4. Basic Concepts in This Section We Take X to Be Any Infinite Set Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Introduction to Nonstandard Analysis 11
AN INTRODUCTION TO NONSTANDARD ANALYSIS ISAAC DAVIS Abstract. In this paper we give an introduction to nonstandard analysis, starting with an ultrapower construction of the hyperreals. We then demon- strate how theorems in standard analysis \transfer over" to nonstandard anal- ysis, and how theorems in standard analysis can be proven using theorems in nonstandard analysis. 1. Introduction For many centuries, early mathematicians and physicists would solve problems by considering infinitesimally small pieces of a shape, or movement along a path by an infinitesimal amount. Archimedes derived the formula for the area of a circle by thinking of a circle as a polygon with infinitely many infinitesimal sides [1]. In particular, the construction of calculus was first motivated by this intuitive notion of infinitesimal change. G.W. Leibniz's derivation of calculus made extensive use of “infinitesimal” numbers, which were both nonzero but small enough to add to any real number without changing it noticeably. Although intuitively clear, infinitesi- mals were ultimately rejected as mathematically unsound, and were replaced with the common -δ method of computing limits and derivatives. However, in 1960 Abraham Robinson developed nonstandard analysis, in which the reals are rigor- ously extended to include infinitesimal numbers and infinite numbers; this new extended field is called the field of hyperreal numbers. The goal was to create a system of analysis that was more intuitively appealing than standard analysis but without losing any of the rigor of standard analysis. In this paper, we will explore the construction and various uses of nonstandard analysis. In section 2 we will introduce the notion of an ultrafilter, which will allow us to do a typical ultrapower construction of the hyperreal numbers. -
Actual Infinitesimals in Leibniz's Early Thought
Actual Infinitesimals in Leibniz’s Early Thought By RICHARD T. W. ARTHUR (HAMILTON, ONTARIO) Abstract Before establishing his mature interpretation of infinitesimals as fictions, Gottfried Leibniz had advocated their existence as actually existing entities in the continuum. In this paper I trace the development of these early attempts, distinguishing three distinct phases in his interpretation of infinitesimals prior to his adopting a fictionalist interpretation: (i) (1669) the continuum consists of assignable points separated by unassignable gaps; (ii) (1670-71) the continuum is composed of an infinity of indivisible points, or parts smaller than any assignable, with no gaps between them; (iii) (1672- 75) a continuous line is composed not of points but of infinitely many infinitesimal lines, each of which is divisible and proportional to a generating motion at an instant (conatus). In 1676, finally, Leibniz ceased to regard infinitesimals as actual, opting instead for an interpretation of them as fictitious entities which may be used as compendia loquendi to abbreviate mathematical reasonings. Introduction Gottfried Leibniz’s views on the status of infinitesimals are very subtle, and have led commentators to a variety of different interpretations. There is no proper common consensus, although the following may serve as a summary of received opinion: Leibniz developed the infinitesimal calculus in 1675-76, but during the ensuing twenty years was content to refine its techniques and explore the richness of its applications in co-operation with Johann and Jakob Bernoulli, Pierre Varignon, de l’Hospital and others, without worrying about the ontic status of infinitesimals. Only after the criticisms of Bernard Nieuwentijt and Michel Rolle did he turn himself to the question of the foundations of the calculus and 2 Richard T. -
0.999… = 1 an Infinitesimal Explanation Bryan Dawson
0 1 2 0.9999999999999999 0.999… = 1 An Infinitesimal Explanation Bryan Dawson know the proofs, but I still don’t What exactly does that mean? Just as real num- believe it.” Those words were uttered bers have decimal expansions, with one digit for each to me by a very good undergraduate integer power of 10, so do hyperreal numbers. But the mathematics major regarding hyperreals contain “infinite integers,” so there are digits This fact is possibly the most-argued- representing not just (the 237th digit past “Iabout result of arithmetic, one that can evoke great the decimal point) and (the 12,598th digit), passion. But why? but also (the Yth digit past the decimal point), According to Robert Ely [2] (see also Tall and where is a negative infinite hyperreal integer. Vinner [4]), the answer for some students lies in their We have four 0s followed by a 1 in intuition about the infinitely small: While they may the fifth decimal place, and also where understand that the difference between and 1 is represents zeros, followed by a 1 in the Yth less than any positive real number, they still perceive a decimal place. (Since we’ll see later that not all infinite nonzero but infinitely small difference—an infinitesimal hyperreal integers are equal, a more precise, but also difference—between the two. And it’s not just uglier, notation would be students; most professional mathematicians have not or formally studied infinitesimals and their larger setting, the hyperreal numbers, and as a result sometimes Confused? Perhaps a little background information wonder . -
