Russian Strategies in the Arctic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Northern Sea Route Cargo Flows and Infrastructure- Present State And
Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential By Claes Lykke Ragner FNI Report 13/2000 FRIDTJOF NANSENS INSTITUTT THE FRIDTJOF NANSEN INSTITUTE Tittel/Title Sider/Pages Northern Sea Route Cargo Flows and Infrastructure – Present 124 State and Future Potential Publikasjonstype/Publication Type Nummer/Number FNI Report 13/2000 Forfatter(e)/Author(s) ISBN Claes Lykke Ragner 82-7613-400-9 Program/Programme ISSN 0801-2431 Prosjekt/Project Sammendrag/Abstract The report assesses the Northern Sea Route’s commercial potential and economic importance, both as a transit route between Europe and Asia, and as an export route for oil, gas and other natural resources in the Russian Arctic. First, it conducts a survey of past and present Northern Sea Route (NSR) cargo flows. Then follow discussions of the route’s commercial potential as a transit route, as well as of its economic importance and relevance for each of the Russian Arctic regions. These discussions are summarized by estimates of what types and volumes of NSR cargoes that can realistically be expected in the period 2000-2015. This is then followed by a survey of the status quo of the NSR infrastructure (above all the ice-breakers, ice-class cargo vessels and ports), with estimates of its future capacity. Based on the estimated future NSR cargo potential, future NSR infrastructure requirements are calculated and compared with the estimated capacity in order to identify the main, future infrastructure bottlenecks for NSR operations. The information presented in the report is mainly compiled from data and research results that were published through the International Northern Sea Route Programme (INSROP) 1993-99, but considerable updates have been made using recent information, statistics and analyses from various sources. -
Canadian Arctic Through-Flow 2012 Cruise to Nares Strait
Canadian Arctic Through-flow 2012 Cruise to Nares Strait CCGS Henry Larsen August 2-17, 2012 Institute of Ocean Sciences Cruise 2012-20 Humfrey Melling – Chief Scientist Fisheries & Oceans Canada Collaborating Institutions: Institute of Ocean Sciences, University of Delaware, Oxford University, Danish Technical University, Scottish Association for Marine Science 1 Cover photo, courtesy of Jason Box: View looking south across the Petermann ice shelf towards Joe Island, Kennedy Channel and Ellesmere Island at the horizon. Note the small ice-shelf fragments in the foreground and cracks within the protruding lobe of the ice . The photograph taken in 2009, before the large ice islands calved from the shelf in August 2010 and again in July 2012. 2 Report on the Scientific Cruise of CCGS Henry Larsen, August 2012 Canadian Arctic Through-flow CCGS Henry Larsen in Nares Strait August 2-17, 2012 Overview The Canadian Arctic Through-flow (CAT) study embodies ten years’ effort within Canada and the international community to measure flows of seawater and ice through the Canadian Archipelago, between the Arctic and the Atlantic Oceans. CATs is the outgrowth of a pilot effort, the Arctic Canada Watch, established in 1997. Moorings enabling year-round measurements were first placed in western Lancaster Sound and Cardigan Strait in 1998. These carried instruments to measure current, temperature and salinity and utilized innovations to address the unique challenges of observing: 1) current direction near the geomagnetic pole; 2) salinity within the hazardous 30-m zone beneath drifting ice pack. These early installations have been maintained and augmented since 1998. In 2003, a large array of instruments was installed across the third principal path for Canadian Arctic through-flow, Nares Strait. -
Industrialization of Housing Construction As a Tool for Sustainable Settlement and Rural Areas Development
