Pacific, Southwest
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Commencement 2006-2011
2009 OMMENCEMENT / Conferring of Degrees at the Close of the 1 33rd Academic Year Johns Hopkins University May 21, 2009 9:15 a.m. Contents Order of Procession 1 Order of Events 2 Divisional Ceremonies Information 6 Johns Hopkins Society of Scholars 7 Honorary Degree Citations 12 Academic Regalia 15 Awards 17 Honor Societies 25 Student Honors 28 Candidates for Degrees 33 Please note that while all degrees are conferred, only doctoral graduates process across the stage. Though taking photos from vour seats during the ceremony is not prohibited, we request that guests respect each other's comfort and enjoyment by not standing and blocking other people's views. Photos ol graduates can he purchased from 1 lomcwood Imaging and Photographic Services (410-516-5332, [email protected]). videotapes and I )\ I )s can he purchased from Northeast Photo Network (410 789-6001 ). /!(• appreciate your cooperation! Graduates Seating c 3 / Homewood Field A/ Order of Seating Facing Stage (Left) Order of Seating Facing Stage (Right) Doctors of Philosophy and Doctors of Medicine - Medicine Doctors of Philosophy - Arts & Sciences Doctors of Philosophy - Advanced International Studies Doctors of Philosophy - Engineering Doctors of Philosophy, Doctors of Public Health, and Doctors of Masters and Certificates -Arts & Sciences Science - Public Health Masters and Certificates - Engineering Doctors of Philosophy - Nursing Bachelors - Engineering Doctors of Musical Arts and Artist Diplomas - Peabody Bachelors - Arts & Sciences Doctors of Education - Education Masters -
Checklist of Philippine Chondrichthyes
CSIRO MARINE LABORATORIES Report 243 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V., Last, P.R., Stevens, J.D., and Alava, M.N.R. May 2005 CSIRO MARINE LABORATORIES Report 243 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V., Last, P.R., Stevens, J.D., and Alava, M.N.R. May 2005 Checklist of Philippine chondrichthyes. Bibliography. ISBN 1 876996 95 1. 1. Chondrichthyes - Philippines. 2. Sharks - Philippines. 3. Stingrays - Philippines. I. Compagno, Leonard Joseph Victor. II. CSIRO. Marine Laboratories. (Series : Report (CSIRO. Marine Laboratories) ; 243). 597.309599 1 CHECKLIST OF PHILIPPINE CHONDRICHTHYES Compagno, L.J.V.1, Last, P.R.2, Stevens, J.D.2, and Alava, M.N.R.3 1 Shark Research Center, South African Museum, Iziko–Museums of Cape Town, PO Box 61, Cape Town, 8000, South Africa 2 CSIRO Marine Research, GPO Box 1538, Hobart, Tasmania, 7001, Australia 3 Species Conservation Program, WWF-Phils., Teachers Village, Central Diliman, Quezon City 1101, Philippines (former address) ABSTRACT Since the first publication on Philippines fishes in 1706, naturalists and ichthyologists have attempted to define and describe the diversity of this rich and biogeographically important fauna. The emphasis has been on fishes generally but these studies have also contributed greatly to our knowledge of chondrichthyans in the region, as well as across the broader Indo–West Pacific. An annotated checklist of cartilaginous fishes of the Philippines is compiled based on historical information and new data. A Taiwanese deepwater trawl survey off Luzon in 1995 produced specimens of 15 species including 12 new records for the Philippines and a few species new to science. -
Optimal Isolation and Characterisation of Chondroitin Sulfate From
1 Optimal isolation and characterisation of chondroitin sulfate from 2 Rabbit fish (Chimaera monstrosa) 3 4 José Antonio Vázqueza, Javier Fraguasa,b, Ramon Novoa-Carballalc,d, Rui L. 5 Reisc,d,e, Ricardo I. Pérez-Martínb & Jesus Valcarcela* 6 7 aGrupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto 8 de Investigacións Mariñas (IIM-CSIC). Eduardo Cabello, 6. Vigo-36208, Galicia– 9 Spain. 10 11 bGrupo de Bioquímica de Alimentos, Instituto de Investigacións Mariñas (IIM- 12 CSIC). Eduardo Cabello, 6, Vigo-36208, Galicia–Spain. 13 14 c3B´s Research Group – Biomaterials, Biodegradables and Biomimetics, University 15 of Minho, Headquarters of the European Institute of Excellence on Tissue 16 Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, 17 Portugal. 18 19 dICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal. 20 21 eThe Discoveries Centre for Regenerative and Precision Medicine, Headquarters 22 at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal 23 24 25 *corresponding author: [email protected] 26 Tel: +34 986231930; fax: +34 986292762 27 28 29 30 31 32 33 34 35 1 36 Abstract 37 Chondroitin sulfate (CS) is a glycosaminoglycan widely explored for cartilage 38 regeneration. Its bioactivity is influenced by sulfation degree and pattern, and 39 distinct sulfation in marine CS may open new therapeutic possibilities. In this 40 context, we studied for the first time the isolation and characterisation of CS from 41 Rabbit Fish (Chimaera monstrosa). We propose an efficient process starting with 42 enzymatic hydrolysis, followed by chemical treatments and ending in membrane 43 purification. All steps were optimised by response surface methodology. -
