Aves, Pygostylia)-Like Tarsometatarsus from the Early Cretaceous Of

Total Page:16

File Type:pdf, Size:1020Kb

Aves, Pygostylia)-Like Tarsometatarsus from the Early Cretaceous Of SUPPLEMENTAL DATA JOURNAL OF VERTEBRATE PALEONTOLOGY A confuciusornithiform (Aves, Pygostylia)-like tarsometatarsus from the Early Cretaceous of Siberia and a discussion of the evolution of avian hind limb musculature JINGMAI K O’CONNOR,* ALEXANDER O. AVERIANOV, and NIKITA V. ZELENKOV *Corresponding author. 1 Primary results Figure S1. Hypothetical phylogenetic relationships of Evgenavis nobilis gen. et sp. nov. The reduced consensus tree (314 most parsimonious trees [MPTs], tree length [TL] = 80. 80266 steps, Consistency Index [CI] = 0.375, Rentention Index [RI] = 0.657) using implied weighting (k = 3) with Evgenavis and Mystiornis resolved within Ornithuromorpha. 2 Figure S2. Hypothetical phylogenetic relationship of Evgenavis nobilis gen. et sp. nov. Reduced consensus tree after adding two characters (1,000 + trees, TL = 858 steps) with Evgenavis and Mystiornis resolved within Enantiornithes. 3 Matrix with 245 Characters Modified from O’Connor et al. (2011) by the addition of four taxa: Evgenavis, Mystiornis, Avisaurus archibaldi, and Soroavisaurus (see separate TNT file). Figure S3. Absolute Bremer supports for analysis with 245 characters. 4 Figure S4. Relative Bremer supports for analysis based on 245 characters. 5 Implied Weights Analysis of 245 characters, run using implied weighting (showing results for first and second round of Tree Branch Bisection). Figure S5. Analysis of 245 characters using implied weights, k = 3. First round of TBR; eight trees, TL = 80.80266 steps (excluding Chaoyangia). 6 Figure S6. Analysis of 245 characters using implied weights, k = 3 (Chaoyangia excluded). Second round of TBR, 314 trees, TL = 80. 80266 steps; CI = 0.375; RI = 0.657. 7 Figure S7. Analysis of 245 characters using implied weights, k = 2. First round of TBR; results produced two MPTs, TL = 97.43443 steps. 8 Figure S8. Analysis of 245 characters using implied weights, k = 2. Additional round of TBR; 69 MPTs, TL = 97.43443 steps. 9 Figure S9. Analysis of 245 characters using implied weights, k = 1. First round of TBR produced four MPTs, TL = 124.59219 steps (reduced consensus, Chaoyangia removed). 10 Figure S10. Analysis of 245 characters using implied weights, k = 1. Additional round TBR produced 69 MPTs. 11 Matrix with 247 Characters New characters: character 246: tubercle for the attachment of the m. tibialis cranialis: one such tubercle (0); two such tubercles (1). Character 247: medial condyle of metatarsal II trochlea forming strong plantarly projecting wing: absent (0); present (1). For matrix see separate TNT file. LITERATURE CITED O'Connor, J. K., L. M. Chiappe, and A. Bell. 2011. Pre-modern birds: avian divergences in the Mesozoic; pp. 39–114 in G. D. Dyke and G. Kaiser (eds.), Living Dinosaurs: the Evolutionary History of Birds. Wiley Blackwell, Chichester, U.K. 12.
