The Genome Sequence of the Soft-Rot Fungus Penicillium

Total Page:16

File Type:pdf, Size:1020Kb

The Genome Sequence of the Soft-Rot Fungus Penicillium bioRxiv preprint doi: https://doi.org/10.1101/197368; this version posted October 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The genome sequence of the soft-rot fungus Penicillium 2 purpurogenum reveals a high gene dosage for lignocellulolytic 3 enzymes 4 5 Wladimir Mardonesa,*, Alex Di Genovab,c,*, María Paz Cortésb,c, Dante Travisanyb, 6 c, Alejandro Maassb,c,d, Jaime Eyzaguirrea,+. 7 8 a Facultad de Ciencias Biológicas, Universidad Andrés Bello, Av. República 217, 9 Santiago, Chile. 10 b Fondap Center for Genome Regulation, Av. Blanco Encalada 2085, 3rd floor, 11 Santiago, Chile. 12 c Center for Mathematical Modeling, University of Chile, Av. Beauchef 851, 7th 13 floor, Santiago, Chile. 14 d Department of Mathematical Engineering, University of Chile, Av. Beauchef 15 851, 5th floor, Santiago, Chile. 16 17 * These authors contributed equally to this work. 18 19 + To whom correspondence should be addressed: Telephone: (562) 26618070. 20 FAX: (562) 26980414. E-mail: [email protected] 21 22 1 bioRxiv preprint doi: https://doi.org/10.1101/197368; this version posted October 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Abstract 24 The high lignocellulolytic activity displayed by the soft-rot fungus P. purpurogenum 25 has made it a target for the study of novel lignocellulolytic enzymes. We have 26 obtained a reference genome of 36.2Mb of non-redundant sequence (11,057 27 protein-coding genes). The 49 largest scaffolds cover 90% of the assembly, and 28 CEGMA analysis reveals that our assembly covers most if not all all protein-coding 29 genes. RNASeq was performed and 93.1% of the reads aligned within the 30 assembled genome. These data, plus the independent sequencing of a set of 31 genes of lignocellulose-degrading enzymes, validate the quality of the genome 32 sequence. P. purpurogenum shows a higher number of proteins with CAZy motifs, 33 transcription factors and transporters as compared to other sequenced Penicillia. 34 These results demonstrate the great potential for lignocellulolytic activity of this 35 fungus and the possible use of its enzymes in related industrial applications. 36 37 Keywords: Penicillium purpurogenum; genome sequencing; lignocellulose 38 biodegradation; CAZymes; RNASeq, Illumina 39 2 bioRxiv preprint doi: https://doi.org/10.1101/197368; this version posted October 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 40 41 1. Introduction 42 Lignocellulose is by far the most abundant renewable resource on earth, and it 43 represents a highly valuable source of raw material for different industrial 44 processes, among them the production of second-generation biofuels such as 45 bioethanol (Ragauskas et al. 2006). Lignocellulose contains several 46 polysaccharides, mainly cellulose, hemicelluloses and pectin. Hydrolysis of these 47 polysaccharides can be achieved chemically or enzymatically, the second method 48 having the advantage of being environmentally friendly and free of potentially 49 poisonous side-products (Blanch 2012). The saccharification process to obtain the 50 monosaccharide components requires a variety of enzymes particularly due to the 51 complex structure of the hemicelluloses and pectin. These enzymes are secreted 52 by a number of bacteria and fungi (Dehority 1962; Kang et al. 2004). A thorough 53 understanding of the lignocellulose-degrading systems is important in order to 54 prepare enzyme cocktails that can efficiently degrade a variety of lignocellulose 55 raw materials of different chemical composition (Rosenberg 1978). Although the 56 study of individual enzymes (purification and characterization) may give valuable 57 information on their properties, it is a rather time-consuming process. The recent 58 developments in the “omics” sciences and bioinformatics have provided novel 59 techniques for the analysis of genomes, transcriptomes and secretomes of cells 60 and organisms, allowing a rapid identification and characterization of sets of 61 enzymes (Conn 2003). 