Dinosaurs Dined on Grass Ray Diffraction Combined with Chemical Analysis to Show That Xenon Can React with Dolores R

Total Page:16

File Type:pdf, Size:1020Kb

Dinosaurs Dined on Grass Ray Diffraction Combined with Chemical Analysis to Show That Xenon Can React with Dolores R P ERSPECTIVES narcotic properties are recorded for chemi- because reactions involving platinum were References and Notes cally unreactive N gas, giving rise to how Bartlett initiated his first xenon chem- 1. C. Sanloup et al., Science 310, 1174 (2005). 2 2. G.Wilson, The Life of the Honourable Henry Cavendish “l’ivresse des grandes profondeurs” (the istry experiments (5). Perhaps the capsules (Cavendish Society, London, 1851). “rapture of the deep”—the intoxication expe- are not completely innocent in the high- 3. W. Ramsay, The Gases of the Atmosphere, the History of Their Discovery (Macmillan, London, 1915). rienced by divers) (8). An early explanation pressure and high-temperature experi- 4. G. N. Lewis, J. Am. Chem. Soc. 38, 762 (1916). for xenon anesthesia was given by Pauling, ments, because they might act as reaction 5. N. Bartlett, Proc. Chem. Soc. 1962, 218 (June 1962). who suggested that clathrate hydrate struc- sites for xenon in addition to providing the 6. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements (Pergamon, Oxford, 1984). tures encapsulating the rare gas atoms were host for platinum-silicon alloys formed dur- 7. N. P. Franks, R. Dickinson, S. L. de Sousa,A. C. Hall,W. R. formed near synapses, impeding interneu- ing the presumed silicate reduction reac- Lieb, Nature 396, 324 (1998). 8. J. Cousteau, The Silent World (Reprint Society, London, ronal transmission (9). Recent results suggest tions. However, even if that is the case, it 1953). a more interesting solution. The protein com- does not rule out the potential importance of 9. L. Pauling, Science 134, 15 (1961). plexes that form transmembrane ion pumps metal-silicate reactions involving xenon 10. P. Bennett, D. Elliott, The Physiology and Medicine of Diving (Saunders, New York, ed. 5, 2003). associated with neurotransmitters contain within Earth. These results could presage a 11. N. P. Franks,W. R. Lieb, Nature 300, 487 (1982). hydrophobic regions. It is thought that neutral new area in xenon solid-state chemistry 12. E.Anders,T. Owen, Science 198, 453 (1977). 13. A. P. Jephcoat, Nature 393, 355 (1998). species such as xenon and N2 might enter under high-pressure conditions, which 14. The author is supported by a Wolfson Royal Society these regions, especially at high pressure, and might be extended to other noble gases that Research Merit Award Fellowship. interfere with the neuronal process to result in have not yet been chemically awakened, if anesthesia and narcosis (10, 11). the conditions are made right. 10.1126/science.1121022 Highly oxidizing conditions are usually needed to activate xenon into true chemical PALEONTOLOGY reactivity and to form bonds with species such as oxygen. However, Sanloup et al. have used optical spectroscopy and synchrotron x- Dinosaurs Dined on Grass ray diffraction combined with chemical analysis to show that xenon can react with Dolores R. Piperno and Hans-Dieter Sues natural silicate materials, including SiO2, to form xenon oxide species under the high- rasses (family Poaceae or Gramineae), have long depicted dinosaurs as grazing on pressure, high-temperature conditions found with about 10,000 extant species, are conifers, cycads, and ferns in landscapes in Earth’s crust (1). This is an important Gamong the largest and most ecologi- without grasses. The work of Prasad et al. result, because the noble gases form useful cally dominant families of flowering plants, (1) is the first unambiguous evidence that geochemical tracers. Formed by radioactive and today provide staple foods for much of the Poaceae originated and had already decay processes or encapsulated within