Section H: Op Amp History
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Edward Ginzton
NATIONAL ACADEMY OF SCIENCES EDWARD LEONARD GINZTON 1915–1998 A Biographical Memoir by ANTHONY E. SIEGMAN Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 88 COPYRIGHT 2006 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph by Lars Speyder EDWARD LEONARD GINZTON December 27, 1915–August 13, 1998 BY ANTHONY E. SIEGMAN DWARD L. GINZTON’S MULTIFACETED career spanned an era E of immense technological advances in physics, electronics, and microwaves—and of important advances in social and political issues. Throughout his long and productive life his remarkable combination of scientific skills, leadership quali- ties, technological foresight, and community concerns en- abled him to make distinguished technical contributions and to build enduring institutions in which others could make such contributions as well. Ginzton’s scientific career began in the late 1930s when he helped develop the understanding of feedback in early vacuum tube amplifiers and worked with the pioneers who invented the klystron. It continued through his leadership in developing modern microwave technologies and mega- watt-level klystron tubes during and after World War II, and in helping make possible the development of linear elec- tron accelerators both as mile-long “atom smashers” and as medical tools still in use worldwide for cancer radiation therapy. His abilities eventually led him to take distinguished roles in both the academic and industrial worlds and in local and national community service as well. 3 4 BIOGRAPHICAL MEMOIRS By the end of his career Ginzton held some 50 funda- mental patents in electronics and microwave devices, had received the 1969 IEEE Medal of Honor “for his outstand- ing contributions in advancing the technology of high power klystrons and their applications, especially to linear particle accelerators,” and had been elected to the National Acad- emy of Sciences (1966) and the National Academy of Engi- neering(1965). -
APS News November 2019, Vol. 28, No. 10
Professional The Optics of Topical Group on Back Page: Physics Education 02│ Skills Seminar 03│ Augmented Reality 05│ Data Science 08│ in Texas November 2019 • Vol. 28, No. 10 aps.org/apsnews A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY HONORS OUTREACH 2019 Nobel Prize in Physics Evaluating a Decade of BY LEAH POFFENBERGER PhysicsQuest BY LEAH POFFENBERGER he Royal Swedish Academy of Sciences has announced the or the past 10 years, middle winners of the 2019 Nobel T school classrooms all Prize in Physics, recognizing both theoretical and experimental F across the country have contributions to understanding had a chance to learn physics the universe. This year, the prize with hands-on demos thanks to is awarded to APS Fellow James the APS PhysicsQuest program. Peebles (Princeton University), PhysicsQuest distributes kits Michel Mayor (University of packed with experiment demos, Geneva), and Didier Queloz comic books, and a teacher’s guide (University of Geneva; University in hopes of inspiring students to of Cambridge). be more interested in physics. In New physics laureates (L-R): Didier Queloz, Michel Mayor, James Peebles Half of the prize is awarded the 2018-2019 school year alone, IMAGE: NOBEL FOUNDATION PhysicsQuest reached nearly to Peebles for his theoretical This year’s PhysicsQuest kits focus insights into physical cosmology Nobel Laureate David Gross. “Jim and measure the properties of the 184,000 students taught by more on the achievements of physicist that have impacted the trajec- is among the fathers of physical universe.” than 5,000 teachers. Chien-Shiung Wu. tory of cosmology research for cosmology that laid the foundation Peebles receives the Nobel Prize This year, APS commissioned good timing,” says James Roche, the past 50 years and form the for the now remarkably successful for his decoding of the cosmic an evaluation report of the Outreach Programs Manager basis of the current ideas about standard theory of the structure microwave background, left behind PhysicsQuest program to assess its at APS. -
