Purnululu National Park

Total Page:16

File Type:pdf, Size:1020Kb

Purnululu National Park World Heritage Scanned Nomination File Name: 1094.pdf UNESCO Region: ASIA AND THE PACIFIC __________________________________________________________________________________________________ SITE NAME: Purnululu National Park DATE OF INSCRIPTION: 5th July 2003 STATE PARTY: AUSTRALIA CRITERIA: N (i)(iii) DECISION OF THE WORLD HERITAGE COMMITTEE: Excerpt from the Report of the 27th Session of the World Heritage Committee Criterion (i): Earth’s history and geological features The claim to outstanding universal geological value is made for the Bungle Bungle Range. The Bungle Bungles are, by far, the most outstanding example of cone karst in sandstones anywhere in the world and owe their existence and uniqueness to several interacting geological, biological, erosional and climatic phenomena. The sandstone karst of PNP is of great scientific importance in demonstrating so clearly the process of cone karst formation on sandstone - a phenomenon recognised by geomorphologists only over the past 25 years and still incompletely understood, despite recently renewed interest and research. The Bungle Bungle Ranges of PNP also display to an exceptional degree evidence of geomorphic processes of dissolution, weathering and erosion in the evolution of landforms under a savannah climatic regime within an ancient, stable sedimentary landscape. IUCN considers that the nominated site meets this criterion. Criterion (iii): Superlative natural phenomena or natural beauty and aesthetic importance Although PNP has been widely known in Australia only during the past 20 years and it remains relatively inaccessible, it has become recognised internationally for its exceptional natural beauty. The prime scenic attraction is the extraordinary array of banded, beehive-shaped cone towers comprising the Bungle Bungle Range. These have become emblematic of the park and are internationally renowned among Australia’s natural attractions. The dramatically sculptured structures, unrivalled in their scale, extent, grandeur and diversity of forms anywhere in the world, undergo remarkable seasonal variation in appearance, including striking colour transition following rain. The intricate maze of towers is accentuated by sinuous, narrow, sheer-sided gorges lined with majestic Livistona fan palms. These and the soaring cliffs up to 250 m high are cut by seasonal waterfalls and pools, creating the major tourist attractions in the park, with evocative names such as Echidna Chasm, and Frog Hole, Piccaninny and Cathedral Gorges. The diversity of landforms and ecosystems elsewhere in the park are representative of the larger region, and lack a unique aesthetic quality, but provide a sympathetic visual buffer for the massif. The powerful aesthetic experience of the Bungle Bungles has aroused huge interest among the public, and the ranges figure prominently in national and international advertising of Australia’s tourist attractions, matching the prominence of the Uluru-Kata Tjuta National Park. Photographers and travel writers include the Bungle Bungles among the world’s natural wonders, some describing them as Australia’s equivalent of the Grand Canyon. BRIEF DESCRIPTIONS The 239,723 ha Purnululu National Park is located in the State of Western Australia. It contains the deeply dissected Bungle Bungle Range composed of Devonian-age quartz sandstone eroded over a period of 20 million years into a series of beehive-shaped towers or cones, whose steeply sloping surfaces are distinctly marked by regular horizontal bands of dark-grey cyanobacterial crust (single-celled photosynthetic organisms). These outstanding examples of cone karst owe their existence and uniqueness to several interacting geological, biological, erosional and climatic phenomena. 1.b State, Province or Region: Western Australia 1.d Exact location: S17 30 00.0 E128 30 00.0 Nomination of Purnululu National Park by the Government of Australia for Inscription on the World Heritage List Environment Australia 2002 i Cover image Jack Britten. Kija people, c. 1921 Jack Britten. Purnululu (Bull Creek Country), 1988. National Gallery of Australia, Canberra. Reproduced courtesy of the Warmun Art Centre. The spectacular sandstone canyons commonly called the Bungle Bungles, in the East Kimberley. This particular area is the site of a meeting between two ancestral devil figures, one of which lives in a cave in the region. © Commonwealth of Australia 2002 Contents Chapter 1 Identification of the property 1 1.1 Country 2 1.2 State 2 1.3 Name of the property 2 1.4 Geographic location of property 2 1.5 Area proposed for inscription 3 Chapter 2 Justification for inscription 5 2.1 Statement of significance 6 2.2 Criteria under which inscription is proposed 7 2.3 Comparative analysis of similar sites 29 2.4 Authenticity and integrity 33 Chapter 3 Description 35 3.1 