deep humankind. Dinosaurs, the dominant mega- diversified during the Cretaceous. The Earth materials since the formation of the herbivores during most of the Mesozoic Era research shows that phytoliths, which planet, the “inert” gaseous elements are (65 to 251 million years ago), are similarly have become a major topic of study in thought to diffuse out from the mantle, core, one of the largest and best known groups of Quaternary research over the last 20 years and crust at well-defined rates. Xenon is par- organisms. However, the possible coevolution (4–8), can provide a formidable means for ticularly important in this regard. If it does of grasses and dinosaurs has never been reconstructing vegetation and animal diets undergo redox reactions and enter into chem- studied. Now, Prasad et al. (1) report on page for much earlier time periods when early ical combination with silicates and other 1177 of this issue their analysis of phy- angiosperms were diversifying. These oxides, this could explain the apparent toliths—microscopic pieces of silica remarkable results will force reconsidera- “xenon deficit” in the atmospheres of Earth formed in plant cells—in coprolites that the tion of many long-standing assumptions and Mars, remarked upon by geochronolo- authors attribute to titanosaurid sauropods about grass evolution, dinosaurian ecology, gists and geophysicists (12). If this is true for that lived in central India about 65 to 71 mil- and early plant-herbivore interactions. xenon, then perhaps it also occurs for the lion years ago. Their data indicate that those Scientists have long known that grasses radioactive rare gas, radon, that is formed by dinosaurs ate grasses. make distinctive kinds of phytoliths in the radioactive decay processes in crustal rocks. Part of the difficulty in studying the epidermis of their leaves and leaflike cover- The physical properties of xenon in deep question of dinosaur-grass coevolution ings that surround their flowers (9). More Earth environments are as strange as its pos- results from the poor quality of the fossil recent work has examined in greater detail sible chemical behavior. Jephcoat (13) has record for early grasses. The earliest phytolith characteristics from a large set of shown that under lower mantle and core con- unequivocal grass fossils date to the grasses comprising taxa representing the ditions, the melting point of xenon exceeds Paleocene-Eocene boundary, about 56 mil- entire range of diversification within the that of iron, as does its density. This means lion years ago (2, 3), well after the demise family, showing that discriminations at the that if xenon did not react chemically with of nonavian dinosaurs at the end of the subfamily, tribe, and genus levels are often mantle or core materials, it would fall as Cretaceous Period. Pollen and macrofossils possible (1, 4–8, 10). In addition, publica- “hail” toward the center of Earth, through of Poaceae are uncommon in sedimentary tion of a well-resolved consensus phy- the molten outer core. However, the results strata until the middle Miocene, about 11 to logeny of the Poaceae by the Grass Phy- of Sanloup et al. suggest that it can also react 16 million years ago, when the family is logeny Working Group (GPWG) (11) con- with silicates, oxidizing them to metallic thought to have undergone considerable siderably advances our overall understand- alloys or replacing silicon in mineral struc- evolutionary diversification and ecological ing of the evolutionary history of grasses tures. There might be new geochemical par- expansion (2). Thus, dioramas in museums and leads to improved interpretations of the titioning equilibria to be considered within early grass fossil record. For example, by the deep crust, mantle, and core, involving mapping the phytolith characters that dis- The authors are at the National Museum of Natural xenon physics and