A Report Card for Australia's Sharks and Rays

Total Page:16

File Type:pdf, Size:1020Kb

A Report Card for Australia's Sharks and Rays Shark futures: A report card for Australia’s sharks and rays Colin Simpfendorfer, Andrew Chin, Cassandra Rigby, Samantha Sherman, William White March, 2019 FRDC Project No 2013/009 FRDC Project No 2013/009 xx 2017 © 2019 Fisheries Research and Development Corporation. All rights reserved. ISBN 978-0-9954471-2-7 Shark futures: a report card for Australia’s sharks and rays 2013/009 2019 Ownership of Intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Fisheries Research and Development Corporation and the Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University. This publication (and any information sourced from it) should be attributed to Simpfendorfer, C., Chin, A., Rigby, C., Sherman, S., White, W. (2017) Shark futures: a report card for Australia’s sharks and rays’, Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, May. CC BY 3.0. Creative Commons licence All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms. Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from creativecommons.org/licenses/by/3.0/au/legalcode. Inquiries regarding the licence and any use of this document should be sent to: [email protected] Disclaimer The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a readers particular circumstances. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider or the FRDC. The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry. Researcher Contact Details FRDC Contact Details Name: Colin Simpfendorfer Address: 25 Geils Court Address: College of Science & Engineering Deakin ACT 2600 James Cook University, Townsville. Phone: 02 6285 0400 Phone: 07 4781 5287 Fax: 02 6285 0499 Fax: Email: [email protected] Email: [email protected] Web: www.frdc.com.au In submitting this report, the researcher has agreed to FRDC publishing this material in its edited form. Contents Contents ................................................................................................................................................. iii Acknowledgments ................................................................................................................................. iv Abbreviations ........................................................................................................................................ iv Executive Summary .............................................................................................................................. v Introduction ........................................................................................................................................... 7 Method ................................................................................................................................................. 10 Results................................................................................................................................................... 14 Discussion ............................................................................................................................................. 17 Conclusion ............................................................................................................................................ 19 Implications .......................................................................................................................................... 20 Recommendations ............................................................................................................................... 21 Extension and Adoption ...................................................................................................................... 22 Project materials developed................................................................................................................ 24 References ............................................................................................................................................ 25 Appendix A Advisory Group .............................................................................................................. 26 Appendix B Project workshop attendees .......................................................................................... 27 Appendix C Summary of IUCN Red List .......................................................................................... 28 Appendix D Researchers and project staff ....................................................................................... 30 Appendix E Australian Shark Report Card ..................................................................................... 31 Acknowledgments The authors thank the following people and industry associations for their time and valuable input during the development of this project: Ilona Stobutzki (ABARES), Shalan Bray (DAWR), Beth Gibson and Nick Rayns (AFMA), Nigel Roth (DEE), Vic Peddemors (NSW Fisheries), Mark Read (GBRMPA), (Simon Boag) SETFIA and Dave Stone (Sustainable Shark Fisheries). We thank AFMA, DAWR and GBRMPA for letters of support for the project. Appreciation and thanks to Peter Kyne for facilitation of the workshop and the following people for their roles in the advisory group formed for the project: Shalan Bray (DAWR), Barry Bruce (CSIRO), Ivan Lawler (DEE) and Vic Peddemors (NSW Fisheries). Thanks to Samantha Munroe for development of the format and standards of the Shark Species Summaries and for compilation of some Summaries. Thanks also to Nicholas Hill for his work on the Summaries and along with Fernanda de Faria, Nicholas Hill, Tamara Parr and Will Smythe thank you for your diligence in data entry, validation and verification for the ASIS website databases. Abbreviations AFMA Australian Fisheries Management Authority ASIS Australian Shark Information System CAAB Codes for Australian Aquatic Biota CITES Convention on International Trade of Endangered Species of Wild Fauna and Flora CMS Convention on the Conservation of Migratory Species of Wild Animals CSIRO Commonwealth Scientific and Industrial Research Organisation DEE Department of the Environment and Energy EPBC Environment Protection and Biodiversity Conservation ERA Ecological Risk Assessments ESD Ecologically Sustainable Development IUCN International Union for Conservation of Nature NPF Northern Prawn Fishery OCS Oceania Chondrichthyan Society SAFS Status of Key Australian Fish Stocks SESSF Southern and Eastern Scalefish and Shark Fishery Shark-Plan 2 Australia’s 2nd National Plan of Action for the Conservation and Management of Sharks SSC Species Survival Commission SSG Shark Specialist Group WTO Wildlife Trade Operations Executive Summary In response to increasing concerns for the status of shark and ray populations world-wide and increasing pressure to ensure Australia’s shark and ray species are effectively managed and conserved, this project synthesised the scattered information, assessed individual species’ status and provided a clear and concise overview of the state of Australia’s shark and rays. Project staff from the Centre for Sustainable Tropical Fisheries and Aquaculture collected available data from peer-reviewed literature, government reports, observer programs and fellow scientists to produce comprehensive databases on species and management measures with input from CSIRO on the most recent taxonomy of this diverse group. A workshop of experts updated the status of more than 200 Australian sharks and rays to generate 194 unique individual species summaries that define their most up-to-date status within the context of Australian fisheries. A Report Card overview indicates that the majority of species are sustainable and in a healthy state; and while Australia’s approach to managing its shark stocks has to date been very good, this needs to be maintained and supported by ongoing research and monitoring. The significant resources generated by the project are available on a website created specifically to support and house the information, the Australian Shark Information System. Australia has one of the most diverse and distinctive shark and ray faunas in the world. About a quarter of the more than 320 species occurring in Australian waters are endemic, and effectively managing these species is important for the sustainable use of marine resources as well as maintenance of biodiversity.
