[Physics.Soc-Ph] 4 Jun 2020 5 Last Words 7

Total Page:16

File Type:pdf, Size:1020Kb

[Physics.Soc-Ph] 4 Jun 2020 5 Last Words 7 Recent advances in opinion propagation dynamics: A 2020 Survey Hossein Noorazar∗1 1Washington State University, Pullman, Washington, United States of America Abstract Opinion dynamics have attracted the interest of researchers from different fields. Local interactions among individuals create interesting dynamics for the system as a whole. Such dynamics are important from a variety of perspectives. Group decision making, successful marketing, and constructing networks (in which consensus can be reached or prevented) are a few examples of existing or potential applications. The invention of the Internet has made the opinion fusion faster, unilateral, and on a whole different scale. Spread of fake news, propaganda, and election interferences have made it clear there is an essential need to know more about these dynamics. The emergence of new ideas in the field has accelerated over the last few years. In the first quarter of 2020, at least 50 research papers have emerged, either peer-reviewed and published or on pre-print outlets such as arXiv. In this paper, we summarize these ground-breaking ideas and their fascinating extensions and introduce newly surfaced concepts. Keywords:— Opinion dynamics, social dynamics, social interaction, consensus, polarization Contents 1 Introduction 1 2 Preliminaries 2 3 Milestones 2 3.1 Continuous opinion space models . .2 3.1.1 DeGrootian models . .2 3.1.2 Bounded confidence models . .3 3.2 Discrete opinion space models . .3 3.2.1 Galam model . .3 3.2.2 Sznajd model . .3 3.2.3 Voter model . .4 4 Milestones’ extensions 4 4.1 Stubborn agents . .4 4.2 Biased agents . .4 4.3 Opinion manipulation . .4 4.4 Power evolution . .5 4.5 Repulsive behavior . .5 4.6 Noisy models . .6 4.7 Interrelated topics . .6 4.8 Expressed vs. private opinions . .6 arXiv:2004.05286v2 [physics.soc-ph] 4 Jun 2020 5 Last words 7 6 New questions 7 7 Conclusions 8 8 Acknowledgments 8 1 Introduction ied the effect of group pressure on social dynamics. French in 1956 was among the first researchers to devote attention to opinion dynamics; A Formal Theory of Social Power [2]. Opinion dynamics studies propagation of opinions in a net- In 1964 Abelson [3] proposed a continuous-time model. A work through interactions of its agents. Modeling opinion decade later, in 1974, DeGroot established one of the sim- dynamics goes back a few decades. Asch in 1951 [1] stud- ∗[email protected] 1 plest models [4], which has become one of the most well An agent that does not change its opinion over time is re- known. Two years later Lehrer [5] also developed his model ferred to as a fully-stubborn agent. An agent that weighs its that is identical to that of DeGroot and an extensive discus- initial opinion, i.e., takes its initial opinion into account, in sion by Lehrer and Wagner are given in [6]. Another pioneer all interactions over time is referred to as a partially-stubborn and interesting work is [7] by Latané where he explored the agent. If an agent is not stubborn, it is called a non-stubborn interactions from a psychology angle and reviewed some of agent. In the bounded confidence models, we say an agent the earlier works such as group pressure, immitation, and is closed-minded if its confidence radius is smaller than that effects of newspapers. of others. Opinion dynamics take different shapes depending on the nature of the topic under consideration and the purpose of interactions. For example, the topic could be liking or dis- 3 Milestones liking a certain food such as fish; here, binary opinion dy- namics comes into play [8–10]. Sometimes the opinion can In this section, we present the main models that have in- be represented by continuous variables. For example, the spired a tremendous amount of research. We start with the extent to which one supports a cause. Over the years, a models in which the opinion space is continuous and then few different models for continuous-opinions have been pro- present the models in which the opinion space is discrete. posed [2, 11, 12]. Either as an abstract idea or in real life, one can think of a continuous-opinion space in which one 3.1 Continuous opinion space models must take discrete actions [13, 14]. For instance, in an elec- tion where each agent’s support for candidates falls on the In this section, we present the DeGroot model and its ma- continuous spectrum, each agent must still cast a discrete jor extension known as the Friedkin-Johnsen model. Next, vote. we examine the