chemistry. History, Washington, DC 20560, USA. D. R. Piperno is criminate clades and subfamilies of extant It is of interest that Sanloup et al. carried also at the Smithsonian Tropical Research Institute, taxa onto this phylogenetic tree, we can out their experiments in platinum capsules, Balboa, Panama. E-mail: [email protected] infer how phytolith morphology changed at 1126 18 NOVEMBER 2005 VOL 310 SCIENCE www.sciencemag.org Published by AAAS P ERSPECTIVES GPWG Poaceae phylogeny Phytolith shapes Flagellaria Anomochlooideae Pharoideae Elegia Baloskion Joinvillea Anomochloa Streptochaeta Anomochlooideae Pharus Pharoideae Guaduella Puelia Puelioideae Eremitis Bambusoideae Pariana Lithachne Olyra Bambusoideae Buergersiochloa Pseudosasa Chusquea Streptogyna Incertae sedis Ehrharta Oryza Ehrhartoideae Leersia Ehrhartoideae Phaenosperma Anisopogon Ampelodesmos Stipa Nassella Piptatherum Brachypodium Avena Bromus Pooideae Pooideae Triticum Diarrhena Melica Glyceria Lygeum Nardus Brachyelytrum Aristida Stipagrostis Aristidoideae Merxmuellera m. Aristidoideae Karroochloa Austrodanthonia Danthonioideae Danthonia Amphipogon Arundo Molinia Arundinoideae Phragmites Merxmuellera r. Centropodia Chloridoideae Eragrostis Uniola Pappophorum Chloridoideae Zoysia Spartina Sporobolus Distichlis Eriachne Incertae sedis Thysanolaena Zeugites Centothecoideae Panicoideae Chasmanthium Gynerium Incertae sedis Danthoniopsis Panicum Pennisetum Panicoideae Miscanthus Zea Micraira Incertae sedis Grass lineage. (Left) Phylogeny for grasses from GPWG (11). (Right) unlike those in the BEP clade. Phytoliths typical of the Aristidoideae, Examples of phytoliths from basalmost and later-diverging families of Panicoideae and Chloridoideae (PACCAD clade) are also shown. Phytolith grasses, showing that the earliest grasses probably contributed phytoliths images are from the work of the authors (4, 14). the origin of major clades and lineages (see (bamboos, rice relatives) in particular possess [see figure 2, a and b, of (1)] are confined to a the
Recommended publications
  • The Bamboo Production to Consumption System in Cameroon
    WORKING PAPER The bamboo production to consumption system in Cameroon Verina Ingram Julius Chupezi Tieguhong Eric Maturin Nkamgnia Jean Paul Eyebe Mathew Ngawel WORKING PAPER 50 The bamboo production to consumption system in Cameroon Verina Ingram Julius Chupezi Tieguhong Eric Maturin Nkamgnia Jean Paul Eyebe Mathew Ngawel Working Paper 50 © 2010 Center for International Forestry Research All rights reserved Photos: Verina Ingram, Julius Chupezi Tieguhong, Ilse Pelkmans, Martin Lieber, Katrin Ingram Ingram, V., Tieguhong, J.C., Nkamgnia, E.M., Eyebe, J.P. and Ngawe, M. 2010 Bamboo production to consumption system, Cameroon. CIFOR, Bogor, Indonesia CIFOR Jl. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] www.cifor.cgiar.org Any views expressed in this publication are those of the authors. They do not necessarily represent the views of CIFOR, the authors’ institutions or the financial sponsors of this publication. This study was financed by the International Network for Bamboo and Rattan (INBAR) as part of a Common Fund for Commodities project ‘Enhancing Opportunities for Market—Led Bamboo and Rattan-based Development in West and Central Africa’. A presentation of initial results was made at the International workshop in Yaoundé, Cameroon, 23-25 November 2009, organised by the (INBAR, the World Agroforestry Centre (ICRAF) and the Ministry of Forests and Wildlife of the government of Cameroon. Contents INBAR’s bamboo and rattan development programme vi Abbreviations viii Acknowledgements ix Summary x 1. Introduction 1 Objectives 1 Rationale for the study 1 Background to Cameroon 1 Review of bamboo sector in Cameroon 5 Markets 15 2.
    [Show full text]
  • Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
    Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected].