Recommended publications
  • The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J
    ISSN 00310301, Paleontological Journal, 2013, Vol. 47, No. 11, pp. 1270–1281. © Pleiades Publishing, Ltd., 2013. The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J. K. O’Connora and N. V. Zelenkovb aKey Laboratory of Evolution and Systematics, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai Dajie, Beijing China 10044 bBorissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia email: [email protected], [email protected] Received August 6, 2012 Abstract—Since the last description of the ornithurine bird Ambiortus dementjevi from Mongolia, a wealth of Early Cretaceous birds have been discovered in China. Here we provide a detailed comparison of the anatomy of Ambiortus relative to other known Early Cretaceous ornithuromorphs from the Chinese Jehol Group and Xiagou Formation. We include new information on Ambiortus from a previously undescribed slab preserving part of the sternum. Ambiortus is superficially similar to Gansus yumenensis from the Aptian Xiagou Forma tion but shares more morphological features with Yixianornis grabaui (Ornithuromorpha: Songlingorni thidae) from the Jiufotang Formation of the Jehol Group. In general, the mosaic pattern of character distri bution among early ornithuromorph taxa does not reveal obvious relationships between taxa. Ambiortus was placed in a large phylogenetic analysis of Mesozoic birds, which confirms morphological observations and places Ambiortus in a polytomy with Yixianornis and Gansus. Keywords: Ornithuromorpha, Ambiortus, osteology, phylogeny, Early Cretaceous, Mongolia DOI: 10.1134/S0031030113110063 1 INTRODUCTION and articulated partial skeleton, preserving several cervi cal and thoracic vertebrae, and parts of the left thoracic Ambiortus dementjevi Kurochkin, 1982 was one of girdle and wing (specimen PIN, nos.
    [Show full text]
  • Sind Vögel Dinosaurier? Eine Kritische Analyse Fossiler Befunde
    W+W Special Paper B-19-4 SIND VÖGEL DINOSAURIER? EINE KRITISCHE ANALYSE FOSSILER BEFUNDE Reinhard Junker August 2019 https://www.wort-und-wissen.de/artikel/sp/b-19-4_dinos-voegel.pdf Bild: Ein rekonstruiertes und künstlerisch dargestelltes Paar von Microraptor gui (Dromaeosauridae , Micro raptorinae). (durbed.deviantart.com, CC BY-SA 3.0) Sind Vögel Dinosaurier? Inhalt 1. Einleitung ...................................................................................... 3. kompakt ..................................................................................................... 4 Methodische Vorbemerkungen ............................................................................... 5 Zitate zu schrittweisem Erwerb von Vogelmerkmalen ...................................................... 6 2. Vogelmerkmale bei Theropoden: Vorläufer oder Konvergenzen ............................................................................... 9 2.1 Federtypen und Flugfähigkeit ..................................................................... 9 2.2 Zähne und Schnabel ................................................................................ 14 Zitate zu Konvergenzen bei Zahnverlust und Ausbildung eines Schnabels ................15 2.3 Gehirn und EQ ........................................................................................ 17 2.4 Furkula ..................................................................................................... 18 2.5 Gastralia, Rippenkorb, Brustbein ..............................................................
    [Show full text]
  • On the Preservation of the Beak in Confuciusornis (Aves: Pygostylia)
    diversity Article On the Preservation of the Beak in Confuciusornis (Aves: Pygostylia) Amanda Falk 1, Jingmai O’Connor 2,3,* , Min Wang 2,3 and Zhonghe Zhou 2,3,* 1 Biology Department, Centre College, 600 W. Walnut St. Danville, KY 40422, USA; [email protected] 2 Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing 100044, China; [email protected] 3 CAS Center for Excellence in Life and Paleoenvironment, Beijing 10010, China * Correspondence: [email protected] (J.O.); [email protected] (Z.Z.) Received: 27 October 2019; Accepted: 10 November 2019; Published: 11 November 2019 Abstract: The Confuciusornithiformes represent the most stem-ward avian occurrence of an edentulous rostrum. Although a keratinous beak is widely considered to have covered the rostrum in confuciusornithiforms, this feature is almost never preserved, having been previously reported only in the holotype of Confuciusornis dui and the holotype of Eoconfuciusornis zhengi. This strongly contrasts with the widespread preservation of the keratinous sheaths that cover the manual and pedal ungual phalanges. Here, we report on a third occurrence of a preserved rhamphotheca in a specimen of Confuciusornis sanctus. We illuminated the preserved traces using laser-stimulated fluorescence. Similarly to E. zhengi, the rhamphotheca has been preserved only as a two-dimensional trace, whereas ungual sheaths are preserved in three dimensions. In contrast to the traces preserved in C. dui, the rhamphotheca in the discussed specimen of C. sanctus is straight rather than upturned. This hints towards hidden morphological diversity within the thousands of Confuciusornis specimens, in which species may be further differentiated by soft tissue features or behaviors, much like many living birds, that cannot be detected in fossils, even with exceptional preservation.