Connes on the Role of Hyperreals in Mathematics
Found Sci DOI 10.1007/s10699-012-9316-5 Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics Vladimir Kanovei · Mikhail G. Katz · Thomas Mormann © Springer Science+Business Media Dordrecht 2012 Abstract We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in func- tional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “vir- tual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnera- ble to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace − (featured on the front cover of Connes’ magnum opus) V. -
Lecture 25: Ultraproducts
LECTURE 25: ULTRAPRODUCTS CALEB STANFORD First, recall that given a collection of sets and an ultrafilter on the index set, we formed an ultraproduct of those sets. It is important to think of the ultraproduct as a set-theoretic construction rather than a model- theoretic construction, in the sense that it is a product of sets rather than a product of structures. I.e., if Xi Q are sets for i = 1; 2; 3;:::, then Xi=U is another set. The set we use does not depend on what constant, function, and relation symbols may exist and have interpretations in Xi. (There are of course profound model-theoretic consequences of this, but the underlying construction is a way of turning a collection of sets into a new set, and doesn't make use of any notions from model theory!) We are interested in the particular case where the index set is N and where there is a set X such that Q Xi = X for all i. Then Xi=U is written XN=U, and is called the ultrapower of X by U. From now on, we will consider the ultrafilter to be a fixed nonprincipal ultrafilter, and will just consider the ultrapower of X to be the ultrapower by this fixed ultrafilter. It doesn't matter which one we pick, in the sense that none of our results will require anything from U beyond its nonprincipality. The ultrapower has two important properties. The first of these is the Transfer Principle. The second is @0-saturation. 1. The Transfer Principle Let L be a language, X a set, and XL an L-structure on X. -
Exploring Euler's Foundations of Differential Calculus in Isabelle
Exploring Euler’s Foundations of Differential Calculus in Isabelle/HOL using Nonstandard Analysis Jessika Rockel I V N E R U S E I T H Y T O H F G E R D I N B U Master of Science Computer Science School of Informatics University of Edinburgh 2019 Abstract When Euler wrote his ‘Foundations of Differential Calculus’ [5], he did so without a concept of limits or a fixed notion of what constitutes a proof. Yet many of his results still hold up today, and he is often revered for his skillful handling of these matters despite the lack of a rigorous formal framework. Nowadays we not only have a stricter notion of proofs but we also have computer tools that can assist in formal proof development: Interactive theorem provers help users construct formal proofs interactively by verifying individual proof steps and pro- viding automation tools to help find the right rules to prove a given step. In this project we examine the section of Euler’s ‘Foundations of Differential Cal- culus’ dealing with the differentiation of logarithms [5, pp. 100-104]. We retrace his arguments in the interactive theorem prover Isabelle to verify his lines of argument and his conclusions and try to gain some insight into how he came up with them. We are mostly able to follow his general line of reasoning, and we identify a num- ber of hidden assumptions and skipped steps in his proofs. In one case where we cannot reproduce his proof directly we can still validate his conclusions, providing a proof that only uses methods that were available to Euler at the time. -
Hyperreal Calculus MAT2000 ––Project in Mathematics