    [Show full text]
  • The Economy, the Environment, and Bamboo
    Libyan Agriculture Research Center Journal International 2 (5): 239-243, 2011 ISSN 2219-4304 © IDOSI Publications, 2011 Bamboo, the Environment and the Economy: Sustainable Future for Nigerian Investors 1A.P. Erie, 2B. Ikhajiagbe, 3J.K. Mensah and 3P.A. Akomeah 1Department of Agriculture, Economics and Extension, Ambrose Alli University, Ekpoma, Nigeria 2Raw Materials Research and Development Council Maitama District, Abuja, Nigeria 3Department of Botany, Ambrose Alli University, Ekpoma, Nigeria Abstract: The global business environment is becoming more competitive as a result of changes in technology and the international market situations. On the other hand, while poverty creates certain kinds of environmental stress, one major cause of global environmental deterioration is found in unsustainable patterns of consumption and production. Investment in bamboo technology becomes more profitable bearing in mind that it is the fastest growing ‘tree’, which can be repeatedly cut without having to be replanted. Bamboo finds uses in the paper, food, housing, furniture and craft industries. With the fall in price of crude oil in the world today, it has become imperative to develop strategies for strengthening the economy. Thus, from the non-oil sector perspective, as a way forward, investment objectives must be redirected and emphasis shifted to unconventional products/exports. Key words: INTRODUCTION the subsequent 2 or 3 years. The culms reach maturity after the 5th or 6th year, or even later, depending on Bamboo is the fastest growing woody plant on this the species. Generally, there is a 3-5 years versus 10-20 planet [1]. The plant population is becoming fewer all years for softwood.
    [Show full text]
  • Evolutionary History of the Grasses1
    Update on Evolution Evolutionary History of the Grasses1 Elizabeth A. Kellogg* Department of Biology, University of Missouri, St. Louis, Missouri 63121 While some scientists have been working to se- studying form, many systematists now use DNA se- quence and describe the human genome, with in- quences to determine relationships among organ- creasingly dramatic results, another set of scientists isms. If large enough stretches of DNA can be com- has been quietly providing a map of evolutionary pared for enough organisms, the phylogenetic history, a time line that shows how life has evolved. relationships generally become clear. The need for Unlike the genome projects, which accumulate mega- large numbers of DNA sequences has led to collab- bases of sequence from many genes in one organism, orative groups of scientists who combine their data to evolutionary projects accumulate megabases of se- reach a common goal. This is an unusual endeavor quence from the same handful of genes in many for systematists who traditionally have worked alone, organisms. The scientists who investigate the pattern each investigating a single group of organisms. of evolutionary change are predominantly system- atists, meaning, literally, those who study natural systems. Their work has three major goals. The first is EVOLUTIONARY TREE OF THE GRASS FAMILY to decipher the evolutionary history, or phylogeny, (POACEAE OR GRAMINEAE) commonly drawn as a cladogram or branching dia- The grass family is of particular interest to humans. gram. Once that is accomplished, the second goal is Most people on earth rely on grasses, including rice, to determine for each speciation event what sorts of wheat, and maize, for a major portion of their diet.
    [Show full text]
  • (Poaceae: Panicoideae) in Thailand
    Systematics of Arundinelleae and Andropogoneae, subtribes Chionachninae, Dimeriinae and Germainiinae (Poaceae: Panicoideae) in Thailand Thesis submitted to the University of Dublin, Trinity College for the Degree of Doctor of Philosophy (Ph.D.) by Atchara Teerawatananon 2009 Research conducted under the supervision of Dr. Trevor R. Hodkinson School of Natural Sciences Department of Botany Trinity College University of Dublin, Ireland I Declaration I hereby declare that the contents of this thesis are entirely my own work (except where otherwise stated) and that it has not been previously submitted as an exercise for a degree to this or any other university. I agree that library of the University of Dublin, Trinity College may lend or copy this thesis subject to the source being acknowledged. _______________________ Atchara Teerawatananon II Abstract This thesis has provided a comprehensive taxonomic account of tribe Arundinelleae, and subtribes Chionachninae, Dimeriinae and Germainiinae of the tribe Andropogoneae in Thailand. Complete floristic treatments of these taxa have been completed for the Flora of Thailand project. Keys to genera and species, species descriptions, synonyms, typifications, illustrations, distribution maps and lists of specimens examined, are also presented. Fourteen species and three genera of tribe Arundinelleae, three species and two genera of subtribe Chionachninae, seven species of subtribe Dimeriinae, and twelve species and two genera of Germainiinae, were recorded in Thailand, of which Garnotia ciliata and Jansenella griffithiana were recorded for the first time for Thailand. Three endemic grasses, Arundinella kerrii, A. kokutensis and Dimeria kerrii were described as new species to science. Phylogenetic relationships among major subfamilies in Poaceae and among major tribes within Panicoideae were evaluated using parsimony analysis of plastid DNA regions, trnL-F and atpB- rbcL, and a nuclear ribosomal DNA region, ITS.