E3S Web of Conferences 164, 07010 (2020) https://doi.org/10.1051/e3sconf /202016407010 TPACEE-2019 Industrialization of housing construction as a tool for sustainable settlement and rural areas development Olga Popova1,*, Polina Antufieva1 , Vladimir Grebenshchikov2 and Mariya Balmashnova2 1Northern (Arctic) Federal University named after M.V. Lomonosov, 163002, Severnaya Dvina Emb., 17, Arkhangelsk, Russia 2 Moscow State University of Civil Engineering, 26, Yaroslavskoeshosse, 129337, Moscow, Russia Abstract. The development of the construction industry, conducting construction in accordance with standard projects, and transforming the construction materials industry in hard-to-reach and sparsely populated areas will make significant progress in solving the housing problem. Industrialization of housing construction is a catalyst for strong growth of the region’s economy and the quality of life of citizens. The purpose of this study is to develop a methodology for assessing the level of industrialization of the territory’s construction complex and its development potential for increasing the volume of low-rise housing stock. Research tasks: 1) assessment of the need to develop housing construction, including low-rise housing, on a particular territory; 2) development of a methodology for calculating the level of industrialization of construction in the area under consideration to determine the possibility of developing low-rise housing construction in this area in the proposed way; 3) approbation of the method using the example of rural areas of the Arkhangelsk region. It was revealed that the districts of the Arkhangelsk region have medium and low levels of industrialization. The districts that are most in need of an increase in the rate of housing construction have been identified. -
Studying Changes of Ice Coasts in the European Arctic
Geo-Mar Lett (2005) 25: 153–166 DOI 10.1007/s00367-004-0197-7 ORIGINAL Aleksey I. Sharov Studying changes of ice coasts in the European Arctic Received: 22 September 2003 / Accepted: 2 August 2004 / Published online: 18 December 2004 Ó Springer-Verlag 2004 Abstract The present extent of European ice coasts, their recently been receiving closer scientific attention since spatial changes in the past 50 years and the velocities of their dynamic environment and interesting natural scen- ice flow in marginal parts of tidewater glaciers were ery is proving highly sensitive to climatic changes determined and mapped at a regional scale using space- (Koryakin 1988; Hanson and Hooke 2000). Seaward ice borne image data, both optical and radar. The methods cliffs rising 2–50 m and sometimes even 100 m above sea of satellite photogrammetry and radar interferometry level stand at the forefront of glaciomarine interactions provided efficient solutions to the integral estimation of and represent a unique object for comprehensive envi- ice-coast dynamics in the Franz Josef Land, Novaya ronmental research at the ‘‘cutting edge’’ of several sci- Zemlya and Svalbard archipelagos. Studies revealed entific disciplines such as oceanography, glaciology and significant degradation of the ice coasts (À7.7% by coastal geomorphology. Paleogeographers consider the length) compared to the situation represented in the present glaciomarine settings along ice cliffs as being available maps. The results obtained in the laboratory analogous to those in the Ice Age and find them useful for were verified during several field campaigns. retrospective reconstructions (Korsun and Hald 1998). Glacier ice is destroyed relatively fast, even in cold water, and ice shores are thus among the most varied elements of the arctic coastline. -
FSC National Risk Assessment
FSC National Risk Assessment for the Russian Federation DEVELOPED ACCORDING TO PROCEDURE FSC-PRO-60-002 V3-0 Version V1-0 Code FSC-NRA-RU National approval National decision body: Coordination Council, Association NRG Date: 04 June 2018 International approval FSC International Center, Performance and Standards Unit Date: 11 December 2018 International contact Name: Tatiana Diukova E-mail address: [email protected] Period of validity Date of approval: 11 December 2018 Valid until: (date of approval + 5 years) Body responsible for NRA FSC Russia, [email protected], [email protected] maintenance FSC-NRA-RU V1-0 NATIONAL RISK ASSESSMENT FOR THE RUSSIAN FEDERATION 2018 – 1 of 78 – Contents Risk designations in finalized risk assessments for the Russian Federation ................................................. 3 1 Background information ........................................................................................................... 4 2 List of experts involved in risk assessment and their contact details ........................................ 6 3 National risk assessment maintenance .................................................................................... 7 4 Complaints and disputes regarding the approved National Risk Assessment ........................... 7 5 List of key stakeholders for consultation ................................................................................... 8 6 List of abbreviations and Russian transliterated terms* used ................................................... 8 7 Risk assessments -