bounded confidence models in which agents In short, opinion dynamics can be explained as follows. interact with those whose opinions are close enough to that Agents start with an initial opinion. Connected agents in- of their own. teract and update their opinion by a given clear update rule. This process is carried on until a termination criterion is met. 3.1.1 DeGrootian models An example of termination criteria is reaching a steady state in which agents do not change their opinion anymore. We begin with the simplest model, the DeGroot model. In this paper, we briefly introduce the main concepts and Moreover, since the Friedkin-Johnsen extension of the DeG- newly developed ideas of modeling opinion dynamics. Go- root model is well-known and has been studied extensively, ing into details is not the purpose of this survey. In Sec.3 we present it here as well. the major models are presented, then, in Sec.4 basic re- DeGroot model. The DeGroot model [4] is given by sults and certain extensions of the well-known models are reviewed. In Sec.5, we go through some models that have o(t) = Wo(t−1) = W2o(t−2) = ··· = Wto(0) (1) not been studied exhaustively but are interesting and have contributed novel concepts. Finally, the conclusions are pre- where W is a row-stochastic weight matrix and Wt is its t-th sented in Sec.7. power. The model is linear and traceable over time. Classi- cal linear algebra tools are sufficient to analyze this model. It has been very well studied and different extensions of it 2 Preliminaries exist. The DeGroot model is an iterative averaging model. If the network is connected then convergence is equivalent to The network of agents is denoted by G in which N agents consensus (Fig.1). Berger [22] showed the DeGroot model are present. Let A be the adjacency matrix where Aij = 1 will reach consensus if and only if there exists a power t of if agents i and j are connected and Aij = 0 otherwise. The the weight matrix for which Wt has a strictly positive col- row-stochastic influence matrix is denoted by W where Wij umn. Let W be such a matrix; then, the consensus opinion is the level of influence of agent j on agent i; 0 ≤ Wij ≤ 1. ∗ (0) T is given by o = h`A; o i where `W is the left eigenvector Let us define the opinion space to be the set of all pos- of W associated with 1, constrained to h1N ; `Ai = 1. sible opinions denoted by O. Examples of opinion space are Friedkin-Johnsen model. One of the major exten- O = f0; 1g; f1; 2; : : : mg; [0; 1]. The opinion of agent i at sions of the DeGroot model was introduced by Friedkin and (t) time t is denoted by oi . The state of the system at time t Johnsen [23, 24] and is known as the Friedkin-Johnsen (FJ) (t) (t) (t) (t) o o ··· o is denoted by o = 1 2 N . model. Since it has functioned as a ground-breaking model, When the system reaches equilibrium, we say the system we include it here instead of in Sec.4. In the FJ model, the has converged. The convergence state may be consensus, idea of stubborn-agents is added to the DeGroot model: polarization, or fragmentation. Polarization is the state in which there are only two clusters of agents, and fragmenta- o(t+1) = DWo(t) + (I − D)o(0) (2) tion is the state there are more than two clusters. Before moving to the next section, we would like to men- where D = diag([d1; d2; : : : ; dN ]) with entries that spec- tion that there is no convergence on terminology in the liter- ify the susceptibility of individual agents to influence, i.e., ature. For example, consider an agent that does not change (1 − di) is the level of stubbornness of agent i. For a fully- its opinion over time; some papers refer to such an agent as stubborn agent 1 − di=1, for a partially-stubborn agent a leader [15], others as a media [16], some as an stubborn 0 < 1 − di < 1 and for a non-stubborn agent 1 − di = 0. W agent [17] and a few as an inflexible agent [18,19]. A closed- is a row stochastic influence matrix. The convergence and minded agent is referred to someone who does not change its stability of the FJ model are studied in [25]. opinion in [20] and in some papers, a closed-minded agent is an agent whose confidence radius is small compared to These two models are the main two DeGrootian models. other agents [21]. We adhere to the following definitions. We now move on to the bounded confidence models. 2 Figure 1: Evolution of the DeGroot model from initial profile to consensus. 3.1.2 Bounded confidence models Hegselmann-Krause model. The most well-known synchronous version of BCM is given by Hegselmann- In this section, we look at bounded confidence models.