Hyperreal Calculus MAT2000 ––Project in Mathematics Arne Tobias Malkenes Ødegaard Supervisor: Nikolai Bjørnestøl Hansen Abstract This project deals with doing calculus not by using epsilons and deltas, but by using a number system called the hyperreal numbers. The hyperreal numbers is an extension of the normal real numbers with both infinitely small and infinitely large numbers added. We will first show how this system can be created, and then show some basic properties of the hyperreal numbers. Then we will show how one can treat the topics of convergence, continuity, limits and differentiation in this system and we will show that the two approaches give rise to the same definitions and results. Contents 1 Construction of the hyperreal numbers 3 1.1 Intuitive construction . .3 1.2 Ultrafilters . .3 1.3 Formal construction . .4 1.4 Infinitely small and large numbers . .5 1.5 Enlarging sets . .5 1.6 Extending functions . .6 2 The transfer principle 6 2.1 Stating the transfer principle . .6 2.2 Using the transfer principle . .7 3 Properties of the hyperreals 8 3.1 Terminology and notation . .8 3.2 Arithmetic of hyperreals . .9 3.3 Halos . .9 3.4 Shadows . 10 4 Convergence 11 4.1 Convergence in hyperreal calculus . 11 4.2 Monotone convergence . 12 5 Continuity 13 5.1 Continuity in hyperreal calculus . 13 5.2 Examples . 14 5.3 Theorems about continuity . 15 5.4 Uniform continuity . 16 6 Limits and derivatives 17 6.1 Limits in hyperreal calculus . 17 6.2 Differentiation in hyperreal calculus . 18 6.3 Examples . 18 6.4 Increments . -
What Makes a Theory of Infinitesimals Useful? a View by Klein and Fraenkel
WHAT MAKES A THEORY OF INFINITESIMALS USEFUL? A VIEW BY KLEIN AND FRAENKEL VLADIMIR KANOVEI, KARIN U. KATZ, MIKHAIL G. KATZ, AND THOMAS MORMANN Abstract. Felix Klein and Abraham Fraenkel each formulated a criterion for a theory of infinitesimals to be successful, in terms of the feasibility of implementation of the Mean Value Theorem. We explore the evolution of the idea over the past century, and the role of Abraham Robinson’s framework therein. 1. Introduction Historians often take for granted a historical continuity between the calculus and analysis as practiced by the 17–19th century authors, on the one hand, and the arithmetic foundation for classical analysis as developed starting with the work of Cantor, Dedekind, and Weierstrass around 1870, on the other. We extend this continuity view by exploiting the Mean Value Theo- rem (MVT) as a case study to argue that Abraham Robinson’s frame- work for analysis with infinitesimals constituted a continuous extension of the procedures of the historical infinitesimal calculus. Moreover, Robinson’s framework provided specific answers to traditional preoc- cupations, as expressed by Klein and Fraenkel, as to the applicability of rigorous infinitesimals in calculus and analysis. This paper is meant as a modest contribution to the prehistory of Robinson’s framework for infinitesimal analysis. To comment briefly arXiv:1802.01972v1 [math.HO] 1 Feb 2018 on a broader picture, in a separate article by Bair et al. [1] we ad- dress the concerns of those scholars who feel that insofar as Robinson’s framework relies on the resources of a logical framework that bears little resemblance to the frameworks that gave rise to the early theo- ries of infinitesimals, Robinson’s framework has little bearing on the latter. -
When Is .999... Less Than 1?
The Mathematics Enthusiast Volume 7 Number 1 Article 11 1-2010 When is .999... less than 1? Karin Usadi Katz Mikhail G. Katz Follow this and additional works at: https://scholarworks.umt.edu/tme Part of the Mathematics Commons Let us know how access to this document benefits ou.y Recommended Citation Katz, Karin Usadi and Katz, Mikhail G. (2010) "When is .999... less than 1?," The Mathematics Enthusiast: Vol. 7 : No. 1 , Article 11. Available at: https://scholarworks.umt.edu/tme/vol7/iss1/11 This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. TMME, vol. 7, no. 1, p. 3 When is .999... less than 1? Karin Usadi Katz and Mikhail G. Katz0 We examine alternative interpretations of the symbol described as nought, point, nine recurring. Is \an infinite number of 9s" merely a figure of speech? How are such al- ternative interpretations related to infinite cardinalities? How are they expressed in Lightstone's \semicolon" notation? Is it possible to choose a canonical alternative inter- pretation? Should unital evaluation of the symbol :999 : : : be inculcated in a pre-limit teaching environment? The problem of the unital evaluation is hereby examined from the pre-R, pre-lim viewpoint of the student. 1. Introduction Leading education researcher and mathematician D. Tall [63] comments that a mathe- matician \may think -
Arxiv:0811.0164V8 [Math.HO] 24 Feb 2009 N H S Gat2006393)
