Penicillin: World War II Infections and Howard Florey

Total Page:16

File Type:pdf, Size:1020Kb

Penicillin: World War II Infections and Howard Florey In Focus Penicillin: World War II infections and Howard Florey The results were dramatic – the control mice rapidly succumbed, while all of the treated mice survived. These results attracted great interest from the scientific and military communities because, if Ian Gust replicated in humans, the drug had the potential to influence the Department of Microbiology and outcome of WWII. Immunology University of Melbourne It took Florey and 16 colleagues several months to produce suffi- Parkville, Vic. 3010, Australia Tel: +61 3 8344 3963 cient material to treat a handful of patients. The team worked under Fax: +61 3 8344 6552 fi fi Email: [email protected] dif cult circumstances with a lack of funding and equipment; at rst penicillin was made using old dairy equipment. Hospital bedpans were later used to grow the mould and the liquid containing fi Howard Florey is celebrated for his major contributions to penicillin drained from beneath the growing mould and ltered the large-scale production of the fungal product, penicillin, through parachute silk. during World War II (WWII), leading to life-saving outcomes The first patient they treated was a policeman, in whom an infected for many more than those with war wounds. scratch had developed into a life threatening infection. He was given Howard Florey was born in South Australia in 1898. After studying penicillin, and within a day began to recover. Unfortunately Florey’s medicine at the University of Adelaide he was awarded a Rhodes team only had sufficient drug for 5 days of treatment and when Scholarship to work in Oxford under Sir Charles Sherrington. After their efforts to recycle penicillin from the patient’s urine failed, subsequently undertaking a PhD at Cambridge and a brief period he relapsed and died. Because of this experience, the team then as Professor of Physiology at The University of Sheffield, he was concentrated their effects on sick children, who did not require such appointed to a chair in the Sir William Dunn School of Pathology at large quantitates of the drug, demonstrating its value in a child with Oxford, where he remained until his retirement. septicaemia and another with meningitis. In the 1930sbacterial infections were anunimportant cause ofillness By mid-1941 the drug’s potential was widely recognised and it was and death in civilian populations were untreatable. In civilian life, clear that the team needed the help of industry to produce it at large diseases such as meningitis and pneumonia were frequently fatal, scale. Companies in Britain were unable to help out because of the minor wounds could result in cellulitis or life threatening septicae- war, so later that year Florey and Heatley took a dangerous flight mia and sexually transmitted diseases such as syphilis and gonor- to the United States in a blacked-out plane. Penicillin production fi rhoea were serious conditions. On the battle eld it is estimated that was declared a war project and given high priority. Florey convinced up to one-third of lives lost were due to secondary infections. four major pharmaceutical companies (Pfizer, Abbott, Merck and Florey became interested in the use of natural substances to combat Lederle) and many smaller players to become involved. infections and in 1938, with biochemist Ernst Chain, began a During these meetings Florey encountered a scientist from the systematic study of the antibacterial properties of substances pro- Department of Agriculture who was searching for a new use for a duced by bacteria and fungi. They selected penicillin, a substance thick liquid that was a by product from the milling of corn. When this produced by the fungus Penicillium notatum, which had been liquid was used, as a substrate the yield of penicillin was increased described by Alexander Fleming almost a decade earlier, for further 10-fold. A further boost was given when Mary Hunt (known as study. Chain and his colleague Norman Heatley were able to devise Mouldy Mary) found a species of penicillin growing on a moulding extraction and purification techniques which enabled them to cantaloupe (P. chrysogenum) was almost 200 times as successful obtain sufficient penicillin to test its efficacy in laboratory animals. again in producing penicillin as P. notatum. Further modifications On 25 May 1940, a batch of laboratory mice were injected with resulted in strains almost 1000 times as productive as Fleming’s a lethal dose of streptococci and half then treated with penicillin. original cultures. MICROBIOLOGY AUSTRALIA * SEPTEMBER 2014 10.1071/MA14042 177 In Focus By late 1943 mass production of the drug had commenced in 25,000 A paper that he wrote played a seminal role in the decision to gallon aerated metal tanks, a process that Pfizer devised and made establish the Australian National University and during 1947–1958 available to its rivals and later that year Florey was able to test the he was closely associated with development of the John Curtin drug in soldiers in North Africa, with dramatic results especially in School of