History of HEPL Hansen Experimental Physics Laboratory
History of HEPL Hansen Experimental Physics Laboratory going away party before demolition November 5, 2007 (prepared by Blas Cabrera with information from Stanford News archives and web) STANFORD UNIVERSITY A To Foothill Expressway I R JUNIP A ERO M SE To Interstate 280 via Page Mill Rd RRA A BLV T D N G A ERON S A RD ESTUDILLO RD SANT MIR A YNE ADA Z ST AVE D Hanna R House EL ESCARPADO S CA ' BRI N LLO A AVE Lou Henry M L T H Hoover House E C C A To N O F T E S Golf Course D A A N S R J A U R A S F N E R N R A C A O O V L S L O O A D K S E MAYFIELD AVE C Y To Interstate 280 ON L ST S N AN AN via Alpine Rd ZO JU V S AN E AL T PAR L or Sand Hill Rd V AI O WY A SO M A T AD S IT AN T S Row PL SA A ES L VAT A Hsg C O IER E T D RA E Off The A S V Knoll N T I M R O AY R T F D L S IE LAGUNITA O AN LD S C E Z A U South B E VE N P Golf Driving Range A Y M RD LV A A Residences Elliott L AR T C Program IL A N Pearce H DO A Center E SAN S Mitchell L N RO O PI FRANCISCO SF TER W Houses Florence M IT CT Moore Hall A D Tennis AVE R Huston MAYFIELD Bechtel Courts T House Int’l o S Center ta Cowell Bolivar Serra Governor’s Corner n N ELECTIONEER fo Cowell L House rd Student Roble LANE L A Cluster L Faculty ve L Health Owen Mariposa R Hall Red Houses E B n Center A D Club u N Barn O e Bike NIT Harmony R The W SHC GU DO O Bridge Shop LA House Sterling IN C Annex S Quad T Rogers Y R West Dinkel- Bowman D W Black T E T Kresge spiel Alumni O House L Residences B Aud Braun Aud B Lagunita B O A Music Ctr Court Tresidder R Rains East Residences Union SANTA TERESA -
Bob Pease, Analog Guru, Died 5 Years Ago - Media Rako.Com/Media 1 of 12
Bob Pease, analog guru, died 5 years ago - Media Rako.com/Media 1 of 12 Rako Studios » Media » Tech » Electronics » Bob Pease, analog guru, died 5 years ago Bob Pease, analog guru, died 5 years ago Bob Pease was a true standout, the gentleman genius. Notorious analog engineer Bob Pease died five Saturday, Bob had come to the service from years ago, on June 18, 2011. His passing was his office at National Semiconductor, now all the more tragic since he died driving home Texas Instruments. My buddy has a from a remembrance for fellow analog saying, "Everyone wants to be somebody, no great Jim Williams. Although it was a one wants to become somebody." 1 of 12 9/2/2018 6:49 PM 1 of 12 Bob Pease, analog guru, died 5 years ago - Media Rako.com/Media 2 of 12 Bob's being the most famous analog designer After coming to National Semi, Bob learned was the result of his hard work becoming a analog IC design, back in the days ofhand-cut brilliant engineer, with a passion for helping Rubylith masks. There was no Spice simulator others. Fran Hoffart, retired Linear Tech apps back then, and Pease had deep ridicule for engineer and former colleague recalls, "Citing a engineers that relied on computer simulations, need for educating fellow engineers in the insteadof thinking through the problem and design of bandgap references, Bob anointed making some quickback-of-envelope himself 'The Czar of Bandgaps,' complete with calculations. He accepted that Spice was useful a quasi-military suit with a sword and a especially for inexperienced engineers, but was necklace made from metal TO-3 packages." He concerned thatengineers were substituting would help any engineer with a problem, even computer smarts for real smarts. -
Valve Biasing
VALVE AMP BIASING Biased information How have valve amps survived over 30 years of change? Derek Rocco explains why they are still a vital ingredient in music making, and talks you through the mysteries of biasing N THE LAST DECADE WE HAVE a signal to the grid it causes a water as an electrical current, you alter the negative grid voltage by seen huge advances in current to flow from the cathode to will never be confused again. When replacing the resistor I technology which have the plate. The grid is also known as your tap is turned off you get no to gain the current draw required. profoundly changed the way we the control grid, as by varying the water flowing