    [Show full text]
  • Supporting Information
    Supporting Information Christin et al. 10.1073/pnas.1216777110 SI Materials and Methods blades were then embedded in resin (JB-4; Polysciences), Phylogenetic Inference. A previously published 545-taxa dataset of following the manufacturer’s instructions. Five-micrometer the grasses based on the plastid markers rbcL, ndhF,andtrnK-matK thick cross-sections of the embedded leaf fragments were cut (1) was expanded and used for phylogenetic inference. For species with a microtome and stained with saturated cresyl violet sampled for anatomical cross-sections but not included in the acetate (CVA). Some samples were fixed in formalin-pro- published dataset, the markers ndhF and/or trnK-matK were either pionic acid-alcohol (FPA), embedded in paraffin, sectioned at retrieved from GenBank when available or were newly sequenced 10 μm, and stained with a safranin O-orange G series (11) as from extracted genomic DNA with the method and primers de- described in (12). All slides were made permanent and are scribed previously (1, 2). These new sequences were aligned to the available on request. dataset, excluding the regions that were too variable as described previously (1). The final dataset totaled 604 taxa and was used for Anatomical Measurements. All C3 grasses possess a double BS, with “ phylogenetic inference as implemented in the software Bayesian the outer layer derived from ground meristem to form a paren- ” Evolutionary Analysis by Sampling Trees (BEAST) (3). chyma sheath, and the internal layer derived from the vascular “ ” The phylogenetic tree was inferred under a general time-re- procambium to form a mestome sheath (13). Many C4 grasses versible substitution model with a gamma-shape parameter and also possess these two BS layers, with one of them specialized in “ ” a proportion of invariants (GTR+G+I).
    [Show full text]
  • Late Cretaceous Origin of the Rice Tribe Provides Evidence for Early Diversification in Poaceae
    ARTICLE Received 9 Jun 2010 | Accepted 17 Aug 2011 | Published 20 Sep 2011 DOI: 10.1038/ncomms1482 Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae V. Prasad1, C.A.E. Strömberg2, A.D. Leaché2, B. Samant3, R. Patnaik4, L. Tang5, D.M. Mohabey6, S. Ge5 & A. Sahni7 Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67–65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern sub- clades PACMAD (Panicoideae–Aristidoideae–Chloridoideae–Micrairoideae–Arundinoideae– Danthonioideae) and BEP (Bambusoideae–Ehrhartoideae–Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography. 1 Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India. 2 Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington 98195, USA. 3 Postgraduate Department of Geology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440001, India. 4 Centre for Petroleum and Applied Geology, Panjab University, Chandigarh 160014, India.