Development of Forest Sector in the Arkhangelsk Oblast During the Transition Period of the 1990S
Development of forest sector in the Arkhangelsk oblast during the transition period of the 1990s ALBINA PASHKEVICH Pashkevich Albina (2003). Development of forest sector in the Arkhangelsk oblast during the transition period of the 1990s. Fennia 181: 1, pp. 13–24. Helsinki. ISSN 0015-0010. The Arkhangelsk oblast has long been one of Russia’s most important forest industrial regions. This paper analyses the changes in accessibility of forest resources and forest commodity production during the transition period in the 1990s. Special attention is given to firm restructuring, active roles of domestic capital and the different survival strategies that have been developed by in- dustries in the region. Further analysis deals with signs of economic recovery in the forest sector due to the processes of restructuring, modernisation and self-organisation. Albina Pashkevich, Spatial Modelling Centre (SMC), Department of Social and Economic Geography, Umeå University, Box 839, SE-98128 Kiruna, Sweden. E-mail: [email protected]. MS received 12 August 2002. Introduction adoption of a new. Some suggest that this proc- ess has been deeply embedded in the nature of The shift from central planning to a market-based the socialist system (Dingsdale 1999; Hamilton economy in Russia culminated with the dramatic 1999) and that the legacy of the communism has economic and political reorientation that began been only partly removed, and instead has mere- in the 1990s. This transition towards a market-ori- ly been reworked in a complex way (Smith 1997). ented and outward-looking economic system led Others say that reforms have actually ended the by private sector has created new challenges and old ‘command economy’ but have instead suc- opportunities. -
Komi Aluminium Programme [EBRD
Komi Aluminium Komi Aluminium Programme PROPOSED EARLY WORKS PROGRAMME FOR THE PROPOSED SOSNOGORSK REFINERY SITE Environmental Analysis IN ACCORDANCE WITH INTERNATIONAL FINANCE CORPORATION AND EUROPEAN BANK FOR RECONSTRUCTION AND DEVELOPMENT REQUIREMENTS Prepared By: CSIR ENVIRONMENTEK P.O. Box 395 Pretoria 0001 Contact Person: Rob Hounsome Tel: +27 31 242-2300 Fax: +27 31 261-2509 Email: [email protected] In Partnership with: DewPoint International (Colorado) DATE: April 2004 Final Table of Contents 1 Introduction......................................................................................................................................- 3 - 2 Scope of the Early Works..............................................................................................................- 3 - 3 Impacts associated with the Early Works...................................................................................- 4 - 4 Background......................................................................................................................................- 5 - 4.1 The developer...............................................................................................................................- 6 - 4.2 Environmental and social assessment studies...........................................................................- 6 - 5 The Proposed Site...........................................................................................................................- 7 - 5.1 Location........................................................................................................................................- -
South Dakota Rangelands: More Than a Sea of Grass
