What Makes a Theory of Infinitesimals Useful? a View by Klein and Fraenkel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Introduction to Nonstandard Analysis 11
AN INTRODUCTION TO NONSTANDARD ANALYSIS ISAAC DAVIS Abstract. In this paper we give an introduction to nonstandard analysis, starting with an ultrapower construction of the hyperreals. We then demon- strate how theorems in standard analysis \transfer over" to nonstandard anal- ysis, and how theorems in standard analysis can be proven using theorems in nonstandard analysis. 1. Introduction For many centuries, early mathematicians and physicists would solve problems by considering infinitesimally small pieces of a shape, or movement along a path by an infinitesimal amount. Archimedes derived the formula for the area of a circle by thinking of a circle as a polygon with infinitely many infinitesimal sides [1]. In particular, the construction of calculus was first motivated by this intuitive notion of infinitesimal change. G.W. Leibniz's derivation of calculus made extensive use of “infinitesimal” numbers, which were both nonzero but small enough to add to any real number without changing it noticeably. Although intuitively clear, infinitesi- mals were ultimately rejected as mathematically unsound, and were replaced with the common -δ method of computing limits and derivatives. However, in 1960 Abraham Robinson developed nonstandard analysis, in which the reals are rigor- ously extended to include infinitesimal numbers and infinite numbers; this new extended field is called the field of hyperreal numbers. The goal was to create a system of analysis that was more intuitively appealing than standard analysis but without losing any of the rigor of standard analysis. In this paper, we will explore the construction and various uses of nonstandard analysis. In section 2 we will introduce the notion of an ultrafilter, which will allow us to do a typical ultrapower construction of the hyperreal numbers. -
New Publications Offered by the AMS
New Publications Offered by the AMS appropriate generality waited for the seventies. These early Algebra and Algebraic occurrences were in algebraic topology in the study of (iter- ated) loop spaces and their chain algebras. In the nineties, Geometry there was a renaissance and further development of the theory inspired by the discovery of new relationships with graph cohomology, representation theory, algebraic geometry, Almost Commuting derived categories, Morse theory, symplectic and contact EMOIRS M of the geometry, combinatorics, knot theory, moduli spaces, cyclic American Mathematical Society Elements in Compact cohomology, and, not least, theoretical physics, especially Volume 157 Number 747 string field theory and deformation quantization. The general- Almost Commuting Lie Groups Elements in ization of quadratic duality (e.g., Lie algebras as dual to Compact Lie Groups Armand Borel, Institute for commutative algebras) together with the property of Koszul- Armand Borel Advanced Study, Princeton, NJ, ness in an essentially operadic context provided an additional Robert Friedman computational tool for studying homotopy properties outside John W. Morgan and Robert Friedman and THEMAT A IC M A L N A S O C I C of the topological setting. R I E E T M Y A FO 8 U 88 John W. Morgan, Columbia NDED 1 University, New York City, NY The book contains a detailed and comprehensive historical American Mathematical Society introduction describing the development of operad theory Contents: Introduction; Almost from the initial period when it was a rather specialized tool in commuting N-tuples; Some characterizations of groups of homotopy theory to the present when operads have a wide type A; c-pairs; Commuting triples; Some results on diagram range of applications in algebra, topology, and mathematical automorphisms and associated root systems; The fixed physics. -
0.999… = 1 an Infinitesimal Explanation Bryan Dawson
0 1 2 0.9999999999999999 0.999… = 1 An Infinitesimal Explanation Bryan Dawson know the proofs, but I still don’t What exactly does that mean? Just as real num- believe it.” Those words were uttered bers have decimal expansions, with one digit for each to me by a very good undergraduate integer power of 10, so do hyperreal numbers. But the mathematics major regarding hyperreals contain “infinite integers,” so there are digits This fact is possibly the most-argued- representing not just (the 237th digit past “Iabout result of arithmetic, one that can evoke great the decimal point) and (the 12,598th digit), passion. But why? but also (the Yth digit past the decimal point), According to Robert Ely [2] (see also Tall and where is a negative infinite hyperreal integer. Vinner [4]), the answer for some students lies in their We have four 0s followed by a 1 in intuition about the infinitely small: While they may the fifth decimal place, and also where understand that the difference between and 1 is represents zeros, followed by a 1 in the Yth less than any positive real number, they still perceive a decimal place. (Since we’ll see later that not all infinite nonzero but infinitely small difference—an infinitesimal hyperreal integers are equal, a more precise, but also difference—between the two. And it’s not just uglier, notation would be students; most professional mathematicians have not or formally studied infinitesimals and their larger setting, the hyperreal numbers, and as a result sometimes Confused? Perhaps a little background information wonder . -