Description of property 36 3.2 History and development 40 3.3 Recent investigations and records 42 3.4 Present state of conservation 44 3.5 Policies and programs promoting the property 45 Chapter 4 Management 47 4.1 Ownership 48 4.2 Legal status 49 4.3 Protective measures and implementation 50 4.4 Management authority 50 4.5 Local and regional management contacts 51 4.6 Agreed plans for conservation and tourism development 52 4.7 Sources and levels of finance 52 4.8 Sources of expertise and training 53 4.9 Visitor facilities and statistics 53 4.10 Site management plan and objectives 53 4.11 Staffing levels 53 Chapter 5 Factors affecting the site 55 5.1 Development pressures 56 5.2 Environmental pressures 56 5.3 Natural disasters and preparedness 57 5.4 Visitor and tourism pressures 57 5.5 Number of inhabitants within the property 57 5.6 Cultural areas 57 Chapter 6 Monitoring 59 6.1 Key indicators for measuring state of conservation 60 6.2 Administrative arrangements for monitoring property 60 6.3 Results of previous monitoring and reporting 61 Bibliography and Information Sources 63 List of attachments 66 Signature of State Party 67 Chapter 1 Identification of the property Parallel joints and fractures splinter the Bungle Bungles near Piccaninny Creek. Photograph: Steve Strike. 1 1.1 Country Australia 1.2 State Western Australia 1.3 Name of the property Purnululu National Park 1.4 Geographic location of property Purnululu National Park is located in the East Kimberley Region of the State of Western Australia, in north-western Australia, approximately 300 kilometres by road south of the regional town of Kununurra. The geographic centre of the Park is approximately latitude Chapter 1 17°30’ south and longitude 128°30’ east (Figure 1). NORTHERN Elevation TERRITORY Sealed road Watercourse QUEENSLAND (metres) WESTERN AUSTRALIA SOUTH Unsealed road Town or settlement AUSTRALIA 500 NEW SOUTH WALES 200 ACT Vehicle track Saline coastal flats VICTORIA 0 TASMANIA Figure 1: Location of Purnululu National Park. Source: Hoatson and others 1997 (with permission) 2 1.5 Area proposed for inscription Purnululu National Park (239 723 hectares) is the proposed area for inscription on the World Heritage List. The adjacent Purnululu Conservation Reserve (79 602 hectares) has nationally significant natural and cultural values and will be managed as a buffer zone to protect and enhance the outstanding values of the Park. These reserves were created on 27th March 1987 by the Western Australian Government. The Ord River forms the southern and eastern boundary of the Park, draining Bellburn Creek and Piccaninny Creek to the south and Red Rock Creek, Osmond Creek and Buchanan Creek to the north. The spectacular gorges, banded domes and towers of the Bungle Bungle Range (approximately 45 000 hectares), are located wholly within Purnululu National Park (Figure 2). The geographical coordinates of the Property are: 17°15’00”–17°46’00” S 128°15’00”–128°55’00” E Chapter 1 Sealed road Campsite Unsealed road Settlement Vehicle track Homestead National Park and Conservation Reserve boundaries Elevation in metres Parking area Breakaway Lookout Watercourse Figure 2: Purnululu National Park. Source: Hoatson and others 1997 (with permission) 3 Chapter 2 Justification for inscription Beehive clumps are one of the more distinctive aspects of the range. Photograph: Brendan Read. 5 2.1 Statement of significance Purnululu National Park has outstanding universal natural and cultural values. The landscape has exceptional natural values. Twenty million years of weathering has produced the eroded sandstone towers and banded beehive structures of the Bungle Bungle Range. Dark bands, formed by cyanobacteria, winding horizontally around the domes, contrast with the lighter sandstone. The crusts, which help stabilise and protect the ancient and fragile sandstone towers, are present on a massive scale. Purnululu sits between the hot dry deserts of Western Australia’s arid zone to the south and the better watered monsoonal areas to the north. This transitional zone possesses unique natural and cultural values. A rich mixture of species, some of them endemic, on the edge of their ranges are found here, as is a remarkably diverse range of spinifex species — the spiny grass genus (Triodia spp) that dominates Australia’s arid zone. The cyanobacterial (single cell photosynthetic organisms) bands crossing the rock surfaces of the Bungle Bungle Range, are adapted to the transitional nature of this area’s environment. In addition to the geomorphic and biological importance of the Park’s natural features, the Chapter 2 myriad sandstone towers of the Bungle Bungle Range are exceptionally beautiful and inspirational. The orange
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • Carissa Spinarum (C