212 RANGELANDS 18(6), December 1996 South Dakota Rangelands: More than a Sea of Grass F. Robert Gartner and Carolyn Hull Sieg re-settlement explorers described the region's land- the continent. Elevation increases from about 900 to 1,500 scape as a "sea of grass." Yet, this "sea" was quite feet above sea level along the eastern border to 3,000 to p varied, and included a wealth of less obvious forested 3,500 feet along the western border. The highest point in communities. Both physiographic and climatic gradients the United States east of the Rocky Mountains is Harney across the state of South Dakota contributed to the devel- Peak in the Black Hills at 7,241 feet elevation. opment of variable vegetation types of South Dakota. The The major portion of the state lies within the Great Plains diverse flora truly identifies the state as a "Land of Infinite physiographicprovince (Fig. 1), and a smaller portion in the Variety." Variations in climate, soils, and topography help to Central Lowlands Province (Denson 1964). The Great accentuate this label. Large herbivores such as bison and Plains Province is a broad highland that slopes gradually periodic fires ignited by lightning and American Indians also eastward from the Rocky Mountains on the west to the contributed to the formation of the pre-settlement land- Central Lowlands on the east. That portion of the Great scape. Plains Province in the western two-thirds of South Dakota has been termed the Missouri Plateau by some authors. The Central Lowlands Province extends from the drainage Climate Topography, Physiography, basin of the James River (approximatelythe 99th Meridian) eastward. -
Recent Noteworthy Findings of Fungus Gnats from Finland and Northwestern Russia (Diptera: Ditomyiidae, Keroplatidae, Bolitophilidae and Mycetophilidae)
Biodiversity Data Journal 2: e1068 doi: 10.3897/BDJ.2.e1068 Taxonomic paper Recent noteworthy findings of fungus gnats from Finland and northwestern Russia (Diptera: Ditomyiidae, Keroplatidae, Bolitophilidae and Mycetophilidae) Jevgeni Jakovlev†, Jukka Salmela ‡,§, Alexei Polevoi|, Jouni Penttinen ¶, Noora-Annukka Vartija# † Finnish Environment Insitutute, Helsinki, Finland ‡ Metsähallitus (Natural Heritage Services), Rovaniemi, Finland § Zoological Museum, University of Turku, Turku, Finland | Forest Research Institute KarRC RAS, Petrozavodsk, Russia ¶ Metsähallitus (Natural Heritage Services), Jyväskylä, Finland # Toivakka, Myllyntie, Finland Corresponding author: Jukka Salmela ([email protected]) Academic editor: Vladimir Blagoderov Received: 10 Feb 2014 | Accepted: 01 Apr 2014 | Published: 02 Apr 2014 Citation: Jakovlev J, Salmela J, Polevoi A, Penttinen J, Vartija N (2014) Recent noteworthy findings of fungus gnats from Finland and northwestern Russia (Diptera: Ditomyiidae, Keroplatidae, Bolitophilidae and Mycetophilidae). Biodiversity Data Journal 2: e1068. doi: 10.3897/BDJ.2.e1068 Abstract New faunistic data on fungus gnats (Diptera: Sciaroidea excluding Sciaridae) from Finland and NW Russia (Karelia and Murmansk Region) are presented. A total of 64 and 34 species are reported for the first time form Finland and Russian Karelia, respectively. Nine of the species are also new for the European fauna: Mycomya shewelli Väisänen, 1984,M. thula Väisänen, 1984, Acnemia trifida Zaitzev, 1982, Coelosia gracilis Johannsen, 1912, Orfelia krivosheinae Zaitzev, 1994, Mycetophila biformis Maximova, 2002, M. monstera Maximova, 2002, M. uschaica Subbotina & Maximova, 2011 and Trichonta palustris Maximova, 2002. Keywords Sciaroidea, Fennoscandia, faunistics © Jakovlev J et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
Research Cruise Report: Mission HLY031
Research Cruise Report: Mission HLY031 Conducted aboard USCGC Healy In Northern Baffi n Bay and Nares Strait 21 July –16 August 2003 Project Title: Variability and Forcing of Fluxes through Nares Strait and Jones Sound: A Freshwater Emphasis Sponsored by the US National Science Foundation, Offi ce of Polar Programs, Arctic Division Table of Contents Introduction by Chief Scientist . 4 Science Program Summary . 6 Science Party List . 7 Crew List . 8 Science Component Reports CTD-Rosette Hydrography . 9 Internally recording CTD . 29 Kennedy Channel Moorings . 33 Pressure Array . 41 Shipboard ADCP . 47 Bi-valve Retrieval . 51 Coring . 55 Seabeam Mapping . 65 Aviation Science Report . 71 Ice Report . 79 Weather Summary . 91 Inuit Perspective . 95 Photojournalist Perspective . 101. Website Log . 105 Chief Scientist Log . 