through. With your Cathode bias amplifiers have work. Despite the rise in voltage on the grid you can control amp if you have too much negative become very sought after. They solid-state and digital modelling how much current is passed from voltage on the grid you will stop have a sweet organic sound that technology, virtually every high- the cathode to the plate. This is the electrical current from flowing. has a rich harmonic sustain and profile guitarist and even recording known as the grid bias of your amp This is known as they produce a powerful studios still rely on good ol’ – the correct bias level is vital to the ’over-biased’ soundstage. Examples of these fashioned valves. operation and tone of the amplifier. and the amp are most of the original 1950’s By varying the negative grid will produce Fender tweed amps such as the What is a valve? bias the technician can correctly an unbearable Deluxe and, of course, the Hopefully, a brief explanation will set up your amp for maximum distortion at all legendary Vox AC30. -
ECE Illinois WINTER2005.Indd
Electrical and Computer Engineering Alumni News ECE Alumni Association newsletter University of Illinois at Urbana-Champaign Winter 2005-2006 Jack Kilby, 1923–2005 Volume XL Cancer claims Nobel laureate, ECE alumnus By Laura Schmitt and Jamie Hutchinson Inside this issue Microchip inventor and Nobel physics laureate DEPARTMENT HEAD’S Jack Kilby (BSEE ’47) died from cancer on MESSAGE June 22, 2005. He was 81. Kilby received the 2000 Nobel Prize in 2 Physics on December 10, 2001, in an award ceremony in Stockholm, Sweden. Kilby was ROOM-TEMPERATURE LASER recognized for his part in the invention and 4 development of the integrated circuit, which he first demonstrated on September 12, 1958, while at Texas Instruments. At the Nobel awards ceremony, Royal Swedish Academy member Tord Claesen called that date “one of the most important birth dates in the history of technology.” A measure of Kilby’s importance can be seen in the praise that was lavished on him in death. Lengthy obituaries appeared in engi- Jack Kilby neering and science trade publications as well FEATURED ALUMNI CAREERS as in major newspapers worldwide, including where his interest in electricity and electron- the New York Times, Financial Times, and The ics blossomed at an early age. His father ran a 29 Economist. On June 24, ABC News honored power company that served a wide area in rural Kilby by naming him its Person of the Week. Kansas, and he used amateur radio to keep in Reporter Elizabeth Vargas introduced the contact with customers during emergencies. segment by noting that Kilby’s invention During an ice storm, the teenage Kilby saw “had a direct effect on billions of people in the firsthand how electronic technology could world,” despite his relative anonymity among positively impact people’s lives. -
Top 100 Global Innovators 2021 10-Year Anniversary
Top 100 Global Innovators 2021 10-year anniversary edition Celebrating 10 years of Top 100 Global Innovators Contents 06 Foreword 09 A habit for the new 10 Creating the list 12 Top 100 Global Innovators 2021 18 One year on 24 The hidden value of innovation culture 26 An ideation keel 3 Break– out 4 29 that have led the way. These 29 companies have appeared in the Top 100 Global Innovators list every single year since its inception a decade ago. With an average age of a century, the foundational stories of these firms and the themes they teach, endure and resonate today. Company history information was sourced from publicly available web records, including company websites, and best efforts were made to share with organizations for veracity. Break– 1665 — Saint-Gobain In October 1665, King Louis 14th of France granted a charter to minister Jean-Baptiste Colbert for a new glass and mirror making company, the Royal Mirror Glass Factory. With glassmaking expertise in the 17th century monopolized by Venice, the new company brought valuable Venetian glass makers, and their rare knowledge, across the Alps. After 365 years of prosperity and expansion with orders from the royal household (including the Hall of Mirrors at Versailles), today Saint-Gobain is a out global supplier and innovator of high- performance and sustainable materials (including glass) across a broad range of industries including construction, mobility, health and manufacturing. 1875 — Toshiba In 1875 Hisashige Tanaka opened Tanaka Engineering Works in Tokyo, manufacturing telegraphic equipment. Five years later, Ichisuke Fujioka established Hakunetsu-sha & Company, with a focus on developing the first Japanese-designed electric lamps. -