    Carissa spinarum (C. edulis) Apocynaceae Indigenous Ag: Aguami Am: Agam Gmz: Soha Or: Agamsa, Hagamsa Sh: Awawa Sm: Orgabat Ecology sowing at site. Wildings often grow under Widespread in Africa from Senegal to parent bushes and may also be used. Somalia and south to Botswana and Seed Mozambique. Also in Asia from Yemen Fresh seed germinate well; 28,000–30,000 to India. Grows in woodlands and forests seeds per kg. where Euphorbia, Acacia, and Croton commonly occur in Dry and Moist Weyna Treatment: Not necessary. Dega and Dega agroclimatic zones in all Storage: Seed loses viability fairly quickly. regions, 500–2600 m. Use fresh seed for best result. Uses Management Firewood, food (fruit), medicine (roots), Fairly slow growing. Trim if grown as ornamental and soil conservation. a fence. Improve more fleshy and juicy quality by selection. Description A spiny shrub or small tree to 5 m or Remarks sometimes a liana up to 10 m long. BARK: An important food and medicinal plant in Grey, smooth with straight woody spines Ethiopia. Both the unripe and ripe fruits are to 5 cm, often in pairs, rarely branching. eaten whole. Much liked by both children Milky latex. LEAVES: Opposite, leathery, and adults. It can be grown from seed to shiny dark green to 5 cm, tip pointed, base develop into an attractive and impenetrable rounded, stalk very short. FLOWERS: hedge. It makes excellent firewood. Fragrant, in pink‑white terminal clusters, each flower to 2 cm, lobes overlap to the right. FRUIT: Rounded berries about 1 cm, purple‑black when ripe, sweet and edible, 2–4 seeds.
    [Show full text]
  • Poaceae Phytoliths from the Niassa Rift, Mozambique
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/222149229 Poaceae phytoliths from the Niassa Rift, Mozambique Article in Journal of Archaeological Science · August 2010 DOI: 10.1016/j.jas.2010.03.001 CITATIONS READS 44 409 9 authors, including: Fernando Astudillo Mary Barkworth Universidad San Francisco de Quito (USFQ) Utah State University 4 PUBLICATIONS 45 CITATIONS 81 PUBLICATIONS 902 CITATIONS SEE PROFILE SEE PROFILE Tim Aaron Bennett Chris Esselmont 8 PUBLICATIONS 242 CITATIONS The University of Calgary 6 PUBLICATIONS 161 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Stipeae (no longer a major focus) View project Grasses in North America View project All content following this page was uploaded by Rahab N Kinyanjui on 19 March 2018. The user has requested enhancement of the downloaded file. Journal of Archaeological Science 37 (2010) 1953e1967 Contents lists available at ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas Poaceae phytoliths from the Niassa Rift, Mozambique Julio Mercader a,*, Fernando Astudillo a, Mary Barkworth b, Tim Bennett a, Chris Esselmont c, Rahab Kinyanjui d, Dyan Laskin Grossman a, Steven Simpson a, Dale Walde a a Department of Archaeology, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada b Intermountain Herbarium, Utah State University, 5305 Old Main Hill, Logan, UH 84322-5305, USA c Environics Research Group, 999 8th Street S.W., Calgary, Alberta T2R 1J5, Canada d National Museum of Kenya, Department of Earth Sciences, Palynology and Paleobotany Section, P.O.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Three New Species of Ctenotus (Reptilia: Sauria: Scincidae)
    DOI: 10.18195/issn.0312-3162.25(2).2009.181-199 Records of the Western Australian Museum 25: 181–199 (2009). Three new species of Ctenotus (Reptilia: Sauria: Scincidae) from the Kimberley region of Western Australia, with comments on the status of Ctenotus decaneurus yampiensis Paul Horner Museum and Art Gallery of the Northern Territory, GPO Box 4646, Darwin, Northern Territory 0801, Australia. E-mail: [email protected] Abstract – Three new species of Ctenotus Storr, 1964 (Reptilia: Sauria: Scinci- dae), C. halysis sp. nov., C. mesotes sp. nov. and C. vagus sp. nov. are described. Previously confused with C. decaneurus Storr, 1970 or C. alacer Storr, 1970, C. halysis sp. nov. and C. vagus sp. nov. are members of the C. atlas species com- plex. Ctenotus mesotes sp. nov. was previously confused with C. tantillus Storr, 1975 and is a member of the C. schomburgkii species complex. The new taxa are terrestrial, occurring in woodland habitats on sandy soils in the Kimberley region of Western Australia and are distinguished from congeners by combi- nations of body patterns, mensural and meristic characteristics. Comments are provided on the taxonomic status of C. yampiensis Storr, 1975 which is considered, as in the original description, a subspecies of C. decaneurus. Re- descriptions of C. d. decaneurus and C. d. yampiensis are provided. Keywords – Ctenotus alacer, decaneurus, yampiensis, halysis, mesotes, tantillus, vagus, morphology, new species, Kimberley region, Western Australia INTRODUCTION by combinations of size, scale characteristics, body Ctenotus Storr, 1964 is the most species-rich genus colour and patterns. of scincid lizards in Australia, with almost 100 taxa recognised (Horner 2007; Wilson and Swan 2008).