    [Show full text]
  • Hilu Paper (New)
    KEW BULLETIN 62: 355–373 (2007) 355 A century of progress in grass systematics Khidir W. Hilu1 Summary. This paper presents an overview of progress in grass systematics with a focus on the past century and assesses its current status and future outlook. In concert with systematic biology, progress in grass systematics has gone through some leaps caused by the introduction of new approaches or emphasis on existing ones. Chromosome cytology, anatomy and chemistry provided useful information, but major recent contributions have come from advances in bioinformatics and molecular biology. Consequently, grass systematics has moved from an initial intuitive classification and phylogenetics to one incorporating analytical phenetic approaches, and culminating in the current stage of analytic phylogeny. As a result, a refined picture of grass phylogeny is emerging with good resolution at the base, but the tree lacks robustness in some places such as the monophyly of the “BEP” subfamilies and the relationships within the PACCAD clade. Systematic structure of a number of subfamilies is better understood now, but further studies are needed. With the rapid advancement in molecular systematic and bioinformatic tools, and in conjunction with a wealth of literature available on structural characters, a more refined picture of grass taxonomy and evolution is expected. However, caution needs to be exercised in our interpretations to avoid hasty decisions that can translate into regress rather than progress. This is an exciting time in the history of grass systematics and, undoubtedly, is a period of collaborative rather than individual effort. Key words. Poaceae, grasses, systematics, phylogenetics, history, evolution. Introduction valuable resources used in furthering our Although the c.
    [Show full text]
  • (Poaceae) and Characterization
    EVOLUTION AND DEVELOPMENT OF VEGETATIVE ARCHITECTURE: BROAD SCALE PATTERNS OF BRANCHING ACROSS THE GRASS FAMILY (POACEAE) AND CHARACTERIZATION OF ARCHITECTURAL DEVELOPMENT IN SETARIA VIRIDIS L. P. BEAUV. By MICHAEL P. MALAHY Bachelor of Science in Biology University of Central Oklahoma Edmond, Oklahoma 2006 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2012 EVOLUTION AND DEVELOPMENT OF VEGETATIVE ARCHITECTURE: BROAD SCALE PATTERNS OF BRANCHING ACROSS THE GRASS FAMILY (POACEAE) AND CHARACTERIZATION OF ARCHITECTURAL DEVELOPMENT IN WEEDY GREEN MILLET ( SETARIA VIRIDIS L. P. BEAUV.) Thesis Approved: Dr. Andrew Doust Thesis Adviser Dr. Mark Fishbein Dr. Linda Watson Dr. Sheryl A. Tucker Dean of the Graduate College I TABLE OF CONTENTS Chapter Page I. Evolutionary survey of vegetative branching across the grass family (poaceae) ... 1 Introduction ................................................................................................................... 1 Plant Architecture ........................................................................................................ 2 Vascular Plant Morphology ......................................................................................... 3 Grass Morphology ....................................................................................................... 4 Methods .......................................................................................................................
    [Show full text]
  • The Bamboo Production to Consumption System in Cameroon
    WORKING PAPER IMF EOF '-'1=1.11111WalEPARIMINIMPI_ I II I The bamboo production to consumption system in Cameroon Verina Ingram Julius Chupezi Tieguhong Eric Maturin Nkamgnia Jean Paul Eyebe Mathew Ngawel Mm-le re0-11LEL, itIFOR WORKING PAPER 50 The bamboo production to consumption system in Cameroon Verina Ingram Julius ChupeziTieguhong Eric Maturin Nkamgnia Jean Paul Eyebe Mathew Ngawel Working Paper 50 © 2010 Center for International Forestry Research All rights reserved Photos: Verina Ingram, Julius Chupezi Tieguhong, Ilse Pelkmans, Martin Lieber, Katrin Ingram Ingram, V., Tieguhong, J.C., Nkamgnia, E.M., Eyebe, J.P. and Ngawe, M. 2010 Bamboo production to consumption system, Cameroon. CIFOR, Bogor, Indonesia CIFOR JI. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] www.cifor.cgiar.org Any views expressed in this publication are those of the authors. They do not necessarily represent the views of CIFOR, the authors' institutions or the financial sponsors of this publication. This study was financed by the International Network for Bamboo and Rattan (INBAR) as part of a Common Fund for Commodities project 'Enhancing Opportunities for Market-Led Bamboo and Rattan-based Development in West and Central Africa'. A presentation of initial results was made at the International workshop in Yaounde, Cameroon, 23-25 November 2009, organised by the (INBAR, the World Agroforestry Centre (ICRAF) and the Ministry of Forests and Wildlife of the government of Cameroon. Contents INBAR's bamboo