Recommended publications
  • Living Systems
    K2 -3 Lesson Plan Living Systems Why not get a hands on experience with your students at Irukandji Shark and Ray Encounters to learn about the oceans ecosystems from Apex Predators to Primary producers. This Lesson plan is designed for students to observe and study the marine environment through interactive educational talks on Elasmobranches Students will be able to Identify and describe the structure and function of living things Interact with the most misunderstood species in our marine systems Shark and Ray and their ecosystems. To observe marine animals and their reliance on all species . Students will look at the impacts on pollutants on marine plants by performing water test on controlled water source for a report. observe the food chain within a marine environment Observe various life cycles of Sharks and Rays. Identify, describe and evaluates the interactions between living things and their effects on the environment Look at Importance of Chondricthyan fishes (Sharks, Rays and Chimeras) to the marine environment and society, through an insightful look into 6 species life history strategies .to identify current conservation efforts of aquariums and marine parks throughout Australia. Irukandji Shark and Ray Encounters K2 -3 Lesson Plan Learning Environment Objectives Observe different elasmobranches Core component is Group Work observe marine animals and relationships Ray Lagoon Food chain within a marine environment Tawny Terrian interactions between living things Fiddler Flats Identify current conservation efforts of aquariums and marine parks throughout Australia. Materials Step 4: Getting wet Ray lagoon 25 minutes This is where students will get a hands on experience feeding, touching and interacting Pencil with elasmobranches and teleost within their Activity sheet environment Ruler and clip board Objectives Observe the different forms of structure Steps from plates to teeth.
    [Show full text]
  • Chondrichthyan Fishes (Sharks, Skates, Rays) Announcements
    Chondrichthyan Fishes (sharks, skates, rays) Announcements 1. Please review the syllabus for reading and lab information! 2. Please do the readings: for this week posted now. 3. Lab sections: 4. i) Dylan Wainwright, Thursday 2 - 4/5 pm ii) Kelsey Lucas, Friday 2 - 4/5 pm iii) Labs are in the Northwest Building basement (room B141) 4. Lab sections done: first lab this week on Thursday! 5. First lab reading: Agassiz fish story; lab will be a bit shorter 6. Office hours: we’ll set these later this week Please use the course web site: note the various modules Outline Lecture outline: -- Intro. to chondrichthyan phylogeny -- 6 key chondrichthyan defining traits (synapomorphies) -- 3 chondrichthyan behaviors -- Focus on several major groups and selected especially interesting ones 1) Holocephalans (chimaeras or ratfishes) 2) Elasmobranchii (sharks, skates, rays) 3) Batoids (skates, rays, and sawfish) 4) Sharks – several interesting groups Not remotely possible to discuss today all the interesting groups! Vertebrate tree – key ―fish‖ groups Today Chondrichthyan Fishes sharks Overview: 1. Mostly marine 2. ~ 1,200 species 518 species of sharks 650 species of rays 38 species of chimaeras Skates and rays 3. ~ 3 % of all ―fishes‖ 4. Internal skeleton made of cartilage 5. Three major groups 6. Tremendous diversity of behavior and structure and function Chimaeras Chondrichthyan Fishes: 6 key traits Synapomorphy 1: dentition; tooth replacement pattern • Teeth are not fused to jaws • New rows move up to replace old/lost teeth • Chondrichthyan teeth are
    [Show full text]
  • Extinction Risk and Conservation of the World's Sharks and Rays