    [Show full text]
  • 503 Flora V7 2.Doc 3
    Browse LNG Precinct ©WOODSIDE Browse Liquefied Natural Gas Precinct Strategic Assessment Report (Draft for Public Review) December 2010 Appendix C-18 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 Prepared for Department of State Development December 2009 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 © Biota Environmental Sciences Pty Ltd 2009 ABN 49 092 687 119 Level 1, 228 Carr Place Leederville Western Australia 6007 Ph: (08) 9328 1900 Fax: (08) 9328 6138 Project No.: 503 Prepared by: P. Chukowry, M. Maier Checked by: G. Humphreys Approved for Issue: M. Maier This document has been prepared to the requirements of the client identified on the cover page and no representation is made to any third party. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Biota Environmental Sciences Pty Ltd. This report has been designed for double-sided printing. Hard copies supplied by Biota are printed on recycled paper. Cube:Current:503 (Kimberley Hub Wet Season):Doc:Flora:503 flora v7_2.doc 3 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 4 Cube:Current:503 (Kimberley Hub Wet Season):Doc:Flora:503 flora v7_2.doc Biota A Vegetation and Flora Survey of James Price Point: Wet Season 2009 A Vegetation and Flora Survey of James Price
    [Show full text]
  • The Fauna of Boonanarring Nature Reserve
    The Fauna of Boonanarring Nature Reserve. Tracey Moore, Tracy Sonneman, Alice Reaveley, Karen Bettink, Barbara Wilson. i Department of Parks and Wildlife Locked Bag 104, Bentley Delivery Centre, 6983 Western Australia Telephone: +61-8-9442 0300 Facsimile: +61-8-9386 6399 www.dpaw.wa.gov.au © Government of Western Australia, May 2015 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to the Department of Parks and Wildlife. Project team: Karen Bettink, Nicole Godfrey, Ben Kreplins, Tracey Moore, Craig Olejnik, Tracy Sonneman, Alice Reaveley, Barbara Wilson Acknowledgements: Astron Environmental Consulting Project contact: Tracey Moore; [email protected] i Table of Contents The fauna of Boonanarring Nature Reserve. ........................................ Error! Bookmark not defined. Introduction and Background ................................................................................................................. 1 Methods .................................................................................................................................................. 2 Location and vegetation .....................................................................................................................
    [Show full text]
  • 22. Tribe ERAGROSTIDEAE Ihl/L^Ä Huameicaozu Chen Shouliang (W-"^ G,), Wu Zhenlan (ß^E^^)
    POACEAE 457 at base, 5-35 cm tall, pubescent. Basal leaf sheaths tough, whit- Enneapogon schimperianus (A. Richard) Renvoize; Pap- ish, enclosing cleistogamous spikelets, finally becoming fi- pophorum aucheri Jaubert & Spach; P. persicum (Boissier) brous; leaf blades usually involute, filiform, 2-12 cm, 1-3 mm Steudel; P. schimperianum Hochstetter ex A. Richard; P. tur- wide, densely pubescent or the abaxial surface with longer comanicum Trautvetter. white soft hairs, finely acuminate. Panicle gray, dense, spike- Perennial. Culms compactly tufted, wiry, erect or genicu- hke, linear to ovate, 1.5-5 x 0.6-1 cm. Spikelets with 3 fiorets, late, 15^5 cm tall, pubescent especially below nodes. Basal 5.5-7 mm; glumes pubescent, 3-9-veined, lower glume 3-3.5 mm, upper glume 4-5 mm; lowest lemma 1.5-2 mm, densely leaf sheaths tough, lacking cleistogamous spikelets, not becom- villous; awns 2-A mm, subequal, ciliate in lower 2/3 of their ing fibrous; leaf blades usually involute, rarely fiat, often di- length; third lemma 0.5-3 mm, reduced to a small tuft of awns. verging at a wide angle from the culm, 3-17 cm, "i-^ mm wide, Anthers 0.3-0.6 mm. PL and &. Aug-Nov. 2« = 36. pubescent, acuminate. Panicle olive-gray or tinged purplish, contracted to spikelike, narrowly oblong, 4•18 x 1-2 cm. Dry hill slopes; 1000-1900 m. Anhui, Hebei, Liaoning, Nei Mon- Spikelets with 3 or 4 florets, 8-14 mm; glumes puberulous, (5-) gol, Ningxia, Qinghai, Shanxi, Xinjiang, Yunnan [India, Kazakhstan, 7-9-veined, lower glume 5-10 mm, upper glume 7-11 mm; Kyrgyzstan, Mongolia, Pakistan, E Russia; Africa, America, SW Asia].