Medical Research, effectively acting as its non-resident the treatment of gonorrhoea. Production continued to rise so that head and declining several offers of the Directorship. some 2 million doses were available for the D-day landings in June Florey was an excellent experimentalist, a gifted writer and a strong 1944. The results were dramatic, the survival rate for wounded and effective administrator who had the knack of getting things soldiers rising from 4 per 100 (WWI) to around 50 per 100 and the done. His last major role, that of President of the Royal Society was death rate from pneumonia, falling from 18% to less than 1%. By the outstandingly successful, resulting in major reforms. end of the war, many laboratories were manufacturing the drug, including Australia’s Commonwealth Serum Laboratories. Florey was an excellent sportsman, who excelled at tennis. He loved to travel, was an enthusiastic photographer and found pleasure in In 1943, the public health worker, Bill Keogh, convinced the war gardening. cabinet that Australia needed to be self-sufficient in penicillin and identified a young vet, Val Bazely, who was serving in an armoured Once the importance of penicillin was recognised, Florey received regiment in New Guinea, as the man for the job. Bazely was ordered many honours. He became a member of the Royal Society in 1941, back to Melbourne and almost immediately sent to the US. He spent was knighted in 1944, received the Nobel Prize in 1945, the French three months visiting major manufacturers and returned in Decem- Legion d’honneur in 1946 and the US Medal of Merit in 1948. In 1965 ber with a great deal of new knowledge, most of it in his head. he was created Baron Florey of Adelaide and later appointed to the Order of Merit. Bazely set himself the heroic target of producing penicillin within six weeks and worked day and night to achieve it. He produced As one of Australia’s greatest scientists, Florey has been rightly specifications and working drawings, designed purification process- celebrated. His likeness adorns Australia’s $50 note, and his name es, identified suppliers and fabricators, commandeered equipment lives on – both a suburb in Canberra and a major research institute in and scrounged for scarce raw material. To obtain efficient staff, he Melbourne are named after him. persuaded soldiers who were awaiting discharge to assist him. By February, 1944, 10 weeks after his return, a sizable quantity of Biography material had been produced and, by April, CSL became the first Professor Ian Gust A.O., is a medical virologist with advanced company in the world able to provide penicillin to both soldiers training in pathology and infectious diseases. In 1986 he established and civilians. the Burnet Institute (1986) and became its founding director. In Despite living in Britain for all his working life, Florey took a great 1990 he became the R&D Director at CSL Ltd. More recently he has interest in Australia, hosting many young post-docs in his labora- assisted public and private sector organisations, either as a board tories and visiting regularly. member or scientific advisor. International Symposium on the Biology of Actinomycetes Kusadasi, Aydin - Turkey 8–12 October 2014 Register at www.isba17.com 178 MICROBIOLOGY AUSTRALIA * SEPTEMBER 2014.
Recommended publications
  • 書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
    書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S.
    [Show full text]
  • Fleming Vs. Florey: It All Comes Down to the Mold Kristin Hess La Salle University
    The Histories Volume 2 | Issue 1 Article 3 Fleming vs. Florey: It All Comes Down to the Mold Kristin Hess La Salle University Follow this and additional works at: https://digitalcommons.lasalle.edu/the_histories Part of the History Commons Recommended Citation Hess, Kristin () "Fleming vs. Florey: It All Comes Down to the Mold," The Histories: Vol. 2 : Iss. 1 , Article 3. Available at: https://digitalcommons.lasalle.edu/the_histories/vol2/iss1/3 This Paper is brought to you for free and open access by the Scholarship at La Salle University Digital Commons. It has been accepted for inclusion in The iH stories by an authorized editor of La Salle University Digital Commons. For more information, please contact [email protected]. The Histories, Vol 2, No. 1 Page 3 Fleming vs. Florey: It All Comes Down to the Mold Kristen Hess Without penicillin, the world as it is known today would not exist. Simple infections, earaches, menial operations, and diseases, like syphilis and pneumonia, would possibly all end fatally, shortening the life expectancy of the population, affecting everything from family-size and marriage to retirement plans and insurance policies. So how did this “wonder drug” come into existence and who is behind the development of penicillin? The majority of the population has heard the “Eureka!” story of Alexander Fleming and his famous petri dish with the unusual mold growth, Penicillium notatum. Very few realize that there are not only different variations of the Fleming discovery but that there are also other people who were vitally important to the development of penicillin as an effective drug.