New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E. -
Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation. -
Trawl Survey of Red Gurnard, John Dory, Tarakihi and Associated Species Off the Bay of Plenty, North Island, February 1999 (KAH9902)
4 IWA Taihoro Nukurangi Trawl survey of red gurnard, John dory, tarakihi and associated species off the Bay of Plenty, North Island, February 1999 (KAH9902) M. Morrison, D. Parkinson Final Research Report for Ministry of Fisheries Research Project INT9803 National Institute of Water and Atmospheric Research November 1999 Final Research Report Report Title: Trawl survey of red gurnard, John dory, terakihi and associated species off the Bay of Plenty, North Island, February 1999 (KAH9902) Authors: M. Morrison, D. Parkinson 1. Date: 15/10/99 2. Contractor: NIWA 3. Project Title: Estimation of inshore fish abundance in the Bay of Plenty using trawl surveys 4. Project Code: INT9803 5. Project Leader: M. Morrison 6. Duration of Project: Start Date 1 October 1998 Expected End Date 30 September 1999 7. Executive Summary: A trawl survey of the Bay of Plenty was successfully completed during February 1999. Seventy eight stations were completed (50 phase 1, 28 phase 2) within 8 depth and area strata. Target c.v.s on biomass estimates were 15% for GUR, 20% for JDO, and 30% for TAR; achieved c.v.s were 14%, 14%, and 27% respectively. Length and weight information was also collected for all other QMS species in the catch, and for leatherjacket, frostfish, kahawai and kingfish. Red gurnard were caught throughout the Bay of Plenty, with relatively large individual catches occurring in the 10-100 m depth range. John dory were less common, with scattered larger catches. Relatively few tarakihi were encountered; most of the tows catching these fish were in deeper water in the middle of the survey area. -
(Cephaloscyllium Laticeps) to Rare Earth Magnets
Fisheries Research 200 (2018) 84–92 Contents lists available at ScienceDirect Fisheries Research journal homepage: www.elsevier.com/locate/fishres Behavioural responses of draughtboard sharks (Cephaloscyllium laticeps)to T rare earth magnets: Implications for shark bycatch management within the Tasmanian southern rock lobster fishery ⁎ Emma L. Westlakea, , Mike Williamsb, Nick Rawlinsonb a Parks Victoria, Queenscliff, VIC, 3225, Australia b Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, TAS, 7250, Australia ARTICLE INFO ABSTRACT Handled by A.E. Punt. Catches of draughtboard shark (Cephaloscyllium laticeps) in the Tasmanian Southern Rock Lobster Fishery are Keywords: considered an economic and potentially ecological issue. Consequently, there is interest in developing strategies Shark deterrent to mitigate and minimise shark bycatch within this fishery. This field study examined the behavioural responses Aversion of draughtboard sharks to neodymium-iron-boron (Nd2Fe14B) rare earth magnetic rods attached to baited video Bycatch mitigation apparatus. Two magnetic treatments and one control were used in 12 × 1.5 h observational trials conducted in Draughtboard shark inshore waters of Tasmania, Australia. Results demonstrate that draughtboard sharks: (1) showed substantial individual variation in behaviours both between and within treatments, with no patterns of individual responses observed over time to both magnetic treatments or the control, (2) showed significant differences in initial interactions between the magnetic treatments and the control, and (3) attempted to take bait at the control significantly more often than at the 2-magnet treatment. These findings demonstrate the individualistic and highly variable response behaviours of draughtboard sharks to rare earth magnets. Understanding such beha- viours may facilitate the development of effective deterrent strategies in this fishery and improve management of shark-fishery interactions globally. -
An Overview of Shark Utilisation in the Coral Triangle Region (PDF, 550