Lasa Journal 8 Pp.36- 43) to Set up a Working Group with Us
laSa• International Association of Sound and Audiovisual Archives Association Internationale d' Archives Sonoreset Audiovisuelles Internationale Vereinigung der Schall- und Audiovisuellen Archive laSa• journal (formerly Phonographic Bulletin) no. 9 May 1997 IASA JOURNAL Journal of the International Association of Sound and Audiovisual Archives IASA Organie de l'Association Internationale d'Archives Sonores et Audiovisuelle IASA Zeitschchrift der Internationalen Vereinigung der Schall- und Audiovisuellen Archive IASA Editor: Chris Clark, The British Library National Sound Archive, 29 Exhibition Road, London SW7 2AS, UK. Fax 441714127413, e-mail [email protected] Reviews and Recent Publications Editor: Pekka Gronow, Finnish Broadcasting Company, PO Box 10, SF-00241, Helsinki, Finland. Fax 358014802089 The IASA Journal is published twice a year and is sent to all members of IASA. Applications for membership of IASA should be sent to the Secretary General (see list of officers below). The annual dues are 25GBP for individual members and 100GBP for institutional members. Back copies of the IASA Journal from -1971 are available on application. Subscriptions to the current year's issues of the IASA Journal are also available to non-members at a cost of 35GBP. Le IASA Journal est publie deux fois I'an et distribue a tous les membres. Veuilliez envoyer vos demandes d'adhesion au secretaire dont vous trouverez I'adresse ci-dessous. Les cotisations anuelles sont en ce moment de 25GBP pour les membres individuels et 100GBP pour les membres institutionelles. Les numeros precedeentes (a partir de 1971) du IASA Journal sont disponibles sure demande. Ceux qui ne sont pas membres de I' Assoociation puevent obtenir un abonnement du IASA Journal pour I'annee courante au cout de 35GBP. -
Analog Father.Indd
The Father of Analog Integrated Circuits: Robert J. Widlar From: Tales of the Continuum: A Subsampled History of Analog Circuits By Thomas H. Lee, Center for Integrated Systems, Stanford University At a time when even discrete solid-state op-amps had not yet succeeded in displacing their vacuum tube coun- terparts, and the very value of the integrated circuit idea was still a legitimate topic of debate, Bob Widlar (“wide-lar”) almost single-handedly established the discipline of analog IC design. After receiving his bach- elor’s degree in 1962 from the University of Colorado at Boulder, he took a job with Ball Brothers Research, where his virtuosity at circuit design attracted the attention of engineers at one of their components suppliers. Despite the breach in protocol inherent in aggressively recruiting a customer’s key employee, Fairchild induced Widlar to leave Ball in late 1963. In an amazing debut, abetted by Dave Talbert’s brilliant process engineering, Widlar was able to put the world’s first integrated circuit op-amp into production by 1964. Development of the μA702, as Fairchild called it, proceeded despite a general lack of enthusiasm for the project at the company. The Fairchild μA702 Like the K2-W, this op-amp consists of two primary voltage gain stages (Figure 2). As in most differential designs, there is the problem of how to convert to a single-ended output without sacrificing half of the gain (the K2-W simply makes that sacrifice). Here the young Widlar solves this problem with a circuit that presages his later use of current-mirror loads. -
Lynn Olson: a Tiny History of High Fidelity