111 Recommendations . .125 Introduction Dr. Kelly Kenison Falkner Chief Scientist Oregon State University In the very early hours of July 17, 2003, I arrived at collected via the ship’s Seabeam system and the underway the USCGC Healy moored at the fueling pier in St. John’s thermosalinograph system was put to good use throughout Newfoundland, Canada to assume my role as chief scientist much of the cruise. for an ambitious interdisciplinary mission to Northern Part of our success can be attributed to luck with Mother Baffi n Bay and Nares St. This research cruise constitutes Nature. Winds and ice worked largely in our favor as we the inaugural fi eld program of a fi ve year collaborative wound our way northward. Our winds were generally research program entitled Variability and Forcing of moderate and out of the south and the ice normal to light. -
Development in the Arctic
Take ourWin reader a WWF survey: Arctic panda.org/thecircle gift pack! MAGAZINE Working together 9 No. 1 A wave of investment 16 2018 THE CIRCLE Energy in a changing north 20 WHAT’S NEXT FOR THE ARCTIC? PUBLISHED BY THE WWF ARCTIC PROGRAMME THE CIRCLE 1.2018 WHAT’S NEXT FOR THE ARCTIC? Contents EDITORIAL Change: the big picture 3 IN BRIEF 4 JANET PAWLAK Snow, water, ice and permafrost 6 CINDY DICKSON Working together 9 EMILY MCKENZIE and KATHERINE WYATT Connections with nature 10 JAMES E. PASS Development in the Arctic 12 KATHARINA SCHNEIDER-ROOS and LORENA ZEMP Sustain- able and resilient infrastructure 14 ALAN ATKISSON A wave of investment 16 OKALIK EEGEESIAK Inuit and the Ice Blue Economy 18 NILS ANDREASSEN Energy in a changing North 20 SVEIN VIGELAND ROTTEM The Arctic Council – a need for reform 21 TOM BARRY and COURTNEY PRICE Arctic biodiversity: challenges 22 The contest 24 The Circle is published quarterly Publisher: Editor in Chief: Leanne Clare, COVER: Snow mobile travel over by the WWF Arctic Programme. WWF Arctic Programme [email protected] sea ice in Uummannaq, Green- Reproduction and quotation with 8th floor, 275 Slater St., Ottawa, land appropriate credit are encour- ON, Canada K1P 5H9. Managing Editor: Becky Rynor, Photo: Lawrence Hislop, www.grida.no/resources/1151 aged. Articles by non-affiliated Tel: +1 613-232-8706 [email protected] sources do not necessarily reflect Fax: +1 613-232-4181 ABOVE: Boy on bicycle, Nuuk, the views or policies of WWF. Design and production: Send change of address and sub- Internet: www.panda.org/arctic Film & Form/Ketill Berger, Greenland. -
The Arctic, the Arctic Council, and the Law of the Sea
CHAPTER 2 The Arctic, the Arctic Council, and the Law of the Sea Erik J Molenaar* 1 Introduction The international community’s interest in the Arctic increased spectacularly in the period between 2004 and 2008. Prior to that, international coopera- tion on the (marine) Arctic mainly involved Arctic States, and regional coop- eration occurred largely by means of non-legally binding instruments and informal fora, rather than through legally binding instruments and intergov- ernmental organisations. The launch of the Arctic Climate Impact Assessment (ACIA)1 in 2004 contributed to broadening recognition within the internation- al community that climate change is largely driven by anthropogenic pollu- tion. This recognition grew even more after the dramatic Arctic sea-ice loss in 2007,2 which spread a sense of alarm and urgency within the international community. Another game changer was the Russian Federation’s planting of its flag on the geographical North Pole’s deep seabed in 2007, during the gathering of data on the outer limits of its continental shelf. The Russian Federation’s flag plant- ing triggered a number of reactions and counter-reactions. The first of these was the incorrect perception by many—e.g., media, academics, environmental non-governmental organisations (NGOs) and the European Parliament—that the flag planting heralded the last land-grab on earth and a resource bonanza that was unchecked due to an international law vacuum. This incorrect per- ception was then followed by the incorrect assumption that it would be logical * Email: [email protected]. The author is very grateful for assistance and/or comments re- ceived from Bob Beckman, Tore Henriksen, Henning Dobson Fugleberg Knudsen, Amy Merten, Alex Oude Elferink, Ashley Roach, Jan Solski and Jorden Splinter on an earlier ver- sion.