Recommended publications
  • Statistical Physics of Social Dynamics
    Statistical physics of social dynamics Claudio Castellano∗ SMC, INFM-CNR and Dipartimento di Fisica, “Sapienza” Universit`adi Roma, Piazzale A. Moro 2, 00185 Roma I-ITALY Santo Fortunato† Complex Networks Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133, Torino, I-ITALY Vittorio Loreto‡ Dipartimento di Fisica, “Sapienza” Universit`adi Roma and SMC, INFM-CNR, Piazzale A. Moro 2, 00185 Roma I-ITALY and Complex Networks Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133, Torino, I-ITALY Statistical physics has proven to be a very fruitful framework to describe phenomena outside the realm of traditional physics. The last years have witnessed the attempt by physicists to study collective phenomena emerging from the interactions of individuals as elementary units in social structures. Here we review the state of the art by focusing on a wide list of topics ranging from opinion, cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, social spreading. We highlight the connections between these problems and other, more traditional, topics of statistical physics. We also emphasize the comparison of model results with empirical data from social systems. Contents 1. The Naming Game 30 2. Symmetry breaking: a controlled case 31 I. INTRODUCTION 2 3. The role of the interaction topology 32 C. Other models 33 II. GENERAL FRAMEWORK: CONCEPTS AND TOOLS 3 D. Language competition 33 A. Order and disorder: the Ising paradigm 4 1. Macroscopic models 34 B. Role of topology 5 2. Microscopic models 35 C. Dynamical systems approach 7 D. Agent-based modeling 7 VI. CROWD BEHAVIOR 35 A. Flocking 36 III.
    [Show full text]
  • Interacting Particle Systems for Opinion Dynamics: the Deffuant Model and Some Generalizations
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Interacting particle systems for opinion dynamics: the Deffuant model and some generalizations TIMO HIRSCHER Division of Mathematics Department of Mathematical Sciences CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG Göteborg, Sweden 2016 Interacting particle systems for opinion dynamics: the Deffuant model and some generalizations Timo Hirscher ISBN 978-91-7597-328-9 c Timo Hirscher, 2016. Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 4009 ISSN 0346-718X Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg 412 96 Göteborg Sweden Phone: +46 (0)31-772 1000 Printed in Göteborg, Sweden 2016 Interacting particle systems for opinion dynamics: the Deffuant model and some generalizations Timo Hirscher Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Abstract In the field of sociophysics, various concepts and techniques taken from statisti- cal physics are used to model and investigate some social and political behavior of a large group of humans: their social network is given by a simple graph and neighboring individuals meet and interact in pairs or small groups. Although most of the established models feature rather simple microscopic interaction rules, the macroscopic long-time behavior of the collective often eludes an ana- lytical treatment due to the complexity, which stems from the interaction of the large system as a whole. An important class of models in the area of opinion dynamics is the one based on the principle of bounded confidence: Individuals hold and share opin- ions with others in random encounters. Their mutual influence will lead to up- dated opinions approaching a compromise, but only if the distance of opinions was not too large in the first place.
    [Show full text]
  • The Transformation of Quantity Into Quality: Critical Mass in the Formation of Customary International Law
    WORSTER_JCI(2).DOCX (DO NOT DELETE) 4/23/13 12:16 PM THE TRANSFORMATION OF QUANTITY INTO QUALITY: CRITICAL MASS IN THE FORMATION OF CUSTOMARY INTERNATIONAL LAW William Thomas Worster* I. INTRODUCTION ................................................................................... 2 A. Application of Sociological Studies to International Law .......... 6 II. CUSTOMARY INTERNATIONAL LAW .................................................... 8 III. CRITICAL MASS ................................................................................. 10 A. Equilibrium States ..................................................................... 11 B. Phase Transitions ....................................................................... 12 C. Phase Transitions in Social Phenomena ................................... 14 D. Phase Transition Points ............................................................. 16 E. Phase Transitions in Customary International Law ............... 20 IV. THEORIES OF COLLECTIVE BEHAVIOR .............................................. 24 A. Microlevel Theories .................................................................... 25 B. Macrolevel Theories ................................................................... 27 C. Synthesis and Agent-Based Modeling ....................................... 29 V. Using Critical Mass to Understand Customary International Law .................................................................... 35 A. Content of the Norm ..................................................................