3 bioRxiv preprint doi: https://doi.org/10.1101/197368; this version posted October 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 62 Fungi are the preferred sources of lignocellulolytic enzymes. Among them, 63 the genera Trichoderma (Merino and Cherry 2007) and Aspergillus (Kang et al. 64 2004) have been the subject of detailed studies and several of their enzymes have 65 been used for industrial applications. Less well known are the enzymes from 66 Penicillia. However, several members of this genus have been reported to be good 67 producers of cellulases and xylanases. A strain of Penicillium decumbens (Liu et 68 al. 2013) has been used for industrial-scale cellulase production in China since 69 1996, and Gusakov and Sinitsyn (2012) have reviewed the production of cellulases 70 by a set of Pencillium species, some of whose enzymes show superior 71 performance to those of the better-known Trichoderma. 72 Our laboratory has used as a model for the study of lignocellulolytic 73 enzymes a locally isolated strain of Penicillium (Musalem et al. 1984), which has 74 been registered in the ATCC as MYA-38. This soft-rot fungus grows on a variety of 75 lignocellulolytic natural carbon sources (i.e. sugar beet pulp, corncob, etc.) (Steiner 76 et al. 1994). It secretes to the medium a large number of cellulose- and xylan- 77 degrading enzymes, some of which have been characterized and sequenced 78 (Chávez et al. 2006; Ravanal et al. 2010), evidencing a high and plastic 79 lignocellulolytic enzyme activity, which may potentially have industrial applications 80 in raw material processing. 81 In this article we provide a genome sequence for this Penicillium generated 82 using a joint approach involving second and third generation sequencing 83 technologies (Illumina (Bentley et al. 2008) and PacBio (Eid et al. 2009) 84 respectively), together with annotated gene models for this fungus, analyzing novel 85 genes focused on lignocellulolytic activity. This fungus was found, among the 4 bioRxiv preprint doi: https://doi.org/10.1101/197368; this version posted October 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 86 Penicillia analyzed, to have the highest number of CAZymes. An RNAseq analysis 87 of the fungus grown on sugar beet pulp, and the independent sequencing of a set 88 of genes of lignocellulose-degrading enzymes confirm the quality of the gene 89 models. Due to the high number of CAZymes identified, we propose that this 90 Penicillium strain is a powerful source of enzymes for the industrial lignocellulose 91 biodegradation process. 92 93 2. Materials and methods 94 2.1 Fungal strain and culture conditions 95 Penicillium purpurogenum ATCC strain MYA-38 was grown in Mandel's medium as 96 described previously (Hidalgo et al. 1992). Liquid cultures were grown for 4 days at 97 28°C in an orbital shaker (200 rpm) using 1% glucose or sugar beet pulp as carbon 98 sources. Fungus grown on glucose was used for DNA isolation and genome 99 sequencing; cultures grown on sugar beet pulp were utilized for the transcriptome 100 analysis. 101 102 2.2 Genome sequencing and assembly 103 For genomic DNA preparation, the fungus grown on glucose was filtered and 104 frozen with liquid nitrogen in a mortar, and then powdered with a pestle. The 105 genomic DNA was purified using the Genomic DNA Purification Kit (Thermo 106 Fischer Scientific, USA) according to the manufacturer’s instructions. 5 bioRxiv preprint doi: https://doi.org/10.1101/197368; this version posted October 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 107 Genome sequencing was carried out in two stages and with two different 108 technologies. First, Illumina sequencing was performed on a HiSeq2000 instrument 109 utilizing two genomic libraries: 180bp (paired-end) and 2Kb (mate-pair) insert sizes, 110 with 100 bp read length. Second, PacBio sequencing technology was used to 111 produce long reads (over 1Kb). 112 The genome assembly process was carried out in two steps. First, both 113 Illumina libraries were assembled with ALLPAHTS-LG software (version r43019) 114 (Gnerre et al. 2011) using a 200X coverage in order to build high quality contigs 115 and scaffolds. Second, the Illumina assembly was scaffolded with the long PacBio 116 reads using SSPACE-Long-Reads version 1.1 (Boetzer and Pirovano 2014). 117 Finally, the assembly process was validated using CEGMA (Parra et al. 118 2007), by aligning 248 highly conserved eukaryotic proteins to the resulting 119 scaffolds. Since the CEGMA proteins are highly conserved, alignment methods 120 can identify their exon-intron structures on the assembled genome, thus allowing 121 estimation of the completeness of the assembled genome in terms of gene 122 numbers.