    [Show full text]
  • The Oldest Record of Ornithuromorpha from the Early Cretaceous of China
    ARTICLE Received 6 Jan 2015 | Accepted 20 Mar 2015 | Published 5 May 2015 DOI: 10.1038/ncomms7987 OPEN The oldest record of ornithuromorpha from the early cretaceous of China Min Wang1, Xiaoting Zheng2,3, Jingmai K. O’Connor1, Graeme T. Lloyd4, Xiaoli Wang2,3, Yan Wang2,3, Xiaomei Zhang2,3 & Zhonghe Zhou1 Ornithuromorpha is the most inclusive clade containing extant birds but not the Mesozoic Enantiornithes. The early evolutionary history of this avian clade has been advanced with recent discoveries from Cretaceous deposits, indicating that Ornithuromorpha and Enantiornithes are the two major avian groups in Mesozoic. Here we report on a new ornithuromorph bird, Archaeornithura meemannae gen. et sp. nov., from the second oldest avian-bearing deposits (130.7 Ma) in the world. The new taxon is referable to the Hongshanornithidae and constitutes the oldest record of the Ornithuromorpha. However, A. meemannae shows few primitive features relative to younger hongshanornithids and is deeply nested within the Hongshanornithidae, suggesting that this clade is already well established. The new discovery extends the record of Ornithuromorpha by five to six million years, which in turn pushes back the divergence times of early avian lingeages into the Early Cretaceous. 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. 2 Institue of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China. 3 Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China. 4 Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales 2019, Australia.
    [Show full text]
  • Bayesian Tip Dating Reveals Heterogeneous Morphological Clocks in Mesozoic Birds
    bioRxiv preprint doi: https://doi.org/10.1101/350496; this version posted September 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Bayesian tip dating reveals heterogeneous 2 morphological clocks in Mesozoic birds 3 4 Chi Zhang1,2,* and Min Wang1,2 5 September 18, 2018 6 1Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate 7 Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, 8 China 9 2Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 10 Beijing 100044, China 11 ∗Corresponding author: E-mail: [email protected] 12 13 Running head: BAYESIAN TIP DATING OF MESOZOIC BIRDS 14 bioRxiv preprint doi: https://doi.org/10.1101/350496; this version posted September 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 15 Abstract.—Recently, comprehensive morphological datasets including nearly all the 16 well-recognized Mesozoic birds become available, making it feasible for statistically 17 rigorous methods to unveil finer evolutionary patterns during early avian evolution. 18 However, few quantitative and statistical studies have yet been performed. Here, we 19 exploited the advantage of Bayesian tip dating under relaxed morphological clocks to 20 infer both the divergence times and evolutionary rates while accounting for their 21 uncertainties.