    [Show full text]
  • Physica a Econophysics and Sociophysics
    Physica A 516 (2019) 240–253 Contents lists available at ScienceDirect Physica A journal homepage: www.elsevier.com/locate/physa Extended editorial Econophysics and sociophysics: Their milestones & challengesI ∗ Ryszard Kutner a, ,1, Marcel Ausloos b,2, Dariusz Grech c,2, Tiziana Di Matteo d,e,f,2, Christophe Schinckus g,2, H. Eugene Stanley h,3 a Faculty of Physics, University of Warsaw, Pasteur 5, PL-02093 Warszawa, Poland b School of Business, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom c Institute of Theoretical Physics, University of Wrocªaw, Maks Born sq. 9, PL-50-204 Wrocªaw, Poland d Department of Mathematics – King's College London, Strand, London WC2R 2LS, United Kingdom e Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom f Complexity Science Hub Vienna, Josefstaedter Strasse 39, A-1080 Vienna, Austria g School of Business & Management, Department of Economics & Finance, RMIT Saigon South, Viet Nam h Center for Polymer Studies and Physics Department, Boston University, Boston, USA article info a b s t r a c t Article history: In this review article we present some of achievements of econophysics and sociophysics Available online xxxx which appear to us the most significant. We briefly explain what their roles are in building of econo- and sociophysics research fields. We point to milestones of econophysics and sociophysics facing to challenges and open problems. ' 2018 Elsevier B.V. All rights reserved. 1. Introduction As the name suggests, econophysics and sociophysics are hybrid fields that can roughly be defined as quantitative approaches using ideas, models, conceptual and computational methods of statistical physics applied to socio-economic phenomena.
    [Show full text]
  • How to Introduce Temperature to the 1 Dimensional Sznajd Model
    How to Introduce Temperature to the 1 Dimensional Sznajd Model? Grzegorz Kondrat Institute of Theoretical Physics, University of Wroc law, pl. Maxa Borna 9, 50-204 Wroc law, Poland Abstract We investigate the possibility of introducing the temperature to the one dimensional Sznajd model and propose a natural extension of the original model by including other types of interactions. We characterise different kinds of equilibria into which the extended system can evolve. We deter- mine the consequences of fulfilling the detailed balance condition and we prove that in some cases it is equivalent to microscopic reversibility. We propose a simple definition of the temperature-like quantity that measures the size of fluctuations in the system at equilibrium. The complete list of zero-temperature degenerated cases is provided. Keywords: equilibrium, temperature, detailed balance, opinion dynamics PACS: 64.60.De, 05.50.+q, 64.70.qd arXiv:0912.1466v2 [cond-mat.stat-mech] 1 Mar 2010 Email address: [email protected] (Grzegorz Kondrat) Preprint submitted to Elsevier November 7, 2018 1. Introduction The Sznajd model was originally introduced in [1] in order to describe the mechanisms of opinion change in the society. The basic element of this approach is the “social validation”, a social phenomenon relying on the fact that usually two people sharing common opinion have much bigger influence on other people in a group than separate individuals. The model itself and its modifications have found numerous applications in sociophysics (see [2] for a recent review), marketing [3, 4], finance [5] and politics [6, 7, 8]. Apart from interest in social science, finance and politics, it also brings some new ideas to physics, as noted by Slanina and Lavicka [9].
    [Show full text]
  • Table of Contents (Online, Part 1)
    TM PERIODICALS PHYSICALREVIEWE Postmaster send address changes to: For editorial and subscription correspondence, please see inside front cover APS Subscription Services (ISSN: 2470-0045) P.O. Box 41 Annapolis Junction, MD 20701 THIRD SERIES, VOLUME 96, NUMBER 2 CONTENTS AUGUST 2017 PARTS A AND B The Table of Contents is a total listing of Parts A and B. Part A consists of pages 020001–022323, and Part B pages 022401–029902(E). PART A EDITORIALS AND ANNOUNCEMENTS Editorial: Materials Research in the Physical Review Journals (1 page) ..................................... 020001 RAPID COMMUNICATIONS Statistical Physics Period proliferation in periodic states in cyclically sheared jammed solids (5 pages) .......................... 020101(R) Maxim O. Lavrentovich, Andrea J. Liu, and Sidney R. Nagel Exact short-time height distribution in the one-dimensional Kardar-Parisi-Zhang equation with Brownian initial condition (6 pages) ............................................................................ 020102(R) Alexandre Krajenbrink and Pierre Le Doussal Proof of the finite-time thermodynamic uncertainty relation for steady-state currents (3 pages) ................. 020103(R) Jordan M. Horowitz and Todd R. Gingrich Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses (5 pages) .................................................................................... 020104(R) Edan Lerner and Eran Bouchbinder Charge diffusion in the one-dimensional Hubbard model (5 pages) ........................................