Recommended publications
  • Peach Brown Rot: Still in Search of an Ideal Management Option
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Universidad de Zaragoza agriculture Review Peach Brown Rot: Still in Search of an Ideal Management Option Vitus Ikechukwu Obi 1,2, Juan José Barriuso 2 and Yolanda Gogorcena 1,* ID 1 Experimental Station of Aula Dei-CSIC, Avda de Montañana 1005, 50059 Zaragoza, Spain; [email protected] 2 AgriFood Institute of Aragon (IA2), CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-97-671-6133 Received: 15 June 2018; Accepted: 4 August 2018; Published: 9 August 2018 Abstract: The peach is one of the most important global tree crops within the economically important Rosaceae family. The crop is threatened by numerous pests and diseases, especially fungal pathogens, in the field, in transit, and in the store. More than 50% of the global post-harvest loss has been ascribed to brown rot disease, especially in peach late-ripening varieties. In recent years, the disease has been so manifest in the orchards that some stone fruits were abandoned before harvest. In Spain, particularly, the disease has been associated with well over 60% of fruit loss after harvest. The most common management options available for the control of this disease involve agronomical, chemical, biological, and physical approaches. However, the effects of biochemical fungicides (biological and conventional fungicides), on the environment, human health, and strain fungicide resistance, tend to revise these control strategies. This review aims to comprehensively compile the information currently available on the species of the fungus Monilinia, which causes brown rot in peach, and the available options to control the disease.
    [Show full text]
  • Phylogeny and Nomenclature of the Genus Talaromyces and Taxa Accommodated in Penicillium Subgenus Biverticillium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector available online at www.studiesinmycology.org StudieS in Mycology 70: 159–183. 2011. doi:10.3114/sim.2011.70.04 Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium R.A. Samson1, N. Yilmaz1,6, J. Houbraken1,6, H. Spierenburg1, K.A. Seifert2, S.W. Peterson3, J. Varga4 and J.C. Frisvad5 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada, 3Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, U.S.A., 4Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary, 5Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark; 6Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: R.A. Samson, [email protected] Abstract: The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified inTalaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene.
    [Show full text]
  • Diversity and Extracellular Enzymes of Endophytic Fungi Associated with Cymbidium Aloifolium L
    Vol. 16(48), pp. 2248-2258, 29 November, 2017 DOI: 10.5897/AJB2017.16261 Article Number: AE1661266852 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper Diversity and extracellular enzymes of endophytic fungi associated with Cymbidium aloifolium L. Shubha J. and Srinivas C.* Fungal Metabolites Research Laboratory, Department of Microbiology and Biotechnology, Bangalore University, Jnana Bharathi Campus Bangalore, Karnataka, India. Received 2 August, 2017; Accepted 9 October, 2017 Cymbidium aloifolium is an epiphytic orchid used in treatment of many human ailments. The endophytic fungi associated with orchids are diverse and have potential to produce many bioactive compounds including extracellular enzymes. A total of 165 endophytic fungi representing 22 different fungal species were obtained from root, leaf and flowers of C. aloifolium. The colonization rate (CR) and isolation rate (IR) varied with different plant parts and was highest in root (CR = 40.6%, IR = 0.83) followed by leaf (CR = 32.12%, IR = 0.66) and flower (CR = 27.27%, IR = 0.56). The diversity of isolated endophytic fungi in root, leaf and flower was determined; Shannon-Wiener index (H’) was highest in root (H’ = 2.64) followed by leaf (H’ = 2.12) and flower (H’ = 1.5). Simpson diversity index (D’) was high in root (D’ = 0.93) with a maximum of 16 species, followed by leaf (D’= 0.88) with 9 species and flower (D’ = 0.78) with 5 species. Shannon evenness index (J’) was highest in leaf (J’ = 0.96) followed by root (J’= 0.95) and flower (J’ = 0.93).
