned ceramics with other articles by heating. References Limiting references This place does not cover: Granulating apparatus B01J 2/00 Mechanical features relating to the working of mortars, concrete, stone, B28 clay-wares or ceramics , e.g.
    [Show full text]
  • Solid State Metathesis Preparations of Hard Refractory Ceramics
    S o u p S t a t e M e t a t h e s is P reparations OF H a r d R e f r a c t o r y C e r a m i c s A thesis presented by: Artur Marek Nartowski BSc in partial fulfilment for the award of Ph. D. U n iv e r s it y C o l l e g e Lo n d o n D e p t , o f C h e m is t r y ProQuest Number: 10014877 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10014877 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Acknowledgements This work was supported by EPSRC and was completed under very helpfiil and encouraging supervision of Dr. I. P. Parkin. Grateful acknowledgement is due to members of staff, especially Dr. C. Carmalt, Prof. A. J. Craven, Dr. M. MacKenzie and the departmental microanalyst. I am also indebted to my fellow students, in particular, L.
    [Show full text]
  • 1. Give the Correct Names for Each of the Compounds Listed Below. A
    1. Give the correct names for each of the compounds listed below. a) NaCl sodium chloride n) ZrS2 zirconium sulfide b) FrBr francium bromide o) AgI silver iodide c) KF potassium fluoride p) BaSe barium selenide d) RaS radium sulfide q) MgO magnesium oxide e) LiI lithium iodide r) LaBr3 lanthanum bromide f) Li3N lithium nitride s) Sr3N2 strontium nitride g) AlBr3 aluminum bromide t) Cd3As2 cadmium arsenide h) CdCl2 cadmium chloride u) Rb2Se rubidium selenide i) K2O potassium oxide v) Rb3N rubidium nitride j) InF3 indium fluoride w) BaF2 barium fluoride k) ZnO zinc oxide x) ZrTe2 zirconium telluride l) Y2O3 yttrium oxide y) Cs3P cesium phosphide m) CaTe calcium telluride z) Y2O3 yttrium oxide 2. Write the correct chemical formula for each of the following compounds. a) potassium bromide KBr n) potassium nitride K3N b) zinc bromide ZnBr2 o) aluminum bromide AlBr3 c) lithium iodide LiI p) zinc phosphide Zn3P2 d) scandium chloride ScCl3 q) magnesium sulfide MgS e) magnesium chloride MgCl2 r) hafnium chloride HfCl4 f) magnesium oxide MgO s) barium sulfide BaS g) hydrogen sulfide H2S t) tantalum oxide Ta2O5 h) gallium iodide GaI3 u) zirconium nitride Zr3N4 i) sodium oxide Na2O v) potassium selenide K2Se j) magnesium selenide MgSe w) germanium fluoride GeF4 k) calcium fluoride CaF2 x) francium phosphide Fr3P l) aluminum oxide Al2O3 y) zinc arsenide Zn3As2 m) beryllium chloride BeCl2 z) scandium telluride Sc2Te3 L. h. s. – Chemistry – Nomenclature – Answers – Page 1 3. Give the correct names for each of the compounds listed below. a) CaSO4 calcium
    [Show full text]
  • GROWTH of NITRIDE FILMS Yongfeng Lu University of Nebraska - Lincoln, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Department of Electrical & Computer Engineering, Department of Electrical and Computer Engineering 2019 GROWTH OF NITRIDE FILMS Yongfeng Lu University of Nebraska - Lincoln, [email protected] Hossein Rabiee Golgir Lincoln, NE Yunshen Zhou Lincoln, NE Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons Lu, Yongfeng; Golgir, Hossein Rabiee; and Zhou, Yunshen, "GROWTH OF NITRIDE FILMS" (2019). Faculty Publications from the Department of Electrical and Computer Engineering. 496. https://digitalcommons.unl.edu/electricalengineeringfacpub/496 This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. US010233544B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 ,233 ,544 B2 Lu et al. (45 ) Date of Patent : Mar . 19 , 2019 ( 54 ) GROWTH OF NITRIDE FILMS HOIL 21/ 02378 ( 2013 .01 ) ; HOIL 21 /02381 ( 2013 . 01 ) ; HOIL 21 /02422 (2013 .01 ) (71 ) Applicant : Board of Regents of the University of (58 ) Field of Classification Search Nebraska , Lincoln , NE (US ) CPC . .. .. C23C 16 /34 ; C23C 16 / 303 ; C22C 11 /06 ; C22C 13 / 00 ; HOIL 21 /0254 ; HOLL (72 ) Inventors : Yongfeng Lu , Lincoln , NE (US ); 21/ 0262 ; HO1L 21/ 0242 ; HO1L 21 /02425 ; Hossein Rabiee Golgir , Lincoln , NE HO1L 21 /02422 ; HO1L 21 /02381 ; HOLL ( US ) ; Yunshen Zhou , Lincoln , NE 21/ 02378 ; H01L 29/ 2003 (US ) USPC .
