Statistical Physics of Coevolving Networks

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Physics of Coevolving Networks UNIVERSITY OF WARSAW DOCTORAL THESIS Statistical physics of coevolving networks Author: Supervisor: Tomasz RADUCHA prof. dr hab. Ryszard KUTNER Assistant supervisor: dr Tomasz GUBIEC A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Physics Warsaw – Palma de Mallorca, May 2020 iii List of publications A significant part of results presented in this thesis has been published in the following articles: • T. Raducha and T. Gubiec, Coevolving complex networks in the model of so- cial interactions, Physica A: Statistical Mechanics and its Applications vol. 471: 427-435, 2017 • T. Raducha and T. Gubiec, Predicting language diversity with complex net- works, PloS one, vol. 13.4: e0196593, 2018 • T. Raducha, M. Wili´nski,T. Gubiec, and H. E. Stanley, Statistical mechan- ics of a coevolving spin system, Physical Review E, vol. 98.3: 030301, 2018 • T. Raducha, B. Min, and M. San Miguel, Coevolving nonlinear voter model with triadic closure, Europhysics Letters, vol. 124.3: 30001, 2018 • T. Raducha and M. San Miguel, Emergence of complex structures from non- linear interactions and noise in coevolving networks, arXiv:2004.06515, 2020 v “You don’t need something more to get something more.” Murray Gell-Mann vii Abstract UNIVERSITY OF WARSAW Faculty of Physics Doctor of Philosophy Statistical physics of coevolving networks by Tomasz RADUCHA Statistical physics has introduced key concepts for analyzing systems con- sisting of a large number of elements. It showed that problems seemingly out of reach for quantitative description can be actually treated in a strict manner. The essential achievement was a shift in the notion of prediction from deterministic to stochastic ground. The approach of statistical physics has been successfully applied in numerous branches of science, of which the most important one for this thesis is the theory of complex systems. Networks create the core of complexity science. When a studied object contains many interacting parts and the pattern of interaction is not trivial, networks are the most natural tool to describe it. Some recent publications even identify complex systems as coevolving multilayer networks. One can argue with such a rigorous definition, but the coevolution of structure and state on its own has proved to be a crucial feature in complex systems. Studies on the coevolution’s impact on the behavior of particular models are relatively new. Moreover, a general theory of coevolving networks is so far out of reach. In order to get closer to universal laws we need to under- stand single problems first. Thus, I seek to explore the effects of coevolution in different models, both analytic (or equilibrium) and algorithmic (or non- equilibrium) ones. The thesis explores outcomes of introducing coevolving mechanisms in three models, namely the voter model, the Axelrod model and the Ising model. The first one is a reference point in the quantitative description of social systems, however it was successfully applied also in physics, biol- ogy, and finance. The voter model is extended in this work to integrate coevolution, triadic closure, nonlinear interactions, and noise. The Axelrod model has a purely social interpretation - it’s a model of social interactions or dissemination of culture. It is studied in the thesis how different types of rewiring, during the coevolution of the network’s structure and state of the nodes, influence the final topology of the system. Results obtained using the Axelrod model are compared with empirical data. The model was improved for better agreement with the empirically observed scaling behavior. No- tably, previous extensions of the model didn’t resolve the contradiction with viii the empirical data, which is solved here. The Ising model was originally constructed to explain ferromagnetism. However, it gained much bigger at- tention than the first application might have suggested. It became a reference point for network models and has been studied in many variations, not only empirically implied but also theoretically thrilling. In this abstract context, the spin dynamics from the Ising model is combined in the thesis with topo- logical traits of the nodes to analyze the outcome of a coevolving equilibrium model with structural traits included in the Hamiltonian. In all models studied throughout this thesis new results are obtained. The most important ones are the following. In the nonlinear coevolving voter model with triadic closure a new shattered phase is observed together with high values of the clustering coefficient. When the noise is included two new phases are obtained. One of these phases persists in the thermody- namic limit. The other one contains topological communities