    [Show full text]
  • Phylogeny and Nomenclature of the Genus Talaromyces and Taxa Accommodated in Penicillium Subgenus Biverticillium
    available online at www.studiesinmycology.org StudieS in Mycology 70: 159–183. 2011. doi:10.3114/sim.2011.70.04 Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium R.A. Samson1, N. Yilmaz1,6, J. Houbraken1,6, H. Spierenburg1, K.A. Seifert2, S.W. Peterson3, J. Varga4 and J.C. Frisvad5 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada, 3Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, U.S.A., 4Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary, 5Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark; 6Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: R.A. Samson, [email protected] Abstract: The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified inTalaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene. Talaromyces species and most species of Penicillium subgenus Biverticillium sensu Pitt reside in a monophyletic clade distant from species of other subgenera of Penicillium.
    [Show full text]
  • Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin
    marine drugs Review Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin Rosario Nicoletti 1,*,† and Antonio Trincone 2 1 Council for Agricultural Research and Agricultural Economy Analysis, Rome 00184, Italy 2 Institute of Biomolecular Chemistry, National Research Council, Pozzuoli 80078, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-081-253-9194 † Current address: Department of Agriculture, University of Naples “Federico II”, Portici 80055, Italy. Academic Editor: Orazio Taglialatela-Scafati Received: 23 December 2015; Accepted: 25 January 2016; Published: 18 February 2016 Abstract: In recent years, the search for novel natural compounds with bioactive properties has received a remarkable boost in view of their possible pharmaceutical exploitation. In this respect the sea is entitled to hold a prominent place, considering the potential of the manifold animals and plants interacting in this ecological context, which becomes even greater when their associated microbes are considered for bioprospecting. This is the case particularly of fungi, which have only recently started to be considered for their fundamental contribution to the biosynthetic potential of other more valued marine organisms. Also in this regard, strains of species which were previously considered typical terrestrial fungi, such as Penicillium and Talaromyces, disclose foreground relevance. This paper offers an overview of data published over the past 25 years concerning the production and biological activities of secondary metabolites of marine strains belonging to these genera, and their relevance as prospective drugs. Keywords: bioactive metabolites; chemodiversity; marine fungi; Penicillium; Talaromyces 1. Introduction For a long time fungi have been considered as a fundamentally terrestrial form of life.