    [Show full text]
  • Howard-Florey-Maker
    _ ....II""lle,st'Ol)' of "Ie lin ~t tlt:Mc 'c y~ successfullY to rmat. pea WIth ~ IJ&. iBfoctiOus'diseases - begins-with &bit Qf IuC AI~ PI tIlil1g, a .S 9itisb ~lientlst.notlcEid In t$!B ftJal mould.,ad l:!"eveAted growth of ~ qerms {bacterial 1., lils ~ the ~In plot 0 me story 1'I0J0IYl1l$ Sr ~pvay Qf penidll 10 ~ years la1er by arl·Aus\ 1;1 Sdetl bam t'!undred s R Y~'89D this year, H'owar~ I: fIotey and h d ~ team's ~ systttma!JQ, detalla wotk "'~ Jl 11_ fJTIed petlicilin from an 53 i[l~1Jlg o~ , nto-a life saver. ' Emma ,au fY 50 IJSOO to tm e teliladll', at t'l'wiMlstral r:Ja • U verslty's JOOf\ CtJrti[l Scbool of Moolaal Rasecll'eh (HQw FJor~ ptayed 8 c roI'a II'l the-est)bllshmflnt at itI& School god ~!lr'S1ty t In h 11M), TIll> !/O"'"_....... ot l!1te.dJ1l1II d1Haie'&."4ICh .. po.~a~1I ~ Erl'1lil"1a's.lile w~!i8Vedby penicillin irllll IIlIaod .. 1111 IIihi' 1111\1:_ tva ~ntil>iol~; 8uI1hft;e phDl Cl(a pauilftl n Get'rJ1art refiJg g mp. tt WQf1d War II. ,1<42 -"ow ho"; b.d thlnP COIH~. Pft_ 1 lind Imagine hO\ she fett any years later. 2 ~ '1M .III~ !It II YOUl1'llll1J1 willi _I J."..,tllltw...... OlIl1dltlicln ,..,_by the tt.iituI t cooid~ blITlping iHlo mtJY wh fa lIay ..fI...boiIJg IIlven penldll" {JItIiJID 3" _ hIld ~ woriled- the man who made tile shown .~"in.IH",p"'-.ntIIIf tbll JIIII!Ilt dllly g~pIy mpooicillin ~bte.
    [Show full text]
  • Sir Howard Florey - Biography
    Sir Howard Florey - Biography Sir Howard Florey – Biography The Nobel Prize in Physiology or Medicine Sir Howard Walter Florey was 1945 born on September 24, 1898, at Presentation Speech Adelaide, South Australia, the son Educational of Joseph and Bertha Mary Florey. His early education was at St. Sir Alexander Fleming Peter's Collegiate School, Adelaide, Biography Nobel Lecture following which he went on to Banquet Speech Adelaide University where he Documentary graduated M.B., B.S. in 1921. He Other Resources was awarded a Rhodes Scholarship to Magdalen College, Oxford, Ernst B. Chain leading to the degrees of B.Sc. and Biography M.A. (1924). He then went to Nobel Lecture Cambridge as a John Lucas Walker Banquet Speech Student. In 1925 he visited the United States on a Rockefeller Other Resources Travelling Fellowship for a year, returning in 1926 to a Fellowship at Gonville and Caius College, Cambridge, receiving Sir Howard Florey here his Ph.D. in 1927. He also held at this time the Freedom Biography Research Fellowship at the London Hospital. In 1927 he was Nobel Lecture appointed Huddersfield Lecturer in Special Pathology at Banquet Speech Cambridge. In 1931 he succeeded to the Joseph Hunter Chair of Pathology at the University of Sheffield. 1944 1946 Leaving Sheffield in 1935 he became Professor of Pathology and a Fellow of Lincoln College, Oxford. He was made an The 1945 Prize in: Physics Honorary Fellow of Gonville and Caius College, Cambridge in Chemistry 1946 and an Honorary Fellow of Magdalen College, Oxford in Physiology or Medicine 1952. In 1962 he was made Provost of The Queen's College, Literature Oxford.