driven by state of the nodes, what was not observed before for the coevolving voter model with noise. Additionally, a new analytical description of the model is pro- posed. As this model is the most general one, it contains previously studied limit cases like the coevolving voter model or the nonlinear coevolving voter model. Similarly, in the Axelrod model high clustering is generated, as well as a power-law degree distribution. But most importantly, due to the imple- mented changes the model displays a new scaling of the number of domains with the system size. This result, in contrast to results obtained with the orig- inal model, is consistent with empirical data. Finally, an equilibrium model of coevolving networks is proposed for the first time. More precisely, the Hamiltonian of the model includes not only states of the nodes and their mutual interactions, but also degree of the nodes, as a local topological trait. A rich phase diagram obtained in this way is described analytically. The ob- served configurations coincide with those obtained in non-equilibrium mod- els, suggesting a possibility of their equilibrium description. The results of the thesis provide a new insight into the behavior of coe- volving networks from a statistical physics perspective. The theory of com- plex systems is not yet complete and new building blocks are being discov- ered. Hopefully, after analyzing and understanding enough separate parts a more universal theory will emerge. The content of this thesis contributes to the development of such theory by providing several new building blocks. Above all, these blocks take into account coevolution of network’s structure and state, as one of the crucial properties of complex systems is their adap- tive behavior. The obtained results surely represent advancement in partic- ular models that were studied within the scope of the thesis, but can be also seen as another step towards the theory of complex systems. ix Acknowledgements I would like to thank my supervisor prof. Ryszard Kutner for the support and advice throughout my PhD studies. I am also grateful for his patience in reading and correcting this thesis. I am grateful to my assistant supervisor dr Tomasz Gubiec with whom I conducted my first scientific research. I appreciated his company and sense of humor in any circumstances. I am in debt to my friends in this amazing journey – Mateusz Wili´nski and Jarosław Klamut. I would like to thank Mateusz for the encouragement without which I would probably not finish my PhD and Jarek for invaluable help at the faculty whenever I was abroad. I would like to thank prof. Maxi San Miguel for giving me an opportunity to work with him. Results of this work create a significant part of this thesis. Finally, I would like to thank all people who I had the pleasure to inter- act with during my scientific work. Intellectual stimulus from such interac- tions built up my scientific awareness and influenced the shape of this thesis. Surely, a big part of the satisfaction from scientific work comes from the pos- sibility to collaborate with wise people. xi Contents List of publications iii Abstract vii Acknowledgements ix List of Abbreviations xiii List of Symbols xv 1 Introduction1 1.1 Physics of networks.........................1 1.1.1 The concept of network..................1 1.1.2 Empirical examples.....................3 1.1.3 Foundations of theory...................5 1.2 Outline of this work.........................9 2 Basics of network science 11 2.1 Graph theory............................ 11 2.1.1 Coefficients and measures................. 12 2.1.2 Types of graphs....................... 16 2.2 Fundamental models........................ 21 2.2.1 Random networks..................... 22 2.2.2 Exponential random graphs................ 25 2.2.3 Small-world networks................... 28 2.2.4 Scale-free networks..................... 31 2.2.5 Constant rewiring..................... 35 2.3 Coevolving networks........................ 37 3 The voter model 41 3.1 Static network............................ 42 3.1.1 Homogeneous case..................... 42 3.1.2 Complex networks..................... 47 3.2 Coevolving voter model...................... 50 3.3 Nonlinear coevolving voter model................ 55 3.3.1 Global rewiring....................... 55 3.3.2 Local rewiring........................ 61 3.4 Nonlinear coevolving voter model with noise.......... 67 xii 4 The Axelrod model 83 4.1 Static network............................ 84 4.1.1 Original definition..................... 84 4.1.2 Selected extensions..................... 91 4.2 Coevolving Axelrod model.................... 94 4.2.1 Random rewiring...................... 94 4.2.2 Preferential attachment and triadic closure....... 98 4.3 A solution of the problem with empirical data........