    [Show full text]
  • On the Absence of Sternal Elements in Anchiornis (Paraves) and Sapeornis (Aves) and the Complex Early Evolution of the Avian Sternum
    On the absence of sternal elements in Anchiornis (Paraves) and Sapeornis (Aves) and the complex early evolution of the avian sternum Xiaoting Zhenga,b, Jingmai O’Connorc,1, Xiaoli Wanga, Min Wangc, Xiaomei Zhangb, and Zhonghe Zhouc,1 aInstitute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China; bShandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China; and cKey Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China Contributed by Zhonghe Zhou, June 14, 2014 (sent for review April 13, 2014) Anchiornis (Deinonychosauria: Troodontidae), the earliest known inferred importance of the sternum as part of the avian flight feathered dinosaur, and Sapeornis (Aves: Pygostylia), one of the apparatus and at odds with the phylogenetic distribution of os- basalmost Cretaceous birds, are both known from hundreds of sified sterna among maniraptoran theropods. All other groups specimens, although remarkably not one specimen preserves any that are or have been considered closely related to birds (Scan- sternal ossifications. We use histological analysis to confirm the soriopterygidae, Dromaeosauridae, and Oviraptorosauria) pos- absence of this element in adult specimens. Furthermore, the excel- sess paired, ossified sternal plates that fuse into a singular lent preservation of soft-tissue structures in some specimens sug- element (sternum) late in ontogeny in at least some taxa (e.g., gests that no chondrified sternum was present. Archaeopteryx,the dromaeosaurid Microraptor, oviraptorosaur Ingenia) (16–19). oldest and most basal known bird, is known from only 10 specimens Admittedly, the sternum is not one of the best-known skeletal and the presence of a sternum is controversial; a chondrified ster- elements in these clades; the presence of sternal plates is af- num is widely considered to have been present.
    [Show full text]
  • Of All the Early Birds, Only One Lineage Survived by Susan Milius
    DINO DOOMSDAY LuckyThe Ones Of all the early birds, only one lineage survived By Susan Milius he asteroid strike (or was it the roiling volcanoes?) avian (in the Avialae/Aves group) by about 165 million to that triggered dino doomsday 66 million years ago 150 million years ago. That left plenty of time for bona fide also brought an avian apocalypse. Birds had evolved birds to diversify before the great die-off. T by then, but only some had what it took to survive. The bird pioneers included the once widespread and abun- Biologists now generally accept birds as a kind of dinosaur, dant Enantiornithes, or “opposite birds.” Compared with just as people are a kind of mammal. Much of what we think modern birds, their ball-and-socket shoulder joints were of as birdlike traits — bipedal stance, feathers, wishbones and “backwards,” with ball rather than socket on the scapula. so on — are actually dinosaur traits that popped up here and These ancient alt birds may have gone down in the big there in the vast doomed branches of the dino family tree. In extinction that left only fish, amphibians, mammals and a the diagram at right, based on one from paleontologist few reptile lineages (including birds) among vertebrates. Stephen Brusatte of the University of Edinburgh and col- There’s not a lot of information to go on. “The fossil record leagues, anatomical icons give a rough idea of when some of of birds is pretty bad,” Brusatte says. “But I think those lin- these innovations emerged. eages that go up to the red horizontal line of doom in my fig- One branch of the dinosaur tree gradually turned arguably ure are ones that died in the impact chaos.” s 1 2 Microraptor dinosaurs were relatives of the velociraptors that (in ridiculously oversized form) put the screaming gotchas into Jurassic Park.
    [Show full text]
  • A Review on Gnetalean Megafossils: Problems and Perspectives
    Taiwania, 55(4): 346-354, 2010 A Review on Gnetalean Megafossils: Problems and Perspectives Yong Yang Key Laboratory of Biodiversity Informatics, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China. Tel: 86-10-62836115; Email: [email protected] (Manuscript received 7 May 2010; accepted 20 July 2010) ABSTRACT: Gnetalean megafossils were accumulated in the last decade. Taxonomic positions of several of Ephedran megafossil species are, however, controversial, resulting in a complicated nomenclature. Liaoxia Z.Y. Cao & S.Q. Wu, “Eragrostis Z.Y. Cao & S.Q. Wu”, “Chaoyangia Duan”, and their type species “Liaoxia cheniae Z.Y. Cao & S.Q. Wu”, “Eragrostis changii Z.Y. Cao & S.Q. Wu”, “Chaoyangia liangii S.Y. Duan”, were not validly published in the original publication under the Vienna Code. The species “Liaoxia cheniae Z.Y. Cao & S.Q. Wu” was validly published as Ephedrites cheniae S.X. Guo & X.W. Wu but later combined into Liaoxia cheniae (S.X. Guo & X.W. Wu) Z.Y. Cao & S.Q. Wu and further into Ephedra cheniae (S.X. Guo & X.W. Wu) H.M. Liu et al. Some uncertain morphological characters are fundamental to elucidate the taxonomic position of Ephedrites cheniae S.X. Guo & X.W. Wu and “Chaoyangia liangii S.Y. Duan”, e.g. bract number, position, and connation in female cones, seed number and position in a female cone, and morphology of the furcated appendages of reproductive organs of “Chaoyangia liangii S.Y. Duan”. KEY WORDS: Cretaceous, Ephedraceae, Gnetales, megafossil, nomenclature, taxonomy. This situation, however, was markedly changed in INTRODUCTION the last decade.