    [Show full text]
  • New Insights in the Study of Strawberry Fungal Pathogens
    ® Genes, Genomes and Genomics ©2011 Global Science Books New Insights in the Study of Strawberry Fungal Pathogens Carlos Garrido • María Carbú • Francisco Javier Fernández-Acero • Victoria E. González-Rodríguez • Jesús M. Cantoral* Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Environmental and Marine Sciences Faculty. University of Cádiz, 11510, Puerto Real, Spain Corresponding author : * [email protected] ABSTRACT Strawberry (Fragaria ananassa) is one of the world’s most commercially important fruit crops, and is grown in many countries The commercial viability of the crop is continually subject to various risks, one of the most serious of which is the diseases caused by phytopathogenic organisms. More than 50 different genera of fungi can affect this cultivar, including Botrytis spp., Colletotrichum spp., Verticillium spp., and Phytophthora spp. The development of new molecular biology technologies, based on genomics, transcriptomics and proteomics approaches, is revealing new insights on the diverse pathogenicity factors causing fungal invasion, degradation and destruction of the fruit (in planta and during storage and transport). Researchers have focused attention on the plant’s own defence mecha- nisms against these pathogens. In this review, advances in the study and detection of fungal plant pathogens, new biocontrol methods, and proteomic approaches are described and the natural defence mechanisms recently discovered are reported. _____________________________________________________________________________________________________________
    [Show full text]
  • (Oryza Sativa L.) and Defense Against Nematodes Njira
    Cover_Njira.pdf 1 5/12/16 09:51 Possibilities of endophytic fungi from Kenya for growth promotion rice (Oryza sativa L.) and defense against nematodes C M Y CM MY CY CMY K Possibilities of endophytic fungi from Kenya for growth promotion of rice (Oryza sativa L.) and defense against nematodes Njira Njira Pili Njira Pili ISBN 978-9-0598995-1-3 2016 9 789059 899513 Progress is made by trial and failure; the failures are generally a hundred times more numerous than the successes; yet they are usually left unchronicled. William Ramsay, 1852 to 1916. i Promotors: Prof. Dr. Godelieve Gheysen Department of Molecular Biotechnology, Coupure Links 653, 9000 Gent. Faculty of Bioscience Engineering, Ghent University. Prof. Dr. Richard Kiprono Mibey Moi University, P.O Box 3900-30100, Eldoret, Kenya. Prof. Dr. ir. Monica Höfte Department of Crop Protection, Coupure Links 653, 9000 Gent. Faculty of Bioscience Engineering, Ghent University Dean: Prof. Dr. ir. Marc Van Meirvenne. Rector: Prof. Dr. Anne De Paepe. ii Possibilities of endophytic fungi from Kenya for growth promotion of rice (Oryza sativa L.) and defense against nematodes Njira Njira Pili Thesis submitted in fulfilment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences iii Dutch translation of the title: Mogelijkheden van endofytische schimmels uit Kenia voor groeibevordering in rijst (Oryza sativa L.) en verdediging tegen nematoden. Cover illustration Front: An upland rice field in Kenya. Pili, N.N. (2016). Possibilities of endophytic fungi from Kenya for growth promotion of rice (Oryza sativa L.) and defense against nematodes. PhD thesis, Ghent University, Ghent, Belgium.
    [Show full text]
  • Aspergillus and Penicillium Species
    CHAPTER FOUR Modern Taxonomy of Biotechnologically Important Aspergillus and Penicillium Species Jos Houbraken1, Ronald P. de Vries, Robert A. Samson CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands 1Corresponding author: e-mail address: [email protected] Contents 1. Introduction 200 2. One Fungus, One Name 202 2.1 Dual nomenclature 202 2.2 Single-name nomenclature 203 2.3 Implications for Aspergillus and Penicillium taxonomy 203 3. Classification and Phylogenetic Relationships in Trichocomaceae, Aspergillaceae, and Thermoascaceae 205 4. Taxonomy of Penicillium Species and Phenotypically Similar Genera 209 4.1 Penicillium and Talaromyces 209 4.2 Rasamsonia 215 4.3 Thermomyces 216 5. Taxonomy of Aspergillus Species 219 5.1 Phylogenetic relationships among Aspergillus species 219 5.2 Aspergillus section Nigri 219 5.3 Aspergillus section Flavi 224 6. Character Analysis 225 7. Modern Taxonomy and Genome Sequencing 227 7.1 Identity of genome-sequenced strains 230 7.2 Selection of strains 231 7.3 Recommendations for strain selection 231 8. Identification of Penicillium and Aspergillus Strains 233 9. Mating-Type Genes 234 9.1 Aspergillus 236 9.2 Penicillium 238 9.3 Other genera 239 10. Conclusions 240 Acknowledgments 240 References 241 # Advances in Applied Microbiology, Volume 86 2014 Elsevier Inc. 199 ISSN 0065-2164 All rights reserved. http://dx.doi.org/10.1016/B978-0-12-800262-9.00004-4 200 Jos Houbraken et al. Abstract Taxonomy is a dynamic discipline and name changes of fungi with biotechnological, industrial, or medical importance are often difficult to understand for researchers in the applied field. Species belonging to the genera Aspergillus and Penicillium are com- monly used or isolated, and inadequate taxonomy or uncertain nomenclature of these genera can therefore lead to tremendous confusion.