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Viruses Virus Diseases Poaceae(Gramineae)
    Viruses and virus diseases of Poaceae (Gramineae) Viruses The Poaceae are one of the most important plant families in terms of the number of species, worldwide distribution, ecosystems and as ingredients of human and animal food. It is not surprising that they support many parasites including and more than 100 severely pathogenic virus species, of which new ones are being virus diseases regularly described. This book results from the contributions of 150 well-known specialists and presents of for the first time an in-depth look at all the viruses (including the retrotransposons) Poaceae(Gramineae) infesting one plant family. Ta xonomic and agronomic descriptions of the Poaceae are presented, followed by data on molecular and biological characteristics of the viruses and descriptions up to species level. Virus diseases of field grasses (barley, maize, rice, rye, sorghum, sugarcane, triticale and wheats), forage, ornamental, aromatic, wild and lawn Gramineae are largely described and illustrated (32 colour plates). A detailed index Sciences de la vie e) of viruses and taxonomic lists will help readers in their search for information. Foreworded by Marc Van Regenmortel, this book is essential for anyone with an interest in plant pathology especially plant virology, entomology, breeding minea and forecasting. Agronomists will also find this book invaluable. ra The book was coordinated by Hervé Lapierre, previously a researcher at the Institut H. Lapierre, P.-A. Signoret, editors National de la Recherche Agronomique (Versailles-France) and Pierre A. Signoret emeritus eae (G professor and formerly head of the plant pathology department at Ecole Nationale Supérieure ac Agronomique (Montpellier-France). Both have worked from the late 1960’s on virus diseases Po of Poaceae .
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Combined Phylogenetic Analyses Reveal Interfamilial Relationships and Patterns of floral Evolution in the Eudicot Order Fabales
    Cladistics Cladistics 1 (2012) 1–29 10.1111/j.1096-0031.2012.00392.x Combined phylogenetic analyses reveal interfamilial relationships and patterns of floral evolution in the eudicot order Fabales M. Ange´ lica Belloa,b,c,*, Paula J. Rudallb and Julie A. Hawkinsa aSchool of Biological Sciences, Lyle Tower, the University of Reading, Reading, Berkshire RG6 6BX, UK; bJodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; cReal Jardı´n Bota´nico-CSIC, Plaza de Murillo 2, CP 28014 Madrid, Spain Accepted 5 January 2012 Abstract Relationships between the four families placed in the angiosperm order Fabales (Leguminosae, Polygalaceae, Quillajaceae, Surianaceae) were hitherto poorly resolved. We combine published molecular data for the chloroplast regions matK and rbcL with 66 morphological characters surveyed for 73 ingroup and two outgroup species, and use Parsimony and Bayesian approaches to explore matrices with different missing data. All combined analyses using Parsimony recovered the topology Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). Bayesian analyses with matched morphological and molecular sampling recover the same topology, but analyses based on other data recover a different Bayesian topology: ((Polygalaceae + Leguminosae) (Quillajaceae + Surianaceae)). We explore the evolution of floral characters in the context of the more consistent topology: Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). This reveals synapomorphies for (Leguminosae (Quillajaceae + Suri- anaceae)) as the presence of free filaments and marginal ⁄ ventral placentation, for (Quillajaceae + Surianaceae) as pentamery and apocarpy, and for Leguminosae the presence of an abaxial median sepal and unicarpellate gynoecium. An octamerous androecium is synapomorphic for Polygalaceae. The development of papilionate flowers, and the evolutionary context in which these phenotypes appeared in Leguminosae and Polygalaceae, shows that the morphologies are convergent rather than synapomorphic within Fabales.
    [Show full text]