    [Show full text]
  • A Diapsid Skull in a New Species of the Primitive Bird Confuciusornis
    letters to nature 8. Hemley, J. J., Cygan, G. L., Fein, J. B., Robinson, G. R. & D’Angelo, W. M. Hydrothermal ore-forming remarkably well preserved skeleton with feathers and, for the first processes in the light of studies in rock-buffered systems: I. Iron-copper-zinc-lead sulfide solubility relations. Econ. Geol. 87, 1–22 (1992). time in the Mesozoic record, direct evidence of the shape of a 9. Seward, T. M. & Barnes, H. L. in Geochemistry of Hydrothermal Ore Deposits 3rd edn (ed. Barnes, H. L.) horny beak. It has a complete and large preserved postorbital that 435–486 (Wiley, New York, 1997). has a broad contact with the jugal bone. This character is 10. Taylor, S. R. & McLennan, S. M. The Continental Crust: its Composition and Evolution (Blackwell Scientific, Oxford, 1985). presently only known in Confuciusornis, and may confirm pre- 11. McDonald, G. D. & Arnold, L. C. Geological and geochemical zoning of the Grasberg igneous vious suggestions of a postorbital in Archaeopteryx5. The squamosal complex, Irian Jaya, Indonesia. J. Geochem. Explor. 50, 143–178 (1994). 12. Ulrich, T. in Actas X Congreso Latinoamericano de Geologia and VI Congreso Nacional de Geologia is in tight contact with the postorbital. These two bones form an Economica 239 (Universidad de Buenos Aires, 1998). arch dividing the upper and lower temporal fenestrae, as in other 13. Gu¨nther, D., Frischknecht, R., Heinrich, C. A. & Kahlert, H.-J. Capabilities of an argon fluoride 193nm 6 excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of diapsid reptiles . The presence of a typical diapsid cheek region geological materials.
    [Show full text]
  • The Origin and Diversification of Birds
    Current Biology Review The Origin and Diversification of Birds Stephen L. Brusatte1,*, Jingmai K. O’Connor2,*, and Erich D. Jarvis3,4,* 1School of GeoSciences, University of Edinburgh, Grant Institute, King’s Buildings, James Hutton Road, Edinburgh EH9 3FE, UK 2Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China 3Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA 4Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA *Correspondence: [email protected] (S.L.B.), [email protected] (J.K.O.), [email protected] (E.D.J.) http://dx.doi.org/10.1016/j.cub.2015.08.003 Birds are one of the most recognizable and diverse groups of modern vertebrates. Over the past two de- cades, a wealth of new fossil discoveries and phylogenetic and macroevolutionary studies has transformed our understanding of how birds originated and became so successful. Birds evolved from theropod dino- saurs during the Jurassic (around 165–150 million years ago) and their classic small, lightweight, feathered, and winged body plan was pieced together gradually over tens of millions of years of evolution rather than in one burst of innovation. Early birds diversified throughout the Jurassic and Cretaceous, becoming capable fliers with supercharged growth rates, but were decimated at the end-Cretaceous extinction alongside their close dinosaurian relatives. After the mass extinction, modern birds (members of the avian crown group) explosively diversified, culminating in more than 10,000 species distributed worldwide today. Introduction dinosaurs Dromaeosaurus albertensis or Troodon formosus.This Birds are one of the most conspicuous groups of animals in the clade includes all living birds and extinct taxa, such as Archaeop- modern world.