Recommended publications
  • Statistical Physics of Social Dynamics
    Statistical physics of social dynamics Claudio Castellano∗ SMC, INFM-CNR and Dipartimento di Fisica, “Sapienza” Universit`adi Roma, Piazzale A. Moro 2, 00185 Roma I-ITALY Santo Fortunato† Complex Networks Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133, Torino, I-ITALY Vittorio Loreto‡ Dipartimento di Fisica, “Sapienza” Universit`adi Roma and SMC, INFM-CNR, Piazzale A. Moro 2, 00185 Roma I-ITALY and Complex Networks Lagrange Laboratory, ISI Foundation, Viale S. Severo 65, 10133, Torino, I-ITALY Statistical physics has proven to be a very fruitful framework to describe phenomena outside the realm of traditional physics. The last years have witnessed the attempt by physicists to study collective phenomena emerging from the interactions of individuals as elementary units in social structures. Here we review the state of the art by focusing on a wide list of topics ranging from opinion, cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, social spreading. We highlight the connections between these problems and other, more traditional, topics of statistical physics. We also emphasize the comparison of model results with empirical data from social systems. Contents 1. The Naming Game 30 2. Symmetry breaking: a controlled case 31 I. INTRODUCTION 2 3. The role of the interaction topology 32 C. Other models 33 II. GENERAL FRAMEWORK: CONCEPTS AND TOOLS 3 D. Language competition 33 A. Order and disorder: the Ising paradigm 4 1. Macroscopic models 34 B. Role of topology 5 2. Microscopic models 35 C. Dynamical systems approach 7 D. Agent-based modeling 7 VI. CROWD BEHAVIOR 35 A. Flocking 36 III.
    [Show full text]
  • Interacting Particle Systems for Opinion Dynamics: the Deffuant Model and Some Generalizations
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Interacting particle systems for opinion dynamics: the Deffuant model and some generalizations TIMO HIRSCHER Division of Mathematics Department of Mathematical Sciences CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG Göteborg, Sweden 2016 Interacting particle systems for opinion dynamics: the Deffuant model and some generalizations Timo Hirscher ISBN 978-91-7597-328-9 c Timo Hirscher, 2016. Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 4009 ISSN 0346-718X Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg 412 96 Göteborg Sweden Phone: +46 (0)31-772 1000 Printed in Göteborg, Sweden 2016 Interacting particle systems for opinion dynamics: the Deffuant model and some generalizations Timo Hirscher Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Abstract In the field of sociophysics, various concepts and techniques taken from statisti- cal physics are used to model and investigate some social and political behavior of a large group of humans: their social network is given by a simple graph and neighboring individuals meet and interact in pairs or small groups. Although most of the established models feature rather simple microscopic interaction rules, the macroscopic long-time behavior of the collective often eludes an ana- lytical treatment due to the complexity, which stems from the interaction of the large system as a whole. An important class of models in the area of opinion dynamics is the one based on the principle of bounded confidence: Individuals hold and share opin- ions with others in random encounters. Their mutual influence will lead to up- dated opinions approaching a compromise, but only if the distance of opinions was not too large in the first place.
    [Show full text]
  • The Transformation of Quantity Into Quality: Critical Mass in the Formation of Customary International Law
    WORSTER_JCI(2).DOCX (DO NOT DELETE) 4/23/13 12:16 PM THE TRANSFORMATION OF QUANTITY INTO QUALITY: CRITICAL MASS IN THE FORMATION OF CUSTOMARY INTERNATIONAL LAW William Thomas Worster* I. INTRODUCTION ................................................................................... 2 A. Application of Sociological Studies to International Law .......... 6 II. CUSTOMARY INTERNATIONAL LAW .................................................... 8 III. CRITICAL MASS ................................................................................. 10 A. Equilibrium States ..................................................................... 11 B. Phase Transitions ....................................................................... 12 C. Phase Transitions in Social Phenomena ................................... 14 D. Phase Transition Points ............................................................. 16 E. Phase Transitions in Customary International Law ............... 20 IV. THEORIES OF COLLECTIVE BEHAVIOR .............................................. 24 A. Microlevel Theories .................................................................... 25 B. Macrolevel Theories ................................................................... 27 C. Synthesis and Agent-Based Modeling ....................................... 29 V. Using Critical Mass to Understand Customary International Law .................................................................... 35 A. Content of the Norm ..................................................................