    [Show full text]
  • Illustrations from the Wellcome Institute Library the Chain Papers*
    Medical History, 1983, 27:434-435 ILLUSTRATIONS FROM THE WELLCOME INSTITUTE LIBRARY THE CHAIN PAPERS* THE three men who shared the Nobel Prize in October 1945 for their work on penicillin could scarcely have differed more in their backgrounds and characters. Fleming was sixty-four years old by then; the son of a Scottish farmer, he was a retiring man, not given to conversation. By contrast, Florey, then aged forty-seven, was the son of a wealthy Australian boot and shoe manufacturer; aggressively ambitious, his achievements and intellect were later to secure him the Presidency of the Royal Society. Then there was Chain - a mere thirty-nine years old - a Jewish refugee of Russian origin, who still had major work on penicillin ahead of him; his ambition was mixed with an independence and volubility that was to lead him into conflict with the scientific/medical establishment. Fleming has been the subject of many biographies, mostly hagiographical. Florey's role in the penicillin story was recently reassessed in Gwyn Macfarlane's excellent Howard Florey. The making ofa great scientist (Oxford University Press, 1979). Sir Ernst Boris Chain died in 1979, and his biography is being written by Ronald W. Clark. This, together with future research on Chain's papers, will enable a fuller assessment to be made of the role and character of the youngest of the three scientists. The Chain papers, recently given by Lady Chain to the Contemporary Medical Archives Centre, form an extensive collection of some sixty-nine boxes, comprising material from Chain's personal and professional life.
    [Show full text]
  • Speaker's Manuscript
    Nobel Prize Lessons 2018 Speaker’s manuscript – the 2018 Medicine Prize The Nobel Prize in Physiology or Medicine • The Nobel Prize in Physiology or Medicine is one of the five prizes founded by Alfred Nobel and awarded on December 10 every year. Before Alfred Nobel died on December 10, 1896, he wrote in his will that the largest part of his fortune should be placed in a fund. The yearly interest on this fund would pay for a prize given to “those who, during the preceding year, shall have conferred the greatest benefit to humankind.” Who is rewarded with the Medicine Prize? • The Nobel Prize in Physiology or Medicine is thus awarded to people who have either made a discovery about how organisms work or have helped find a cure for a disease. • This is May-Britt Moser, 2014 Nobel Laureate in Medicine. In 2005 she and Edvard Moser discovered a type of cell in the brain that is important for determining one's position. They also found that those cells cooperate with different nerve cells in the brain that help us to navigate. You can say that the Laureates discovered and explained a kind of GPS system in the brain. • Other Medicine Laureates include: • Francis Crick, James Watson and Maurice Wilkins, who received the 1962 Prize for their discoveries and descriptions about the structure of DNA molecules. • Alexander Fleming, Ernst Chain and Howard Florey, who received the 1945 Prize for the discovery of penicillin and its curative effects on bacterial diseases. Medicine Prize 2018 • The 2018 Nobel Prize is about a new way of treating cancer.
    [Show full text]
  • All Living Organisms Are Organised Into Large Groups Called Kingdoms. Fungi Were Orig
    What are fungi and how important are they? All living organisms are organised into large groups called Kingdoms. Fungi were originally placed in the Plant Kingdom then, scientists learned that fungi were more closely related to animals than to plants. Then scientists decided that fungi were not sufficiently similar to animals to be placed in the animal kingdom and so today fungi have their own Kingdom – the Fungal Kingdom. There are thought to be around up to 3.8 million species of fungi, of which only 120,000 have been named. The fungal kingdom is largely hidden from our view and we usually only see the “fruit” of a fungus. The living body of a fungus is called a mycelium and is made up of a branching network of filaments known as hyphae. Fungal mycelia are usually hidden in a food source like wood and we only know they are there when they develop mushrooms or other fruiting bodies. Some fungi only produce microscopic fruiting bodies and we never notice them. Fungi feed by absorbing nutrients from the organic material that they live in. They digest their food before they absorb it by secreting acids and enzymes. Different fungi have evolved to live on various types of organic matter, some live on plants (Magneportha grisea – the rice blast fungus), some on animals (Trichophyton rubrum - the athlete’s foot fungus) and some even live on insects (Cordyceps australis). Helpful fungi Most of us use fungi every day without even knowing it. We eat mushrooms and Quorn, but we also prepare many other foods using fungi.