    [Show full text]
  • An Online Resource for Marine Fungi
    Fungal Diversity https://doi.org/10.1007/s13225-019-00426-5 (0123456789().,-volV)(0123456789().,- volV) An online resource for marine fungi 1,2 3 1,4 5 6 E. B. Gareth Jones • Ka-Lai Pang • Mohamed A. Abdel-Wahab • Bettina Scholz • Kevin D. Hyde • 7,8 9 10 11 12 Teun Boekhout • Rainer Ebel • Mostafa E. Rateb • Linda Henderson • Jariya Sakayaroj • 13 6 6,17 14 Satinee Suetrong • Monika C. Dayarathne • Vinit Kumar • Seshagiri Raghukumar • 15 1 16 6 K. R. Sridhar • Ali H. A. Bahkali • Frank H. Gleason • Chada Norphanphoun Received: 3 January 2019 / Accepted: 20 April 2019 Ó School of Science 2019 Abstract Index Fungorum, Species Fungorum and MycoBank are the key fungal nomenclature and taxonomic databases that can be sourced to find taxonomic details concerning fungi, while DNA sequence data can be sourced from the NCBI, EBI and UNITE databases. Nomenclature and ecological data on freshwater fungi can be accessed on http://fungi.life.illinois.edu/, while http://www.marinespecies.org/provides a comprehensive list of names of marine organisms, including information on their synonymy. Previous websites however have little information on marine fungi and their ecology, beside articles that deal with marine fungi, especially those published in the nineteenth and early twentieth centuries may not be accessible to those working in third world countries. To address this problem, a new website www.marinefungi.org was set up and is introduced in this paper. This website provides a search facility to genera of marine fungi, full species descriptions, key to species and illustrations, an up to date classification of all recorded marine fungi which includes all fungal groups (Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Mucoromycota and fungus-like organisms e.g.
    [Show full text]
  • Aspergillus, Penicillium and Related Species Reported from Turkey
    Mycotaxon Vol. 89, No: 1, pp. 155-157, January-March, 2004. Links: Journal home : http://www.mycotaxon.com Abstract : http://www.mycotaxon.com/vol/abstracts/89/89-155.html Full text : http://www.mycotaxon.com/resources/checklists/asan-v89-checklist.pdf Aspergillus, Penicillium and Related Species Reported from Turkey Ahmet ASAN e-mail 1 (Official) : [email protected] e-mail 2 : [email protected] Tel. : +90 284 2352824-ext 1219 Fax : +90 284 2354010 Address: Prof. Dr. Ahmet ASAN. Trakya University, Faculty of Science -Fen Fakultesi-, Department of Biology, Balkan Yerleskesi, TR-22030 EDIRNE–TURKEY Web Page of Author : <http://personel.trakya.edu.tr/ahasan#.UwoFK-OSxCs> Citation of this work as proposed by Editors of Mycotaxon in the year of 2004: Asan A. Aspergillus, Penicillium and related species reported from Turkey. Mycotaxon 89 (1): 155-157, 2004. Link: <http://www.mycotaxon.com/resources/checklists/asan-v89-checklist.pdf> This internet site was last updated on February 10, 2015 and contains the following: 1. Background information including an abstract 2. A summary table of substrates/habitats from which the genera have been isolated 3. A list of reported species, substrates/habitats from which they were isolated and citations 4. Literature Cited 5. Four photographs about Aspergillus and Penicillium spp. Abstract This database, available online, reviews 876 published accounts and presents a list of species representing the genera Aspergillus, Penicillium and related species in Turkey. Aspergillus niger, A. fumigatus, A. flavus, A. versicolor and Penicillium chrysogenum are the most common species in Turkey, respectively. According to the published records, 428 species have been recorded from various subtrates/habitats in Turkey.