    [Show full text]
  • Physica a Econophysics and Sociophysics
    Physica A 516 (2019) 240–253 Contents lists available at ScienceDirect Physica A journal homepage: www.elsevier.com/locate/physa Extended editorial Econophysics and sociophysics: Their milestones & challengesI ∗ Ryszard Kutner a, ,1, Marcel Ausloos b,2, Dariusz Grech c,2, Tiziana Di Matteo d,e,f,2, Christophe Schinckus g,2, H. Eugene Stanley h,3 a Faculty of Physics, University of Warsaw, Pasteur 5, PL-02093 Warszawa, Poland b School of Business, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom c Institute of Theoretical Physics, University of Wrocªaw, Maks Born sq. 9, PL-50-204 Wrocªaw, Poland d Department of Mathematics – King's College London, Strand, London WC2R 2LS, United Kingdom e Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, United Kingdom f Complexity Science Hub Vienna, Josefstaedter Strasse 39, A-1080 Vienna, Austria g School of Business & Management, Department of Economics & Finance, RMIT Saigon South, Viet Nam h Center for Polymer Studies and Physics Department, Boston University, Boston, USA article info a b s t r a c t Article history: In this review article we present some of achievements of econophysics and sociophysics Available online xxxx which appear to us the most significant. We briefly explain what their roles are in building of econo- and sociophysics research fields. We point to milestones of econophysics and sociophysics facing to challenges and open problems. ' 2018 Elsevier B.V. All rights reserved. 1. Introduction As the name suggests, econophysics and sociophysics are hybrid fields that can roughly be defined as quantitative approaches using ideas, models, conceptual and computational methods of statistical physics applied to socio-economic phenomena.
    [Show full text]
  • How to Introduce Temperature to the 1 Dimensional Sznajd Model
    How to Introduce Temperature to the 1 Dimensional Sznajd Model? Grzegorz Kondrat Institute of Theoretical Physics, University of Wroc law, pl. Maxa Borna 9, 50-204 Wroc law, Poland Abstract We investigate the possibility of introducing the temperature to the one dimensional Sznajd model and propose a natural extension of the original model by including other types of interactions. We characterise different kinds of equilibria into which the extended system can evolve. We deter- mine the consequences of fulfilling the detailed balance condition and we prove that in some cases it is equivalent to microscopic reversibility. We propose a simple definition of the temperature-like quantity that measures the size of fluctuations in the system at equilibrium. The complete list of zero-temperature degenerated cases is provided. Keywords: equilibrium, temperature, detailed balance, opinion dynamics PACS: 64.60.De, 05.50.+q, 64.70.qd arXiv:0912.1466v2 [cond-mat.stat-mech] 1 Mar 2010 Email address: [email protected] (Grzegorz Kondrat) Preprint submitted to Elsevier November 7, 2018 1. Introduction The Sznajd model was originally introduced in [1] in order to describe the mechanisms of opinion change in the society. The basic element of this approach is the “social validation”, a social phenomenon relying on the fact that usually two people sharing common opinion have much bigger influence on other people in a group than separate individuals. The model itself and its modifications have found numerous applications in sociophysics (see [2] for a recent review), marketing [3, 4], finance [5] and politics [6, 7, 8]. Apart from interest in social science, finance and politics, it also brings some new ideas to physics, as noted by Slanina and Lavicka [9].
    [Show full text]
  • Table of Contents (Online, Part 1)
    TM PERIODICALS PHYSICALREVIEWE Postmaster send address changes to: For editorial and subscription correspondence, please see inside front cover APS Subscription Services (ISSN: 2470-0045) P.O. Box 41 Annapolis Junction, MD 20701 THIRD SERIES, VOLUME 96, NUMBER 2 CONTENTS AUGUST 2017 PARTS A AND B The Table of Contents is a total listing of Parts A and B. Part A consists of pages 020001–022323, and Part B pages 022401–029902(E). PART A EDITORIALS AND ANNOUNCEMENTS Editorial: Materials Research in the Physical Review Journals (1 page) ..................................... 020001 RAPID COMMUNICATIONS Statistical Physics Period proliferation in periodic states in cyclically sheared jammed solids (5 pages) .......................... 020101(R) Maxim O. Lavrentovich, Andrea J. Liu, and Sidney R. Nagel Exact short-time height distribution in the one-dimensional Kardar-Parisi-Zhang equation with Brownian initial condition (6 pages) ............................................................................ 020102(R) Alexandre Krajenbrink and Pierre Le Doussal Proof of the finite-time thermodynamic uncertainty relation for steady-state currents (3 pages) ................. 020103(R) Jordan M. Horowitz and Todd R. Gingrich Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses (5 pages) .................................................................................... 020104(R) Edan Lerner and Eran Bouchbinder Charge diffusion in the one-dimensional Hubbard model (5 pages) ........................................