Connes on the Role of Hyperreals in Mathematics
Found Sci DOI 10.1007/s10699-012-9316-5 Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics Vladimir Kanovei · Mikhail G. Katz · Thomas Mormann © Springer Science+Business Media Dordrecht 2012 Abstract We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in func- tional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “vir- tual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnera- ble to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace − (featured on the front cover of Connes’ magnum opus) V. -
Lecture 25: Ultraproducts
LECTURE 25: ULTRAPRODUCTS CALEB STANFORD First, recall that given a collection of sets and an ultrafilter on the index set, we formed an ultraproduct of those sets. It is important to think of the ultraproduct as a set-theoretic construction rather than a model- theoretic construction, in the sense that it is a product of sets rather than a product of structures. I.e., if Xi Q are sets for i = 1; 2; 3;:::, then Xi=U is another set. The set we use does not depend on what constant, function, and relation symbols may exist and have interpretations in Xi. (There are of course profound model-theoretic consequences of this, but the underlying construction is a way of turning a collection of sets into a new set, and doesn't make use of any notions from model theory!) We are interested in the particular case where the index set is N and where there is a set X such that Q Xi = X for all i. Then Xi=U is written XN=U, and is called the ultrapower of X by U. From now on, we will consider the ultrafilter to be a fixed nonprincipal ultrafilter, and will just consider the ultrapower of X to be the ultrapower by this fixed ultrafilter. It doesn't matter which one we pick, in the sense that none of our results will require anything from U beyond its nonprincipality. The ultrapower has two important properties. The first of these is the Transfer Principle. The second is @0-saturation. 1. The Transfer Principle Let L be a language, X a set, and XL an L-structure on X. -
Exploring Euler's Foundations of Differential Calculus in Isabelle
Exploring Euler’s Foundations of Differential Calculus in Isabelle/HOL using Nonstandard Analysis Jessika Rockel I V N E R U S E I T H Y T O H F G E R D I N B U Master of Science Computer Science School of Informatics University of Edinburgh 2019 Abstract When Euler wrote his ‘Foundations of Differential Calculus’ [5], he did so without a concept of limits or a fixed notion of what constitutes a proof. Yet many of his results still hold up today, and he is often revered for his skillful handling of these matters despite the lack of a rigorous formal framework. Nowadays we not only have a stricter notion of proofs but we also have computer tools that can assist in formal proof development: Interactive theorem provers help users construct formal proofs interactively by verifying individual proof steps and pro- viding automation tools to help find the right rules to prove a given step. In this project we examine the section of Euler’s ‘Foundations of Differential Cal- culus’ dealing with the differentiation of logarithms [5, pp. 100-104]. We retrace his arguments in the interactive theorem prover Isabelle to verify his lines of argument and his conclusions and try to gain some insight into how he came up with them. We are mostly able to follow his general line of reasoning, and we identify a num- ber of hidden assumptions and skipped steps in his proofs. In one case where we cannot reproduce his proof directly we can still validate his conclusions, providing a proof that only uses methods that were available to Euler at the time. -
4. Basic Concepts in This Section We Take X to Be Any Infinite Set Of
401 4. Basic Concepts In this section we take X to be any infinite set of individuals that contains R as a subset and we assume that ∗ : U(X) → U(∗X) is a proper nonstandard extension. The purpose of this section is to introduce three important concepts that are characteristic of arguments using nonstandard analysis: overspill and underspill (consequences of certain sets in U(∗X) not being internal); hy- perfinite sets and hyperfinite sums (combinatorics of hyperfinite objects in U(∗X)); and saturation. Overspill and underspill ∗ ∗ 4.1. Lemma. The sets N, µ(0), and fin( R) are external in U( X). Proof. Every bounded nonempty subset of N has a maximum element. By transfer we conclude that every bounded nonempty internal subset of ∗N ∗ has a maximum element. Since N is a subset of N that is bounded above ∗ (by any infinite element of N) but that has no maximum element, it follows that N is external. Every bounded nonempty subset of R has a least upper bound. By transfer ∗ we conclude that every bounded nonempty internal subset of R has a least ∗ upper bound. Since µ(0) is a bounded nonempty subset of R that has no least upper bound, it follows that µ(0) is external. ∗ ∗ ∗ If fin( R) were internal, so would N = fin( R) ∩ N be internal. Since N is ∗ external, it follows that fin( R) is also external. 4.2. Proposition. (Overspill and Underspill Principles) Let A be an in- ternal set in U(∗X). ∗ (1) (For N) A contains arbitrarily large elements of N if and only if A ∗ contains arbitrarily small infinite elements of N. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
Fall 2006 [Pdf]