    [Show full text]
  • Poaceae: an Overview with Reference to Brazil Poaceae: Uma Visão Geral Com Referência Ao Brasil
    Rodriguésia 63(1): 089-100. 2012 http://rodriguesia.jbrj.gov.br Poaceae: an overview with reference to Brazil Poaceae: uma visão geral com referência ao Brasil Hilda Maria Longhi-Wagner1,2 Abstract A summary of the classification of Poaceae into subfamilies according to different proposals is provided, as well as data on morphology and chorology of grasses, especially those that occur in Brazil. Key words: Gramineae, classification, morphology, geographical distribution, Brazil. Resumo É fornecido um sumário da classificação de Poaceae em subfamílias, de acordo com diferentes propostas, bem como dados sobre a morfologia e corologia de gramíneas, especialmente daquelas ocorrentes no Brasil. Palavras-chave: Gramineae, classificação, morfologia, distribuição geográfica, Brasil. Introduction Classification in subfamilies and The family Poaceae (Gramineae) encompasses its relationship with morphology approximately 800 genera and 10,000 species and chorology (Watson & Dallwitz 1992), which predominate in the Several classification systems of Poaceae have flora and physiognomy of open vegetations all over been proposed, based mainly on the morphology the world. The economic importance of this family of the spikelets. Two large groups were accepted: is unquestionable for it has many different types of (1) spikelets with two anthecia (see McClure & use, and it includes the major cereals and forages. Soderstrom 1972), the basal anthecium staminate Because of the great diversity of Poaceae or neuter (very rarely bisexual) and the apical and its wide variability (Watson & Dallwitz bisexual, with the articulation between rachilla 1992), researchers have traditionally divided it and pedicel below the glumes; and (2) spikelets into subfamilies. This division was initially based exhibiting from one to many anthecia, all bisexual on morphological, anatomical, cytological, and or at least one basal bisexual, and the articulation chromosomic characters, with molecular data being above the glumes, corresponding, respectively, to added more recently.
    [Show full text]
  • Classification and Biogeography of Panicoideae (Poaceae) in the New World Fernando O
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship@Claremont Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 39 2007 Classification and Biogeography of Panicoideae (Poaceae) in the New World Fernando O. Zuloaga Instituto de Botánica Darwinion, San Isidro, Argentina Osvaldo Morrone Instituto de Botánica Darwinion, San Isidro, Argentina Gerrit Davidse Missouri Botanical Garden, St. Louis Susan J. Pennington National Museum of Natural History, Smithsonian Institution, Washington, D.C. Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Zuloaga, Fernando O.; Morrone, Osvaldo; Davidse, Gerrit; and Pennington, Susan J. (2007) "Classification and Biogeography of Panicoideae (Poaceae) in the New World," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 39. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/39 Aliso 23, pp. 503–529 ᭧ 2007, Rancho Santa Ana Botanic Garden CLASSIFICATION AND BIOGEOGRAPHY OF PANICOIDEAE (POACEAE) IN THE NEW WORLD FERNANDO O. ZULOAGA,1,5 OSVALDO MORRONE,1,2 GERRIT DAVIDSE,3 AND SUSAN J. PENNINGTON4 1Instituto de Bota´nica Darwinion, Casilla de Correo 22, Labarde´n 200, San Isidro, B1642HYD, Argentina; 2([email protected]); 3Missouri Botanical Garden, PO Box 299, St. Louis, Missouri 63166, USA ([email protected]); 4Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013-7012, USA ([email protected]) 5Corresponding author ([email protected]) ABSTRACT Panicoideae (Poaceae) in the New World comprise 107 genera (86 native) and 1357 species (1248 native).
    [Show full text]