    [Show full text]
  • Full List of Publications
    PUBLICATIONS Marcel Ausloos School of Business, University of Leicester, Brookfield, Leicester, LE2 1RQ, UK e-mail address: [email protected] April 3, 2020 URL: http://www2.le.ac.uk/departments/management/people/professor- marcel-ausloos 1 Edited books/proceedings • MAGNETIC PHASE TRANSITIONS, Proceedings of a Workshop at the Ettore Majorana Centre, Erice, Italy, July 1-13, 1983. Editors: M. Ausloos and R.J. Elliott, Springer Series in Solid State Sciences, vol. 48, 1983, 103 figures, VII, 269 pages. ASIN: 0-3871-2842-5 • FLUCTUATION PHENOMENA IN HIGH TEMPERATURE SUPER- CONDUCTORS, Proceedings of a NATO Advanced Research Work- shop at the International Center for Theoretical Physics, Trieste, Italy, Aug. 5-9, 1996. Editors: M. Ausloos and A. A. Varlamov, in NATO ASI Partnership Sub-Series 3: High Technology -vol. 32, Kluwer, Dor- drecht, 1997, xi, 456 pages. ISBN: 0-7923-4575-4 • SYMMETRY AND PAIRING IN SUPERCONDUCTORS, Proceed- ings of a NATO Advanced Research Workshop, Yalta, Ukraine, April 29-May 2, 1999. Editors: M. Ausloos and S. Kruchinin, in NATO ASI Partnership Sub-Series 3: High Technology-vol 63, Kluwer, Dordrecht, 1999, xi, 410 pages. ISBN: 0-7923-5520-2 • NANO-CRYSTALLINE AND THIN FILM MAGNETIC OXIDES, Pro- ceedings of a NATO Advanced Research Workshop, Sozopol, Bulgaria, Sept. 27-Oct. 3, 1999. Editors: I. Nedkov and M. Ausloos, in NATO ASI Partnership Sub-Series 3: High Technology-vol. 72, Kluwer, Dor- drecht, 1999, xv, 380 pages. ISBN: 0-7923-5872-4 • WHEN MATERIALS MATTER. ANALYZING, PREDICTING AND PREVENTING DISASTERS, E-Proceedings of a Materials Research Society Spring Meeting Symposium, San Francisco, CA, April 2000.
    [Show full text]
  • Arxiv:2003.11244V1 [Cond-Mat.Stat-Mech] 25 Mar 2020 1 2 Tensor Networks
    acta physica slovaca vol. 67 No. 2 & 3, 1 – 121 TENSOR NETWORKS: PHASE TRANSITION PHENOMENA ON HYPERBOLIC AND FRACTAL GEOMETRIES Jozef Genzor a, Tomotoshi Nishino a, Andrej Gendiar b;1 aDepartment of Physics, Graduate School of Science, Kobe University Kobe 657-8501, Japan bInstitute of Physics, Slovak Academy of Sciences, Dubravsk´ a´ cesta 9 SK-845 11 Bratislava, Slovakia One of the challenging problems in the condensed matter physics is to understand the quan- tum many-body systems, especially, their physical mechanisms behind. Since there are only a few complete analytical solutions of these systems, several numerical simulation methods have been proposed in recent years. Amongst all of them, the Tensor Network algorithms have become increasingly popular in recent years, especially for their adaptability to simulate strongly correlated systems. The current work focuses on the generalization of such Tensor- Network-based algorithms, which are sufficiently robust to describe critical phenomena and phase transitions of multistate spin Hamiltonians in the thermodynamic limit. Therefore, one has to deal with systems of infinitely many interacting spin particles. For this purpose, we have chosen two algorithms: the Corner Transfer Matrix Renormalization Group and the Higher-Order Tensor Renormalization Group. The ground state of those multistate spin systems in the thermodynamic equilibrium is constructed in terms of a tensor product state Ansatz in both of the algorithms. The main aim of this work is to generalize the idea be- hind these two algorithms in order to be able to calculate the thermodynamic properties of non-Euclidean geometries. In particular, the tensor product state algorithms of hyperbolic ge- ometries with negative Gaussian curvatures as well as fractal geometries will be theoretically analyzed followed by extensive numerical simulations of the multistate spin models.