    RESEARCH ARTICLE elife.elifesciences.org Extinction risk and conservation of the world’s sharks and rays Nicholas K Dulvy1,2*, Sarah L Fowler3, John A Musick4, Rachel D Cavanagh5, Peter M Kyne6, Lucy R Harrison1,2, John K Carlson7, Lindsay NK Davidson1,2, Sonja V Fordham8, Malcolm P Francis9, Caroline M Pollock10, Colin A Simpfendorfer11,12, George H Burgess13, Kent E Carpenter14,15, Leonard JV Compagno16, David A Ebert17, Claudine Gibson3, Michelle R Heupel18, Suzanne R Livingstone19, Jonnell C Sanciangco14,15, John D Stevens20, Sarah Valenti3, William T White20 1IUCN Species Survival Commission Shark Specialist Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 2Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 3IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, Newbury, United Kingdom; 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, United States; 5British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia; 7Southeast Fisheries Science Center, NOAA/National Marine Fisheries Service, Panama City, United States; 8Shark Advocates International, The Ocean Foundation, Washington, DC, United States; 9National Institute of Water and Atmospheric Research, Wellington, New Zealand; 10Global Species Programme, International Union for the Conservation
    [Show full text]
  • Hemiscyllium Ocellatum), with Emphasis on Branchial Circulation Kåre-Olav Stensløkken*,1, Lena Sundin2, Gillian M
    The Journal of Experimental Biology 207, 4451-4461 4451 Published by The Company of Biologists 2004 doi:10.1242/jeb.01291 Adenosinergic and cholinergic control mechanisms during hypoxia in the epaulette shark (Hemiscyllium ocellatum), with emphasis on branchial circulation Kåre-Olav Stensløkken*,1, Lena Sundin2, Gillian M. C. Renshaw3 and Göran E. Nilsson1 1Physiology Programme, Department of Molecular Biosciences, University of Oslo, PO Box 1041, NO-0316 Oslo Norway and 2Department of Zoophysiology, Göteborg University, SE-405 30 Göteborg, Sweden and 3Hypoxia and Ischemia Research Unit, School of Physiotherapy and Exercise Science, Griffith University, PMB 50 Gold coast Mail Centre, Queensland, 9726 Australia *Author for correspondence (e-mail: [email protected]) Accepted 17 September 2004 Summary Coral reef platforms may become hypoxic at night flow in the longitudinal vessels during hypoxia. In the during low tide. One animal in that habitat, the epaulette second part of the study, we examined the cholinergic shark (Hemiscyllium ocellatum), survives hours of severe influence on the cardiovascular circulation during severe hypoxia and at least one hour of anoxia. Here, we examine hypoxia (<0.3·mg·l–1) using antagonists against muscarinic the branchial effects of severe hypoxia (<0.3·mg·oxygen·l–1 (atropine 2·mg·kg–1) and nicotinic (tubocurarine for 20·min in anaesthetized epaulette shark), by measuring 5·mg·kg–1) receptors. Injection of acetylcholine (ACh; –1 ventral and dorsal aortic blood pressure (PVA and PDA), 1·µmol·kg ) into the ventral aorta caused a marked fall in heart rate (fH), and observing gill microcirculation using fH, a large increase in PVA, but small changes in PDA epi-illumination microscopy.
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • AC26 Inf. 1 (English Only / Únicamente En Inglés / Seulement En Anglais)
    AC26 Inf. 1 (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-sixth meeting of the Animals Committee Geneva (Switzerland), 15-20 March 2012 and Dublin (Ireland), 22-24 March 2012 RESPONSE TO NOTIFICATION TO THE PARTIES NO. 2011/049, CONCERNING SHARKS The attached information document has been submitted by the Secretariat at the request of PEW, in relation to agenda item 16*. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC26 Inf. 1 – p. 1 January 5, 2012 Pew Environment Group Response to CITES Notification 2011/049 To Whom it May Concern, As an active international observer to CITES, a member of the Animals Committee Shark Working Group, as well as other working groups of the Animals and Standing Committees, and an organization that is very active in global shark conservation, the Pew Environment Group submits the following information in response to CITES Notification 2011/049. We submit this information in an effort to ensure a more complete response to the request for information, especially considering that some countries that have adopted proactive new shark conservation policies are not Parties to CITES. 1. Shark species which require additional action In response to Section a) ii) of the Notification, the Pew Environment Group submits the following list of shark species requiring additional action to enhance their conservation and management.