    [Show full text]
  • EDITORIAL Year's Comments for 2005
    EDITORIAL INTERNATIONAL MICROBIOLOGY (2005) 8:231-234 Year’s comments for 2005 Ricardo Guerrero Editor-in-Chief, INT. MICROBIOL. E-mail: [email protected] For several years, new sequences of microbial genomes have dogma. Conclusive evidence for a pathogenic role of H. pylori been the highlights of microbiology and a major topic of our came from trials showing that elimination of the bacterium dra- yearly comments. But sequencing has become “routine” and, at matically changed the clinical course of ulcer. This finding was the time this editorial is being written, the complete sequences confirmed by Marshall, who swallowed a broth of H. pylori and of 284 prokaryotic genomes and 40 eukaryotic genomes have soon thereafter developed gastritis, the prelude to ulcers. He been published. This allows us to focus our comments on those recovered from the disease after treatment with antibiotics. events from 2005 that have attracted the attention of both (Warren could not join him in the experiment because he already researchers and the media. These include the Nobel Prize in suffered from peptic ulcer.) Subsequently, the two investigators Physiology or Medicine, which was awarded for the discovery successfully treated other people suffering from ulcers, in the of the role of Helicobacter pylori as the causal agent of gastric process clearly identifying the bacterium as the culprit. In 1994, ulcers; the worldwide effort to fight malaria, a disease that main- H. pylori was the first bacterium, and the second infectious ly affects developing countries; and the global spread of avian organism after hepatitis B virus, to be classified as a class I car- influenza, which is becoming a panzootic.
    [Show full text]
  • Francis Crick Personal Papers
    http://oac.cdlib.org/findaid/ark:/13030/kt1k40250c No online items Francis Crick Personal Papers Special Collections & Archives, UC San Diego Special Collections & Archives, UC San Diego Copyright 2007, 2016 9500 Gilman Drive La Jolla 92093-0175 [email protected] URL: http://libraries.ucsd.edu/collections/sca/index.html Francis Crick Personal Papers MSS 0660 1 Descriptive Summary Languages: English Contributing Institution: Special Collections & Archives, UC San Diego 9500 Gilman Drive La Jolla 92093-0175 Title: Francis Crick Personal Papers Creator: Crick, Francis Identifier/Call Number: MSS 0660 Physical Description: 14.6 Linear feet(32 archives boxes, 4 card file boxes, 2 oversize folders, 4 map case folders, and digital files) Physical Description: 2.04 Gigabytes Date (inclusive): 1935-2007 Abstract: Personal papers of British scientist and Nobel Prize winner Francis Harry Compton Crick, who co-discovered the helical structure of DNA with James D. Watson. The papers document Crick's family, social and personal life from 1938 until his death in 2004, and include letters from friends and professional colleagues, family members and organizations. The papers also contain photographs of Crick and his circle; notebooks and numerous appointment books (1946-2004); writings of Crick and others; film and television projects; miscellaneous certificates and awards; materials relating to his wife, Odile Crick; and collected memorabilia. Scope and Content of Collection Personal papers of Francis Crick, the British molecular biologist, biophysicist, neuroscientist, and Nobel Prize winner who co-discovered the helical structure of DNA with James D. Watson. The papers provide a glimpse of his social life and relationships with family, friends and colleagues.