    [Show full text]
  • Phosphor Materials
    Phosphor Materials ADVANCED CHEMICALS Materion Advanced Chemicals employs a diverse group of chemists, metallurgists and material technologists to develop and manufacture inorganic chemicals and large area coating materials for applications including solar panels, LED products, architectural and Y Phosphor Materials Materion Advanced Chemicals continues to develop and improve Key Manufacturing Capabilities for Phosphor Materials inorganic compounds used in the manufacture of today’s LED Reactive gas processing phosphor formulations. These specialty inorganic compounds Air and moisture sensitive material manufacturing and provide the material solution in reaching new levels of luminous processing output in LED products. Reactive material handling and packaging Customized manufacturing – synthesis, processing and analysis Materion Advanced Chemicals excels at providing laboratory samples with the ability to scale the process to production Materion has the ability to produce challenging air and moisture quantities. sensitive materials. We can provide the particle size, purity, and packaging to meet the most stringent material requirements. Our expertise in working with reactive materials in an air and moisture free environment results in the exceptional quality found in our Alkali Earth and Rare Earth Nitrides and Hydrides. Material Options Include: Alkali Earth Hydrides and Nitrides Barium Hydride (BaH2) Barium Nitride (Ba3N2) Calcium Hydride (CaH2) Calcium Nitride (Ca3N2) Markets/Applications Strontium Hydride (SrH2) Materion
    [Show full text]
  • To High-Temperature Solar Selective Absorber Materials CP02.2000 6
    July 2002 • NREL/TP-520-31267 Review of Mid- to High- Temperature Solar Selective Absorber Materials C.E. Kennedy National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 July 2002 • NREL/TP-520-31267 Review of Mid- to High- Temperature Solar Selective Absorber Materials C.E. Kennedy Prepared under Task No. CP02.2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S.
    [Show full text]
  • Chemsherpa 管理対象物質 Ver2.04.00 説明書
    chemSHERPA 管理対象物質 Ver2.04.00 説明書 chemSHERPA 事務局 内容 1. はじめに .......................................................................................................... 2 2. 管理対象物質リストに関わる用語の定義 ..................................................................... 3 3. 管理対象物質 Ver2.04.00 について ........................................................................ 4 3.1 管理対象基準 ............................................................................................. 4 3.1.1 LR01: 日本 化審法 第一種特定化学物質 ..................................................... 5 3.1.2 LR02:米国 有害物質規制法(Toxic Substances Control Act:TSCA)使用禁止又 は制限の対象物質(第 6 条) .................................................................... 5 3.1.3 LR03:EU ELV 指令 2000/53/EC ............................................................. 6 3.1.4 LR04:EU RoHS 指令 2011/65/EU ANNEX II ........................................... 6 3.1.5 LR05:EU POPs 規則 (EU) 2019/1021 ANNEX I ....................................... 7 3.1.6 LR06 : EU REACH 規則 (EC) No 1907/2006 Candidate List of SVHC for Authorisation(認可対象候補物質)及び ANNEX XIV(認可対象物質) .............. 7 3.1.7 LR07:EU REACH 規則 (EC) No 1907/2006 ANNEX XVII(制限対象物質)... 10 3.1.8 LR08: 欧州 医療機器規則 Annex I 10.4 化学物質 ..................................... 10 3.1.9 IC01:Global Automotive Declarable Substance List (GADSL) ................... 11 3.1.10 IC02 : IEC 62474 DB Declarable substance groups and declarable substances ....................................................................................... 11 3.2 検索用物質リスト .......................................................................................
    [Show full text]