    [Show full text]
  • Studi Metodologiczne 39.Pdf
    STUDIA METODOLOGICZNE REDAKCJA Paweł Zeidler (redaktor naczelny) Tomasz Rzepiński (sekretarz redakcji) Roman Kubicki Jacek Sójka Andrzej Wiśniewski Wojciech Wrzosek RADA NAUKOWA Piotr Bołtuć (University of Illinois) Jerzy Brzeziński (UAM, Poznań) Małgorzata Czarnocka (IFiS PAN, Warszawa) Adam Grobler (Uniwersytet Opolski) Ryszard Grygorczyk (University of Montreal) Elżbieta Kałuszyńska (UWM, Olsztyn) Krzysztof Łastowski (UAM, Poznań) Sławomir Magala (Rotterdam School of Management, Erasmus University, Rotterdam) Anna Pałubicka (UAM, Poznań) Jan Such (UAM, Poznań) Ryszard Wójcicki (PAN, Warszawa) REDAKTORZY TEMATYCZNI Jarosław Boruszewski Krzysztof Nowak-Posadzy ADRES REDAKCJI Wydział Filozoficzny UAM ul. Szamarzewskiego 89C 60-568 Poznań e-mail: [email protected]; [email protected] Strona internetowa czasopisma: http://www.studiametodologiczne.amu.edu.pl Wydanie drukowane jest podstawową wersją czasopisma UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU STUDIA METODOLOGICZNE DISSERTATIONES METHODOLOGICAE 39 Issue on Culture(s) of Modelling in Science(s) POZNAŃ 2019 Publikacja dofinansowana ze środków grantu nr 0266/NPRH/H2b/83/2016 oraz przez Instytut Filozofii UAM i Wydział Nauk Społecznych UAM © Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydawnictwo Naukowe UAM, Poznań 2019 Komputerowe opracowanie okładki: K. & S. Szurpit Redaktor: Bożena Kapusta Redaktor techniczny: Elżbieta Rygielska Łamanie komputerowe: Reginaldo Cammarano ISSN 0039-324X WYDAWNICTWO NAUKOWE UNIWERSYTETU IM. ADAMA MICKIEWICZA W POZNANIU 61-701 POZNAŃ, UL. A. FREDRY 10 www.press.amu.edu.pl Sekretariat: tel. 61 829 46 46, faks 61 829 46 47, e-mail: [email protected] Dział sprzedaży: tel. 61 829 46 40, e-mail: [email protected] Wydanie I. Ark. wyd. 18,50. Ark. druk. 18,50 DRUK I OPRAWA: VOLUMINA.PL DANIEL KRZANOWSKI, SZCZECIN, UL. KS. WITOLDA 7–9 STUDIA METODOLOGICZNE NR 39 • 2019 Contents Foreword: Culture(s) of Modelling in Science(s) ......................................................