    [Show full text]
  • Full List of Publications
    PUBLICATIONS Marcel Ausloos School of Business, University of Leicester, Brookfield, Leicester, LE2 1RQ, UK e-mail address: [email protected] April 3, 2020 URL: http://www2.le.ac.uk/departments/management/people/professor- marcel-ausloos 1 Edited books/proceedings • MAGNETIC PHASE TRANSITIONS, Proceedings of a Workshop at the Ettore Majorana Centre, Erice, Italy, July 1-13, 1983. Editors: M. Ausloos and R.J. Elliott, Springer Series in Solid State Sciences, vol. 48, 1983, 103 figures, VII, 269 pages. ASIN: 0-3871-2842-5 • FLUCTUATION PHENOMENA IN HIGH TEMPERATURE SUPER- CONDUCTORS, Proceedings of a NATO Advanced Research Work- shop at the International Center for Theoretical Physics, Trieste, Italy, Aug. 5-9, 1996. Editors: M. Ausloos and A. A. Varlamov, in NATO ASI Partnership Sub-Series 3: High Technology -vol. 32, Kluwer, Dor- drecht, 1997, xi, 456 pages. ISBN: 0-7923-4575-4 • SYMMETRY AND PAIRING IN SUPERCONDUCTORS, Proceed- ings of a NATO Advanced Research Workshop, Yalta, Ukraine, April 29-May 2, 1999. Editors: M. Ausloos and S. Kruchinin, in NATO ASI Partnership Sub-Series 3: High Technology-vol 63, Kluwer, Dordrecht, 1999, xi, 410 pages. ISBN: 0-7923-5520-2 • NANO-CRYSTALLINE AND THIN FILM MAGNETIC OXIDES, Pro- ceedings of a NATO Advanced Research Workshop, Sozopol, Bulgaria, Sept. 27-Oct. 3, 1999. Editors: I. Nedkov and M. Ausloos, in NATO ASI Partnership Sub-Series 3: High Technology-vol. 72, Kluwer, Dor- drecht, 1999, xv, 380 pages. ISBN: 0-7923-5872-4 • WHEN MATERIALS MATTER. ANALYZING, PREDICTING AND PREVENTING DISASTERS, E-Proceedings of a Materials Research Society Spring Meeting Symposium, San Francisco, CA, April 2000.
    [Show full text]
  • Arxiv:2003.11244V1 [Cond-Mat.Stat-Mech] 25 Mar 2020 1 2 Tensor Networks
    acta physica slovaca vol. 67 No. 2 & 3, 1 – 121 TENSOR NETWORKS: PHASE TRANSITION PHENOMENA ON HYPERBOLIC AND FRACTAL GEOMETRIES Jozef Genzor a, Tomotoshi Nishino a, Andrej Gendiar b;1 aDepartment of Physics, Graduate School of Science, Kobe University Kobe 657-8501, Japan bInstitute of Physics, Slovak Academy of Sciences, Dubravsk´ a´ cesta 9 SK-845 11 Bratislava, Slovakia One of the challenging problems in the condensed matter physics is to understand the quan- tum many-body systems, especially, their physical mechanisms behind. Since there are only a few complete analytical solutions of these systems, several numerical simulation methods have been proposed in recent years. Amongst all of them, the Tensor Network algorithms have become increasingly popular in recent years, especially for their adaptability to simulate strongly correlated systems. The current work focuses on the generalization of such Tensor- Network-based algorithms, which are sufficiently robust to describe critical phenomena and phase transitions of multistate spin Hamiltonians in the thermodynamic limit. Therefore, one has to deal with systems of infinitely many interacting spin particles. For this purpose, we have chosen two algorithms: the Corner Transfer Matrix Renormalization Group and the Higher-Order Tensor Renormalization Group. The ground state of those multistate spin systems in the thermodynamic equilibrium is constructed in terms of a tensor product state Ansatz in both of the algorithms. The main aim of this work is to generalize the idea be- hind these two algorithms in order to be able to calculate the thermodynamic properties of non-Euclidean geometries. In particular, the tensor product state algorithms of hyperbolic ge- ometries with negative Gaussian curvatures as well as fractal geometries will be theoretically analyzed followed by extensive numerical simulations of the multistate spin models.