    [Show full text]
  • Body and Limb Size Dissociation at the Origin of Birds: Uncoupling Allometric Constraints Across a Macroevolutionary Transition
    ORIGINAL ARTICLE doi:10.1111/evo.12150 BODY AND LIMB SIZE DISSOCIATION AT THE ORIGIN OF BIRDS: UNCOUPLING ALLOMETRIC CONSTRAINTS ACROSS A MACROEVOLUTIONARY TRANSITION T. Alexander Dececchi1,2 and Hans C. E. Larsson3 1Biology Department, University of South Dakota, 414 E Clark Street, Vermillion, South Dakota 57069 2E-mail: [email protected] 3Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec H3A 2K6 089457 Received May 30, 2012 Accepted April 17, 2013 The origin of birds and powered flight is a classic major evolutionary transition. Research on their origin often focuses on the evolution of the wing with trends of forelimb elongation traced back through many nonavian maniraptoran dinosaurs. We present evidence that the relative forelimb elongation within avian antecedents is primarily due to allometry and is instead driven by a reduction in body size. Once body size is factored out, there is no trend of increasing forelimb length until the origin of birds. We report that early birds and nonavian theropods have significantly different scaling relationships within the forelimb and hindlimb skeleton. Ancestral forelimb and hindlimb allometric scaling to body size is rapidly decoupled at the origin of birds, when wings significantly elongate, by evolving a positive allometric relationship with body size from an ancestrally negative allometric pattern and legs significantly shorten by keeping a similar, near isometric relationship but with a reduced intercept. These results have implications for the evolution of powered flight and early diversification of birds. They suggest that their limb lengths first had to be dissociated from general body size scaling before expanding to the wide range of fore and hindlimb shapes and sizes present in today’s birds.
    [Show full text]
  • A Taxonomical Revision of the Confuciusornithiformes (Aves
    Supplementary information for: A taxonomical revision of the Confuciusornithiformes (Aves: Pygostylia) WANG Min, Jingmai O’CONNOR, ZHOU Zhong-He Appendix I. Descriptions for morphological characters used in phylogenetic analysis. 1. Premaxillae in adults: unfused (0); fused only rostrally (1); completely fused (2). (ORDERED) 2. Maxillary process of the premaxilla: restricted to its rostral portion (0); subequal or longer than the facial contribution of the maxilla (1). 3. Frontal process of the premaxilla: short (0); relatively long, approaching the rostral border of the antorbital fenestra (1); very long, extending caudally near the level of lacrimals (2). (ORDERED) 4. Premaxillary teeth: present throughout (0); present but rostral tip edentulous (1); present but restricted to rostral portion (2); absent (3). 5. Caudal margin of naris: far rostral than the rostral border of the antorbital fossa (0); nearly reaching or overlapping the rostral border of the antorbital fossa (1). 6. Naris longitudinal axis: considerably shorter than the long axis of the antorbital fossa (0); subequal or longer (1). 7. Maxillary teeth: present (0); absent (1). 8. Dorsal (ascending) ramus of the maxilla: present with two fenestra (the promaxilllary and maxillary fenestra) (0); present with one fenestra (1); unfenestrated (2); ramus absent (3). (ORDERED) 9. Caudal margin of choana: located rostrally, not overlapping the region of the orbit (0); displaced caudally, at the same level or overlapping the rostral margin of the orbit (1). 10. Rostral margin of the jugal: away from the caudal margin of the naris (0); or very close to (leveled with) the caudal margin of the naris (1). 11. Contact between palatine and maxilla/premaxilla: palatine contact maxilla only (0); contacts premaxilla and maxilla (1).
    [Show full text]