A Tiny History of High Fidelity, Part 1 A Rainy Night in Portland, 1936. Thanks to the restoration movement, much of downtown Portland still looks like this. Where do I come from? Where am I going? Who am I? These ancient questions are with us still. With only the slightest of changes, they can be recast into a form that provides a guidepost to the music lover, the audiophile, the hobbyist, and the artisan-engineer. Where does the art of sound reproduction come from? Where is it going? What do I seek from this art? Radio! 1900-1930 In the first years of Electrical Amplification, engineers had their hands full just trying to master the complex and non-intuitive mathematics of vacuum tube amplifiers and oscillators. It is worth keeping in mind that vacuum tubes were electronics in the first half of the Twentieth Century; before Lee DeForest modified Edison's light-bulb, the only form of "amplification" were relays that could repeat and rebuild telegraph signals. Radio relied on tuned circuits, massive brute-force spark-gap transmitters, large long-wave antennas, and crystal-diode rectification that directly powered the headphones. The faint signal that wiggled the headset diaphragm was a infinitesimal fraction of the megawatts that poured in all directions from the transmitter. Records, of course, were purely mechanical and acoustic, and wouldn't work at all if it weren't for horn-gain in recording and playback. What we now think of as electronic engineering back then was electrical engineering, focussed on keeping AC power transmission systems in phase and specialized techniques for pushing a telephone-audio signal down hundreds of miles of wire without benefit of amplification. -
An Integrated Semiconductor Device Enabling Non-Optical Genome Sequencing
ARTICLE doi:10.1038/nature10242 An integrated semiconductor device enabling non-optical genome sequencing Jonathan M. Rothberg1, Wolfgang Hinz1, Todd M. Rearick1, Jonathan Schultz1, William Mileski1, Mel Davey1, John H. Leamon1, Kim Johnson1, Mark J. Milgrew1, Matthew Edwards1, Jeremy Hoon1, Jan F. Simons1, David Marran1, Jason W. Myers1, John F. Davidson1, Annika Branting1, John R. Nobile1, Bernard P. Puc1, David Light1, Travis A. Clark1, Martin Huber1, Jeffrey T. Branciforte1, Isaac B. Stoner1, Simon E. Cawley1, Michael Lyons1, Yutao Fu1, Nils Homer1, Marina Sedova1, Xin Miao1, Brian Reed1, Jeffrey Sabina1, Erika Feierstein1, Michelle Schorn1, Mohammad Alanjary1, Eileen Dimalanta1, Devin Dressman1, Rachel Kasinskas1, Tanya Sokolsky1, Jacqueline A. Fidanza1, Eugeni Namsaraev1, Kevin J. McKernan1, Alan Williams1, G. Thomas Roth1 & James Bustillo1 The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. -
Vlsi Design Lecture Notes B.Tech (Iv Year – I Sem) (2018-19)
VLSI DESIGN LECTURE NOTES B.TECH (IV YEAR – I SEM) (2018-19) Prepared by Dr. V.M. Senthilkumar, Professor/ECE & Ms.M.Anusha, AP/ECE Department of Electronics and Communication Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India Unit -1 IC Technologies, MOS & Bi CMOS Circuits Unit -1 IC Technologies, MOS & Bi CMOS Circuits UNIT-I IC Technologies Introduction Basic Electrical Properties of MOS and BiCMOS Circuits MOS I - V relationships DS DS PMOS MOS transistor Threshold Voltage - VT figure of NMOS merit-ω0 Transconductance-g , g ; CMOS m ds Pass transistor & NMOS Inverter, Various BiCMOS pull ups, CMOS Inverter Technologies analysis and design Bi-CMOS Inverters Unit -1 IC Technologies, MOS & Bi CMOS Circuits INTRODUCTION TO IC TECHNOLOGY The development of electronics endless with invention of vaccum tubes and associated electronic circuits. This activity termed as vaccum tube electronics, afterward the evolution of solid state devices and consequent development of integrated circuits are responsible for the present status of communication, computing and instrumentation. • The first vaccum tube diode was invented by john ambrase Fleming in 1904. • The vaccum triode was invented by lee de forest in 1906. Early developments of the Integrated Circuit (IC) go back to 1949. German engineer Werner Jacobi filed a patent for an IC like semiconductor amplifying device showing five transistors on a common substrate in a 2-stage amplifier arrangement.