    [Show full text]
  • Wk Shark Advice Adhshark
    ICES Special Request Advice Ecoregions in the Northeast Atlantic and adjacent seas Published 25 September 2020 NEAFC and OSPAR joint request on the status and distribution of deep-water elasmobranchs Advice summary In response to a joint request from NEAFC and OSPAR, ICES reviewed existing information on deep-water sharks, skates and rays from surveys and the literature. Distribution maps were generated for 21 species, showing the location of catches from available survey data on deep-water sharks and elasmobranchs in the NEAFC and OSPAR areas of the Northeast Atlantic. Shapefiles of the species distribution areas are available as supporting documentation to this work. This advice sheet presents a summary of ICES advice on the stock status of species for which an assessment is available, as well as current knowledge on the stock status of species for which ICES does not provide advice. An overview of approaches which may be applied to mitigate bycatch and to improve stock status is also presented. ICES recognizes that, despite their limitations, prohibition, gear and depth limitations, and TAC are mechanisms currently available to managers to regulate outtake; therefore, ICES advises that these mechanisms should be maintained. Furthermore, ICES advises that additional measures, such as electromagnetic exclusion devices, acoustic or light-based deterrents, and spatio-temporal management could be explored. Request NEAFC and OSPAR requested ICES to produce: a. Maps and shapefiles of the distribution of the species, identifying, if possible, key areas used during particular periods/stages of the species’ lifecycle in terms of distribution and relative abundance of the species, and expert interpretation of the data products; b.
    [Show full text]
  • Australian Museum Scientific Publications
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Whitley, Gilbert P., 1934. Studies in ichthyology. No. 8. Records of the Australian Museum 19(2): 153–163. [26 March 1934]. doi:10.3853/j.0067-1975.19.1934.695 ISSN 0067-1975 Published by the Australian Museum, Sydney nature culture discover Australian Museum science is freely accessible online at http://publications.australianmuseum.net.au 6 College Street, Sydney NSW 2010, Australia STUDIES IN ICHTHYOLOGY. No. 8. ¥ By GILBERT P. WHITLEY, Ichthyologist, The Australian Mnseum,Museum, Sydney. (Figures(FigUN1S 1-3.) Family SCYLI01UIlNIDl£.SOYLXORBINIDAl:. Genus AulohalaelllfusAulohala.elUru$ (Fowler, 1934). Orthotype.-Catulus labiosus Waite. Nasal valves separated from each other and from the mouth. No cirrus. Upper labial fold long; lower labial fold extending along lower jaw nearly to symphysis. First dorsal fin'fin situated behind the level of the ventrals. Anal fin opposite the second dorsal; length of base of anal more than its distance from the caudal. No enlarged denticles above caUdalcaudal fin and no dorsal tubercles. Body with scattered dark spots and a few light ones; cross-bands obscure. Aulohalaelurus labiosus (W aite). :FigureFigure 1. AulohalaelurU8Aulohalaeluruslabiasus labio8118 (Waite). Holotype. G. P. Whitley'Vhitley del.deL Catulus labiosus Waite, Rec. Austr. Mus., vi, 2, S8pt.Sf)pt. 15, 1905, p. 57, fig. 23. Fremantle, Western Australia. HolotypeinRolotype in Western Australian MuseUm.Museum. Scyliorhinus maculatus Regan, Ann. Mag. Nat. Hist., (8) i, 1908,1908,.p. .p. 462. Ref. to Waite only, as Gunther's record is probablypro bably based on an Atelomycterus. Not Squalus maculatus Bloch and Schneider 1801, preocc. by Bonaterre,Bonaterre, 1788. Scyliorhinus maculatum McCulloch, Zool.
    [Show full text]
  • Download Full Article 1.0MB .Pdf File
    Memoirs of the Museum of Victoria 57( I): 143-165 ( 1998) 1 May 1998 https://doi.org/10.24199/j.mmv.1998.57.08 FISHES OF WILSONS PROMONTORY AND CORNER INLET, VICTORIA: COMPOSITION AND BIOGEOGRAPHIC AFFINITIES M. L. TURNER' AND M. D. NORMAN2 'Great Barrier Reef Marine Park Authority, PO Box 1379,Townsville, Qld 4810, Australia ([email protected]) 1Department of Zoology, University of Melbourne, Parkville, Vic. 3052, Australia (corresponding author: [email protected]) Abstract Turner, M.L. and Norman, M.D., 1998. Fishes of Wilsons Promontory and Comer Inlet. Victoria: composition and biogeographic affinities. Memoirs of the Museum of Victoria 57: 143-165. A diving survey of shallow-water marine fishes, primarily benthic reef fishes, was under­ taken around Wilsons Promontory and in Comer Inlet in 1987 and 1988. Shallow subtidal reefs in these regions are dominated by labrids, particularly Bluethroat Wrasse (Notolabrus tet­ ricus) and Saddled Wrasse (Notolabrus fucicola), the odacid Herring Cale (Odax cyanomelas), the serranid Barber Perch (Caesioperca rasor) and two scorpidid species, Sea Sweep (Scorpis aequipinnis) and Silver Sweep (Scorpis lineolata). Distributions and relative abundances (qualitative) are presented for 76 species at 26 sites in the region. The findings of this survey were supplemented with data from other surveys and sources to generate a checklist for fishes in the coastal waters of Wilsons Promontory and Comer Inlet. 23 I fishspecies of 92 families were identified to species level. An additional four species were only identified to higher taxonomic levels. These fishes were recorded from a range of habitat types, from freshwater streams to marine habitats (to 50 m deep).