A STRICT NON-STANDARD INEQUALITY .999 ...< 1 KARIN USADI KATZ AND MIKHAIL G. KATZ∗ Abstract. Is .999 ... equal to 1? A. Lightstone’s decimal expan- sions yield an infinity of numbers in [0, 1] whose expansion starts with an unbounded number of repeated digits “9”. We present some non-standard thoughts on the ambiguity of the ellipsis, mod- eling the cognitive concept of generic limit of B. Cornu and D. Tall. A choice of a non-standard hyperinteger H specifies an H-infinite extended decimal string of 9s, corresponding to an infinitesimally diminished hyperreal value (11.5). In our model, the student re- sistance to the unital evaluation of .999 ... is directed against an unspoken and unacknowledged application of the standard part function, namely the stripping away of a ghost of an infinitesimal, to echo George Berkeley. So long as the number system has not been specified, the students’ hunch that .999 ... can fall infinites- imally short of 1, can be justified in a mathematically rigorous fashion. Contents 1. The problem of unital evaluation 2 2. A geometric sum 3 3.Arguingby“Itoldyouso” 4 4. Coming clean 4 5. Squaring .999 ...< 1 with reality 5 6. Hyperreals under magnifying glass 7 7. Zooming in on slope of tangent line 8 arXiv:0811.0164v8 [math.HO] 24 Feb 2009 8. Hypercalculator returns .999 ... 8 9. Generic limit and precise meaning of infinity 10 10. Limits, generic limits, and Flatland 11 11. Anon-standardglossary 12 Date: October 22, 2018. 2000 Mathematics Subject Classification. Primary 26E35; Secondary 97A20, 97C30 . Key words and phrases. -
Procedures of Leibnizian Infinitesimal Calculus: an Account in Three
PROCEDURES OF LEIBNIZIAN INFINITESIMAL CALCULUS: AN ACCOUNT IN THREE MODERN FRAMEWORKS JACQUES BAIR, PIOTR BLASZCZYK, ROBERT ELY, MIKHAIL G. KATZ, AND KARL KUHLEMANN Abstract. Recent Leibniz scholarship has sought to gauge which foundational framework provides the most successful account of the procedures of the Leibnizian calculus (LC). While many schol- ars (e.g., Ishiguro, Levey) opt for a default Weierstrassian frame- work, Arthur compares LC to a non-Archimedean framework SIA (Smooth Infinitesimal Analysis) of Lawvere–Kock–Bell. We ana- lyze Arthur’s comparison and find it rife with equivocations and misunderstandings on issues including the non-punctiform nature of the continuum, infinite-sided polygons, and the fictionality of infinitesimals. Rabouin and Arthur claim that Leibniz considers infinities as contradictory, and that Leibniz’ definition of incompa- rables should be understood as nominal rather than as semantic. However, such claims hinge upon a conflation of Leibnizian notions of bounded infinity and unbounded infinity, a distinction empha- sized by early Knobloch. The most faithful account of LC is arguably provided by Robin- son’s framework. We exploit an axiomatic framework for infini- tesimal analysis called SPOT (conservative over ZF) to provide a formalisation of LC, including the bounded/unbounded dichotomy, the assignable/inassignable dichotomy, the generalized relation of equality up to negligible terms, and the law of continuity. arXiv:2011.12628v1 [math.HO] 25 Nov 2020 Contents 1. Introduction 3 1.1. Grafting of the Epsilontik on the calculus of Leibniz 4 1.2. From Berkeley’s ghosts to Guicciardini’s limits 5 1.3. Modern interpretations 7 1.4. Was the fictionalist interpretation a late development? 10 1.5. -
H. Jerome Keisler : Foundations of Infinitesimal Calculus
FOUNDATIONS OF INFINITESIMAL CALCULUS H. JEROME KEISLER Department of Mathematics University of Wisconsin, Madison, Wisconsin, USA [email protected] June 4, 2011 ii This work is licensed under the Creative Commons Attribution-Noncommercial- Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ Copyright c 2007 by H. Jerome Keisler CONTENTS Preface................................................................ vii Chapter 1. The Hyperreal Numbers.............................. 1 1A. Structure of the Hyperreal Numbers (x1.4, x1.5) . 1 1B. Standard Parts (x1.6)........................................ 5 1C. Axioms for the Hyperreal Numbers (xEpilogue) . 7 1D. Consequences of the Transfer Axiom . 9 1E. Natural Extensions of Sets . 14 1F. Appendix. Algebra of the Real Numbers . 19 1G. Building the Hyperreal Numbers . 23 Chapter 2. Differentiation........................................ 33 2A. Derivatives (x2.1, x2.2) . 33 2B. Infinitesimal Microscopes and Infinite Telescopes . 35 2C. Properties of Derivatives (x2.3, x2.4) . 38 2D. Chain Rule (x2.6, x2.7). 41 Chapter 3. Continuous Functions ................................ 43 3A. Limits and Continuity (x3.3, x3.4) . 43 3B. Hyperintegers (x3.8) . 47 3C. Properties of Continuous Functions (x3.5{x3.8) . 49 Chapter 4. Integration ............................................ 59 4A. The Definite Integral (x4.1) . 59 4B. Fundamental Theorem of Calculus (x4.2) . 64 4C. Second Fundamental Theorem of Calculus (x4.2) . 67 Chapter 5. Limits ................................................... 71 5A. "; δ Conditions for Limits (x5.8, x5.1) . 71 5B. L'Hospital's Rule (x5.2) . 74 Chapter 6. Applications of the Integral........................ 77 6A. Infinite Sum Theorem (x6.1, x6.2, x6.6) . 77 6B. Lengths of Curves (x6.3, x6.4) .