    [Show full text]
  • Aspects of Vitamin A
    Aspects of Vitamin A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Hedley-Whyte, John, and Debra Rachel Milamed. 2009. Aspects of vitamin A. Ulster Medical Journal 78(3): 171-178. Published Version http://www.ums.ac.uk/journal.html Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4728141 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Ulster Med J 2009;78(3):171-178 Medical History Aspects of Vitamin A John Hedley-Whyte, Debra R Milamed. Accepted 22 April 2009 SUMMARY Musgrave Park Hospital in 1942 was the site of an Anglo- American Vitamin A caper. A threatened court-martial was pre-empted. Subsequently the Queen’s lecturer in Anatomy, JW Millen, who was the other lecturer to the first editor of this journal, RH Hunter, did much distinguished work. The neurological effects of Vitamin A were elucidated. Further work on cerebrospinal fluid (CSF), placenta, thalidomide and poliomyelitis led to the pre-eminence in applied anatomy and teratology of now Reader James Wilson Millen and Professors JD Boyd and WJ Hamilton, all Queen’s Medical School graduates. Training of RH Hunter, JH Biggart and JD Boyd at Johns Hopkins University profoundly influenced these seminal discoveries. The Garretts, a family of Lisburn, st th County Down origin, saved Johns Hopkins Hospital and Fig 1.
    [Show full text]
  • General Developments 1944-1986
    Chapter 3 General Developments 1944-1986 3.1 Introduction 3.2 Administrative Developments 3.3 Legal Status of the Society 3.4 General Post-War Planning 3.5 Biological Council 3.6 Anniversary Meetings 3.7 General Pattern of Ordinary Meetings 3.8 Proceedings, Agenda Papers, Bulletin 3.9 Travel Funds 3.10 Medals and Named Lectures 3.1 1 Fellowships and Scholarships 3.12 Awards Committees 3.13 The Harden Conferences 3.14 Honorary Membership 3.15 The Society’s Nobel Laureates 3.16 A Royal Charter - To Be or Not To Be? 3.17 The Chemical Society Library 3.18 Archives and the Science Museum 3.19 The Society’s Logo 3.1 Introduction As with many aspects of our national life, the years 1944- 1985 can be considered a watershed in the development of the Biochemical Society. The end of the Second World War left the Country exhausted but a spirit of optimism was in the air. Thanks to the efforts of the Honorary Officers, the Society successfully survived the War and the mood of optimism within the Society was fully justified and has lasted well after the hopes of a brave new world have long faded in other areas of human activity. Biochemistry rapidly developed into a thriving discipline and this has been maintained throughout the post-War period, although in recent years the pace has slackened somewhat mainly owing to the parsimony of recent Government policy on support of Science. This blossoming of Biochemistry in the post-War years has been one of the great scientific successes of all time and in the DEVELOPMENT 1944- 1986 37 U.K.the simultaneous expansion of the Biochemical Society has been equally impressive.
    [Show full text]
  • Decades of Discovery
    dd ecades of discoveries A Salute to the 1900s: The Discovery That Started 1920s: Insulin Improves Quality of 1940s: The Acceleration of Scientific Research A $36 Billion Industry Life for Diabetics Antibiotic Development In 1908, Leo Hendrik Baekeland The administration of insulin can provide Although antibiotics and penicillin were CAS , a division of the American discovered Bakelite, a condensation control of blood sugar and prevent some discovered in 1928 by Alexander has been an Chemical Society product of formaldehyde and phenols. of the complications associated with Fleming, the development of the first integral part of the scientific In 1909, Chemical Abstracts, in its third diabetes. Banting and Best first large-scale manufacturing process did community for years. more than 110 year of publication, was quick to report extracted insulin from a dog pancreas in not begin until 1941. Howard Florey Scientists have come to rely on CAS on two of Baekeland’s papers on the 1921. After demonstrating insulin’s (Australian-born British pathologist) and and its products and services to synthesis, constitution, and use of therapeutic effect in 1922, the first batch Ernest Chain (German-born British their research. accelerate Bakelite. of commercially available insulin was biochemist) extracted enough penicillin successfully produced a year later. Two to allow clinical testing, and their work In honor of the centenary The resulting plastics industry has since of Banting’s articles were referenced in led to a major cooperative program e salute this anniversary of DFG, w grown to contribute significantly to the 1922 in Volume 16 of CA. under the auspices of the Committee on record of achievement by U.S.
    [Show full text]