WORKING TOGETHER FOR SUSTAINABLE SHARK FISHERIES AN OVERVIEW OF SHARK UTILISATION IN THE CORAL TRIANGLE REGION Written by Mary Lack Director, Shellack Pty Ltd Glenn Sant Fisheries Programme Leader, TRAFFIC & Senior Fellow, ANCORS Published in September 2012 This report can be downloaded from wwf.panda.org/coraltriangle Citation Lack M. and Sant G. (2012). An overview of shark utilisation in the Coral Triangle region. TRAFFIC &WWF. Photo cover © naturepl.com / Jeff Rotman / WWF-Canon Thanks to the Rufford Lang Foundation for supporting the development of this publication 2 An Overview Of Shark Utilisation In The Coral Triangle Region ACRONYMS ASEAN Association of Southeast Asian Nations BFAR Bureau of Fisheries and Aquatic Resources (the Philippines) CCSBT Commission for the Conservation of Southern Bluefin Tuna CITES Convention on International Trade in Endangered Species of Wild Fauna and Flora CMM Conservation and Management Measure CMS Convention on Migratory Species of Wild Animals CNP Co-operating Non-Contracting party COFI Committee on Fisheries (of FAO) CoP Conference of the Parties (to CITES) EEZ Exclusive Economic Zone EU European Union FAO Food and Agriculture Organization of the United Nations IOTC Indian Ocean Tuna Commission IPOA-Sharks International Plan of Action for the Conservation and Management of Sharks IUU Illegal, Unreported and Unregulated (fishing) MoU Memorandum of Understanding on the Conservation of Migratory Sharks (CMS) nei Not elsewhere included NPOA-Sharks National Plan of Action for the Conservation and -
Immunobiology of the SHARK Frontispiece a Shark Bleed
Immunobiology of the SHARK Frontispiece A shark bleed. 1. Netting a captive shark from the sea water channel. 2. Shark in anesthe tizing tank. 3. Bleeding the anesthetized shark. 4. Blood withdrawn from the caudal sinus. 5. Recovered shark ready to return to the water. 6. Shark back in the channel. (Photographs courtesy of the Smith Collection.) Immunobiology of the SHARK EDITED BY Sylvia L. Smith Department of Biological Sciences Florida International University Robert B. Sim Department of Pharmacology University of Oxford Martin F. Flajnik Department of Microbiology and Immunology University of Maryland at Baltimore Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business Front cover: Image of nurse shark. Photo copyright Max Telford. Used with permission. All rights reserved. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20141015 International Standard Book Number-13: 978-1-4665-9574-3 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. -
Identifying Sharks and Rays
NSW DPI Identifying sharks and rays A guide for NSW commercial fishers Important If a shark or ray cannot be confidently identified using this guide, it is recommended that either digital images are obtained or the specimen is preserved. Please contact NSW DPI research staff for assistance: phone 1300 550 474 or email [email protected] Contents Introduction 4 How to use this guide 5 Glossary 6-7 Key 1 Whaler sharks and other sharks of similar appearance 8-9 to whalers – upper precaudal pit present Key 2 Sharks of similar appearance to whaler sharks – no 10 precaudal pit Key 3 Mackerel (great white and mako), hammerhead and 11 thresher sharks Key 4 Wobbegongs and some other patterned 12 bottom-dwelling sharks Key 5 Sawsharks and other long-snouted sharks and rays 13 2 Sandbar shark 14 Great white shark 42 Bignose shark 15 Porbeagle 43 Dusky whaler 16 Shortfin mako 44 Silky shark 17 Longfin mako 45 Oceanic whitetip shark 18 Thresher shark 46 Tiger shark 19 Pelagic thresher 47 Common blacktip shark 20 Bigeye thresher 48 Spinner shark 21 Great hammerhead 49 Blue shark 22 Scalloped hammerhead 50 Sliteye shark 23 Smooth hammerhead 51 Bull shark 24 Eastern angelshark 52 Bronze whaler 25 Australian angelshark 53 Weasel shark 26 Banded wobbegong 54 Lemon shark 27 Ornate wobbegong 55 Grey nurse shark 28 Spotted wobbegong 56 Sandtiger (Herbst’s nurse) shark 29 Draughtboard shark 57 Bluntnose sixgill shark 30 Saddled swellshark 58 Bigeye sixgill shark 31 Whitefin swellshark 59 Broadnose shark 32 Port Jackson shark 60 Sharpnose sevengill -
ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste -
And Their Functional, Ecological, and Evolutionary Implications
DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Spring 6-14-2019 Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications Phillip C. Sternes DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Sternes, Phillip C., "Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications" (2019). College of Science and Health Theses and Dissertations. 327. https://via.library.depaul.edu/csh_etd/327 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master of Science June 2019 By Phillip C. Sternes Department of Biological Sciences College of Science and Health DePaul University Chicago, Illinois Table of Contents Table of Contents.............................................................................................................................ii List of Tables..................................................................................................................................iv