    [Show full text]
  • Studi Metodologiczne 39.Pdf
    STUDIA METODOLOGICZNE REDAKCJA Paweł Zeidler (redaktor naczelny) Tomasz Rzepiński (sekretarz redakcji) Roman Kubicki Jacek Sójka Andrzej Wiśniewski Wojciech Wrzosek RADA NAUKOWA Piotr Bołtuć (University of Illinois) Jerzy Brzeziński (UAM, Poznań) Małgorzata Czarnocka (IFiS PAN, Warszawa) Adam Grobler (Uniwersytet Opolski) Ryszard Grygorczyk (University of Montreal) Elżbieta Kałuszyńska (UWM, Olsztyn) Krzysztof Łastowski (UAM, Poznań) Sławomir Magala (Rotterdam School of Management, Erasmus University, Rotterdam) Anna Pałubicka (UAM, Poznań) Jan Such (UAM, Poznań) Ryszard Wójcicki (PAN, Warszawa) REDAKTORZY TEMATYCZNI Jarosław Boruszewski Krzysztof Nowak-Posadzy ADRES REDAKCJI Wydział Filozoficzny UAM ul. Szamarzewskiego 89C 60-568 Poznań e-mail: [email protected]; [email protected] Strona internetowa czasopisma: http://www.studiametodologiczne.amu.edu.pl Wydanie drukowane jest podstawową wersją czasopisma UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU STUDIA METODOLOGICZNE DISSERTATIONES METHODOLOGICAE 39 Issue on Culture(s) of Modelling in Science(s) POZNAŃ 2019 Publikacja dofinansowana ze środków grantu nr 0266/NPRH/H2b/83/2016 oraz przez Instytut Filozofii UAM i Wydział Nauk Społecznych UAM © Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydawnictwo Naukowe UAM, Poznań 2019 Komputerowe opracowanie okładki: K. & S. Szurpit Redaktor: Bożena Kapusta Redaktor techniczny: Elżbieta Rygielska Łamanie komputerowe: Reginaldo Cammarano ISSN 0039-324X WYDAWNICTWO NAUKOWE UNIWERSYTETU IM. ADAMA MICKIEWICZA W POZNANIU 61-701 POZNAŃ, UL. A. FREDRY 10 www.press.amu.edu.pl Sekretariat: tel. 61 829 46 46, faks 61 829 46 47, e-mail: [email protected] Dział sprzedaży: tel. 61 829 46 40, e-mail: [email protected] Wydanie I. Ark. wyd. 18,50. Ark. druk. 18,50 DRUK I OPRAWA: VOLUMINA.PL DANIEL KRZANOWSKI, SZCZECIN, UL. KS. WITOLDA 7–9 STUDIA METODOLOGICZNE NR 39 • 2019 Contents Foreword: Culture(s) of Modelling in Science(s) ......................................................