    [Show full text]
  • Comparison of Mathematical Models of Opinion Dynamics AURORA BASINSKI-FERRIS Integrated Science Program, Class of 2018, Mcmaster University
    MATHEMATICAL PAPER Comparison of Mathematical Models of Opinion Dynamics AURORA BASINSKI-FERRIS Integrated Science Program, Class of 2018, McMaster University SUMMARYSUMMARY SociophysicsSociophysics isis anan emergingemerging interdisciplinary interdisciplinary researchresearch fieldfield thatthat usesuses theoriestheories andand methodsmethods developeddeveloped byby physicistsphysicists asas aa modellingmodelling frameworkframework forfor variousvarious socialsocial sciencescience phenomena.phenomena. ThisThis paperpaper presentspresents thethe SznajdSznajd model,model, whichwhich isis thethe basisbasis ofof oneone ofof thethe simplestsimplest yetyet mostmost efficientefficient methodsmethods toto predictpredict thethe collectivecollective humanhuman behaviourbehaviour inin aa binarybinary opinionopinion society.society. ThisThis modelmodel isis aa variationvariation ofof thethe IsingIsing modelmodel –– aa mathematicalmathematical modelmodel usedused inin statisticalstatistical mechanicsmechanics whenwhen studyingstudying thethe ferromagneticferromagnetic phasephase transitionstransitions forfor thethe magnetizatimagnetizationon ofof aa systemsystem basedbased onon thethe interactioninteraction betweenbetween thethe neighbouringneighbouring atomicatomic spinsspins ofof thethe system.system. InIn both the Ising model and the Sznajd model, individuals are only allowed to have a binary both the Ising model and the Sznajd model, individuals are only allowed to have a binary Mathematics opinionopinion –– yesyes (spin(spin up)up) oror nono
    [Show full text]
  • Is Independence Necessary for a Discontinuous Phase Transition Within the Q-Voter Model?
    entropy Article Is Independence Necessary for a Discontinuous Phase Transition within the q-Voter Model? Angelika Abramiuk 1,2, Jakub Pawłowski 2 and Katarzyna Sznajd-Weron 2,* 1 Department of Applied Mathematics, Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; [email protected] 2 Department of Theoretical Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; [email protected] * Correspondence: [email protected] Received: 20 April 2019; Accepted: 20 May 2019; Published: 23 May 2019 Abstract: We ask a question about the possibility of a discontinuous phase transition and the related social hysteresis within the q-voter model with anticonformity. Previously, it was claimed that within the q-voter model the social hysteresis can emerge only because of an independent behavior, and for the model with anticonformity only continuous phase transitions are possible. However, this claim was derived from the model, in which the size of the influence group needed for the conformity was the same as the size of the group needed for the anticonformity. Here, we abandon this assumption on the equality of two types of social response and introduce the generalized model, in which the size of the influence group needed for the conformity qc and the size of the influence group needed for the anticonformity qa are independent variables and in general qc 6= qa. We investigate the model on the complete graph, similarly as it was done for the original q-voter model with anticonformity, and we show that such a generalized model displays both types of phase transitions depending on parameters qc and qa.
    [Show full text]
  • Lectures IV & V: Examples from the Physical Sciences and Sociology
    Outline Lectures IV & V: Examples from the Physical Sciences and Sociology Morten Hjorth-Jensen 1Department of Physics and Center of Mathematics for Applications University of Oslo, N-0316 Oslo, Norway 2Department of Physics and Astronomy, Michigan State University East Lansing, Michigan, USA January 28 - February 2 First National Winter School in eScience Lectures IV & V, January 30 Outline Outline 1 Repetition 2 Variational and Diffusion Monte Carlo 3 Modelling Phase Transition in Statistical Physics 4 Peer Pressure and Electoral Behavior First National Winter School in eScience Lectures IV & V, January 30 Outline Outline 1 Repetition 2 Variational and Diffusion Monte Carlo 3 Modelling Phase Transition in Statistical Physics 4 Peer Pressure and Electoral Behavior First National Winter School in eScience Lectures IV & V, January 30 Outline Outline 1 Repetition 2 Variational and Diffusion Monte Carlo 3 Modelling Phase Transition in Statistical Physics 4 Peer Pressure and Electoral Behavior First National Winter School in eScience Lectures IV & V, January 30 Outline Outline 1 Repetition 2 Variational and Diffusion Monte Carlo 3 Modelling Phase Transition in Statistical Physics 4 Peer Pressure and Electoral Behavior First National Winter School in eScience Lectures IV & V, January 30 Repetition QMC StatPhys Sociology ’Iacta Alea est’, the die is cast! Plan for the lectures 1 January 28: Introduction to Monte Carlo methods, probability distributions and Monte Carlo Integration. 2 January 29: Random numbers, Markov chains, diffusion and the Metropolis algorithm. 3 January 30: Applications in sociology, simulations of phase transitions in physics and quantum physics. 4 All material taken from my text on Computational Physics, see http://www.uio.no/studier/emner/matnat/ fys/FYS3150/h06/undervisningsmateriale/ LectureNotes/.
    [Show full text]