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]
  • (Cephaloscyllium Laticeps) to Rare Earth Magnets
    Fisheries Research 200 (2018) 84–92 Contents lists available at ScienceDirect Fisheries Research journal homepage: www.elsevier.com/locate/fishres Behavioural responses of draughtboard sharks (Cephaloscyllium laticeps)to T rare earth magnets: Implications for shark bycatch management within the Tasmanian southern rock lobster fishery ⁎ Emma L. Westlakea, , Mike Williamsb, Nick Rawlinsonb a Parks Victoria, Queenscliff, VIC, 3225, Australia b Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, TAS, 7250, Australia ARTICLE INFO ABSTRACT Handled by A.E. Punt. Catches of draughtboard shark (Cephaloscyllium laticeps) in the Tasmanian Southern Rock Lobster Fishery are Keywords: considered an economic and potentially ecological issue. Consequently, there is interest in developing strategies Shark deterrent to mitigate and minimise shark bycatch within this fishery. This field study examined the behavioural responses Aversion of draughtboard sharks to neodymium-iron-boron (Nd2Fe14B) rare earth magnetic rods attached to baited video Bycatch mitigation apparatus. Two magnetic treatments and one control were used in 12 × 1.5 h observational trials conducted in Draughtboard shark inshore waters of Tasmania, Australia. Results demonstrate that draughtboard sharks: (1) showed substantial individual variation in behaviours both between and within treatments, with no patterns of individual responses observed over time to both magnetic treatments or the control, (2) showed significant differences in initial interactions between the magnetic treatments and the control, and (3) attempted to take bait at the control significantly more often than at the 2-magnet treatment. These findings demonstrate the individualistic and highly variable response behaviours of draughtboard sharks to rare earth magnets. Understanding such beha- viours may facilitate the development of effective deterrent strategies in this fishery and improve management of shark-fishery interactions globally.
    [Show full text]
  • Fecal Corticosterone Assessment in the Epaulette Shark, Hemiscyllium Ocellatum AMANDA H
    JOURNAL OF EXPERIMENTAL ZOOLOGY 299A:188–196 (2003) Fecal Corticosterone Assessment in the Epaulette Shark, Hemiscyllium ocellatum AMANDA H. KARSTEN* and JOHN W. TURNER, JR.n Medical College of Ohio, Department of Physiology and Molecular Medicine, Toledo, Ohio 43614–5804 ABSTRACT The present study examined the feasibility of measuring the steroid hormone corticosterone in fecal extracts of epaulette sharks, Hemiscyllium ocellatum. Six immature, captive- raised epaulette sharks (four females and two males) were obtained from two different zoos and were maintained in a closed-system, 530–liter aquarium. After a one-month adaptation, fecal samples were collected daily from each animal for 33 days. Five-day sets of samples were pooled within animals to insure sufficient material for analysis. Fecal hormone extraction was achieved using repeated cycles of dichloromethane and aqueous washes. The levels of corticosterone were measured by reverse-phase high-performance liquid chromatography (HPLC). Corticosterone presence in HPLC eluent peaks from fecal extracts was determined by comparison of the elution pattern of corticosterone standard with the elution patterns of fecal extracts with and without the addition of tritiated corticosterone or exogenous, unlabeled corticosterone. Exclusive presence of corticosterone in HPLC eluent peaks presumed to be corticosterone was determined by nuclear magnetic resonance mass spectrometry. Corticosterone levels, calculated from a 10–point standard curve, ranged from 1.2 to 20.9 ng/g feces across all sharks, with 92.3% of values being r13.5 ng/g. Within individuals, the lowest average for corticosterone levels across 33 days was 2.670.4 ng/g feces, and the highest average was 8.472.2 ng/g feces.
    [Show full text]