    [Show full text]
  • Statistical Physics of Coevolving Networks
    UNIVERSITY OF WARSAW DOCTORAL THESIS Statistical physics of coevolving networks Author: Supervisor: Tomasz RADUCHA prof. dr hab. Ryszard KUTNER Assistant supervisor: dr Tomasz GUBIEC A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Physics Warsaw – Palma de Mallorca, May 2020 iii List of publications A significant part of results presented in this thesis has been published in the following articles: • T. Raducha and T. Gubiec, Coevolving complex networks in the model of so- cial interactions, Physica A: Statistical Mechanics and its Applications vol. 471: 427-435, 2017 • T. Raducha and T. Gubiec, Predicting language diversity with complex net- works, PloS one, vol. 13.4: e0196593, 2018 • T. Raducha, M. Wili´nski,T. Gubiec, and H. E. Stanley, Statistical mechan- ics of a coevolving spin system, Physical Review E, vol. 98.3: 030301, 2018 • T. Raducha, B. Min, and M. San Miguel, Coevolving nonlinear voter model with triadic closure, Europhysics Letters, vol. 124.3: 30001, 2018 • T. Raducha and M. San Miguel, Emergence of complex structures from non- linear interactions and noise in coevolving networks, arXiv:2004.06515, 2020 v “You don’t need something more to get something more.” Murray Gell-Mann vii Abstract UNIVERSITY OF WARSAW Faculty of Physics Doctor of Philosophy Statistical physics of coevolving networks by Tomasz RADUCHA Statistical physics has introduced key concepts for analyzing systems con- sisting of a large number of elements. It showed that problems seemingly out of reach for quantitative description can be actually treated in a strict manner. The essential achievement was a shift in the notion of prediction from deterministic to stochastic ground.
    [Show full text]
  • Comparison of Mathematical Models of Opinion Dynamics AURORA BASINSKI-FERRIS Integrated Science Program, Class of 2018, Mcmaster University
    MATHEMATICAL PAPER Comparison of Mathematical Models of Opinion Dynamics AURORA BASINSKI-FERRIS Integrated Science Program, Class of 2018, McMaster University SUMMARYSUMMARY SociophysicsSociophysics isis anan emergingemerging interdisciplinary interdisciplinary researchresearch fieldfield thatthat usesuses theoriestheories andand methodsmethods developeddeveloped byby physicistsphysicists asas aa modellingmodelling frameworkframework forfor variousvarious socialsocial sciencescience phenomena.phenomena. ThisThis paperpaper presentspresents thethe SznajdSznajd model,model, whichwhich isis thethe basisbasis ofof oneone ofof thethe simplestsimplest yetyet mostmost efficientefficient methodsmethods toto predictpredict thethe collectivecollective humanhuman behaviourbehaviour inin aa binarybinary opinionopinion society.society. ThisThis modelmodel isis aa variationvariation ofof thethe IsingIsing modelmodel –– aa mathematicalmathematical modelmodel usedused inin statisticalstatistical mechanicsmechanics whenwhen studyingstudying thethe ferromagneticferromagnetic phasephase transitionstransitions forfor thethe magnetizatimagnetizationon ofof aa systemsystem basedbased onon thethe interactioninteraction betweenbetween thethe neighbouringneighbouring atomicatomic spinsspins ofof thethe system.system. InIn both the Ising model and the Sznajd model, individuals are only allowed to have a binary both the Ising model and the Sznajd model, individuals are only allowed to have a binary Mathematics opinionopinion –– yesyes (spin(spin up)up) oror nono
    [Show full text]
  • Is Independence Necessary for a Discontinuous Phase Transition Within the Q-Voter Model?
    entropy Article Is Independence Necessary for a Discontinuous Phase Transition within the q-Voter Model? Angelika Abramiuk 1,2, Jakub Pawłowski 2 and Katarzyna Sznajd-Weron 2,* 1 Department of Applied Mathematics, Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; [email protected] 2 Department of Theoretical Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; [email protected] * Correspondence: [email protected] Received: 20 April 2019; Accepted: 20 May 2019; Published: 23 May 2019 Abstract: We ask a question about the possibility of a discontinuous phase transition and the related social hysteresis within the q-voter model with anticonformity. Previously, it was claimed that within the q-voter model the social hysteresis can emerge only because of an independent behavior, and for the model with anticonformity only continuous phase transitions are possible. However, this claim was derived from the model, in which the size of the influence group needed for the conformity was the same as the size of the group needed for the anticonformity. Here, we abandon this assumption on the equality of two types of social response and introduce the generalized model, in which the size of the influence group needed for the conformity qc and the size of the influence group needed for the anticonformity qa are independent variables and in general qc 6= qa. We investigate the model on the complete graph, similarly as it was done for the original q-voter model with anticonformity, and we show that such a generalized model displays both types of phase transitions depending on parameters qc and qa.
    [Show full text]