    [Show full text]
  • Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi
    Journal of Fungi Review Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi Stefano Varrella 1,* , Giulio Barone 2, Michael Tangherlini 3 , Eugenio Rastelli 4, Antonio Dell’Anno 5 and Cinzia Corinaldesi 1,* 1 Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 2 Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Largo Fiera della Pesca, 60125 Ancona, Italy; [email protected] 3 Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy; [email protected] 4 Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy; [email protected] 5 Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; [email protected] * Correspondence: [email protected] (S.V.); [email protected] (C.C.) Abstract: The Antarctic Ocean is one of the most remote and inaccessible environments on our planet and hosts potentially high biodiversity, being largely unexplored and undescribed. Fungi have key functions and unique physiological and morphological adaptations even in extreme conditions, from shallow habitats to deep-sea sediments. Here, we summarized information on diversity, the ecological role, and biotechnological potential of marine fungi in the coldest biome on Earth. This Citation: Varrella, S.; Barone, G.; review also discloses the importance of boosting research on Antarctic fungi as hidden treasures of Tangherlini, M.; Rastelli, E.; biodiversity and bioactive molecules to better understand their role in marine ecosystem functioning Dell’Anno, A.; Corinaldesi, C.
    [Show full text]
  • The UK National Culture Collection (UKNCC) Biological Resource: Properties, Maintenance and Management
    UKNCC Biological Resource: Properties, Maintenance and Management The UK National Culture Collection (UKNCC) Biological Resource: Properties, Maintenance and Management Edited by David Smith Matthew J. Ryan John G. Day with the assistance of Sarah Clayton, Paul D. Bridge, Peter Green, Alan Buddie and others Preface by Professor Mike Goodfellow Chair of the UKNCC Steering Group i UKNCC Biological Resource: Properties, Maintenance and Management THE UNITED KINGDOM NATIONAL CULTURE COLLECTION (UKNCC) Published by: The UK National Culture Collection (UKNCC) Bakeham Lane, Egham, Surrey, TW20 9TY, UK. Tel: +44-1491 829046, Fax: +44-1491 829100; Email: [email protected] Printed by: Pineapple Planet Design Studio Ltd. ‘Pickwicks’ 42 Devizes Road Old Town Swindon SN1 4BG © 2001 The United Kingdom National Culture Collection (UKNCC) No part of this book may be reproduced by any means, or transmitted, nor translated into a machine language without the written permission of the UKNCC secretariat. ISBN 0 9540285 0 3 ii UKNCC Biological Resource: Properties, Maintenance and Management UKNCC MEMBER COLLECTION CONTACT ADDRESSES CABI Bioscience UK Centre (Egham) formerly the International Mycological Institute and incorporating the National Collection of Fungus Cultures and the National Collection of Wood-rotting Fungi- NCWRF) Bakeham Lane, Egham, Surrey, TW20 9TY, UK. Tel: +44-1491 829080, Fax: +44-1491 829100; Email: [email protected] Culture Collection of Algae and Protozoa (freshwater) Centre for Ecology & Hydrology, Windermere, The Ferry House, Far Sawrey, Ambleside, Cumbria, LA22 0LP, UK. Tel: +44-15394-42468; Fax: +44-15394-46914 Email: [email protected] Culture Collection of Algae and Protozoa (marine algae) Dunstaffnage Marine Laboratory, P.O.
    [Show full text]