Le Bulletin du CRM • www.crm.umontreal.ca • Automne/Fall 2006 | Volume 12 – No 2 | Le Centre de recherches mathématiques A Review of CRM’s 2005 – 2006 Thematic Programme An Exciting Year on Analysis in Number Theory by Chantal David (Concordia University) The thematic year “Analysis in Number The- tribution of integers, and level statistics), integer and rational ory” that was held at the CRM in 2005 – points on varieties (geometry of numbers, the circle method, 2006 consisted of two semesters with differ- homogeneous varieties via spectral theory and ergodic theory), ent foci, both exploring the fruitful interac- the André – Oort conjectures (equidistribution of CM-points tions between analysis and number theory. and Hecke points, and points of small height) and quantum The first semester focused on p-adic analy- ergodicity (quantum maps and modular surfaces) The main sis and arithmetic geometry, and the second speakers were Yuri Bilu (Bordeaux I), Bill Duke (UCLA), John semester on classical analysis and analytic number theory. In Friedlander (Toronto), Andrew Granville (Montréal), Roger both themes, several workshops, schools and focus periods Heath-Brown (Oxford), Elon Lindenstrauss (New York), Jens concentrated on the new and exciting developments of the re- Marklof (Bristol), Zeev Rudnick (Tel Aviv), Wolfgang Schmidt cent years that have emerged from the interplay between anal- (Colorado, Boulder and Vienna), K. Soundararajan (Michigan), ysis and number theory. The thematic year was funded by the Yuri Tschinkel (Göttingen), Emmanuel Ullmo (Paris-Sud), and CRM, NSF, NSERC, FQRNT, the Clay Institute, NATO, and Akshay Venkatesh (MIT). the Dimatia Institute from Prague. In addition to the partici- The workshop on “p-adic repre- pants of the six workshops and two schools held during the sentations,” organised by Henri thematic year, more than forty mathematicians visited Mon- Darmon (McGill) and Adrian tréal for periods varying from two weeks to six months. -
SCIENTIFIC REPORT for the YEAR 1995 ESI, Pasteurgasse 6/7, A-1090 Wien, Austria
The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the year 1995 Vienna, ESI-Report 1995 February 25, 1996 Supported by Federal Ministry of Science and Research, Austria Available via anonymous ftp or gopher from FTP.ESI.AC.AT, URL: http://www.esi.ac.at/ ESI–Report 1995 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE YEAR 1995 ESI, Pasteurgasse 6/7, A-1090 Wien, Austria February 25, 1996 Table of contents General remarks . 2 Winter School in Geometry and Physics . 2 ACTIVITIES IN 1995 . 3 Two-dimensional quantum field theory . 3 Complex Analysis . 3 Noncommutative Differential Geometry . 4 Field theory and differential geometry . 5 Geometry of nonlinear partial differential equations . 5 Gibbs random fields and phase transitions . 5 Reaction-diffusion Equations in Biological Context . 7 Condensed Matter Physics . 7 Semi-Classical Limits and Kinetic Equations . 8 Guests of Walter Thirring . 8 Guests of Klaus Schmidt . 8 Guest of Wolfgang Kummer . 8 CONTINUATIONS OF ACTIVITIES FROM 1994 . 10 Continuation Operator algebras . 10 Continuation Schr¨odinger Operators . 10 Continuation Mathematical Relativity . 10 Continuation Quaternionic manifolds . 10 Continuation Spinor - and twistor theory . 10 List of Preprints . 10 List of seminars and colloquia . 18 List of all visitors in the year 1995 . 21 Impressum: Eigent¨umer, Verleger, Herausgeber: Erwin Schr¨odinger International Institute of Mathematical Physics. Offenlegung nach §25 Mediengesetz: Verlags- und Herstellungsort: Wien, Ziel der Zeitung: Wis- senschaftliche Information, Redaktion: Peter W. Michor Typeset by AMS-TEX Typeset by AMS-TEX 2 Scientific report 1995 General remarks The directors of ESI changed. -
Math Book from Wikipedia
Math book From Wikipedia PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Mon, 25 Jul 2011 10:39:12 UTC Contents Articles 0.999... 1 1 (number) 20 Portal:Mathematics 24 Signed zero 29 Integer 32 Real number 36 References Article Sources and Contributors 44 Image Sources, Licenses and Contributors 46 Article Licenses License 48 0.999... 1 0.999... In mathematics, the repeating decimal 0.999... (which may also be written as 0.9, , 0.(9), or as 0. followed by any number of 9s in the repeating decimal) denotes a real number that can be shown to be the number one. In other words, the symbols 0.999... and 1 represent the same number. Proofs of this equality have been formulated with varying degrees of mathematical rigour, taking into account preferred development of the real numbers, background assumptions, historical context, and target audience. That certain real numbers can be represented by more than one digit string is not limited to the decimal system. The same phenomenon occurs in all integer bases, and mathematicians have also quantified the ways of writing 1 in non-integer bases. Nor is this phenomenon unique to 1: every nonzero, terminating decimal has a twin with trailing 9s, such as 8.32 and 8.31999... The terminating decimal is simpler and is almost always the preferred representation, contributing to a misconception that it is the only representation. The non-terminating form is more convenient for understanding the decimal expansions of certain fractions and, in base three, for the structure of the ternary Cantor set, a simple fractal. -
Coherence Constraints for Operads, Categories and Algebras
WSGP 20 Martin Markl; Steve Shnider Coherence constraints for operads, categories and algebras In: Jan Slovák and Martin Čadek (eds.): Proceedings of the 20th Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 2001. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 66. pp. 29--57. Persistent URL: http://dml.cz/dmlcz/701667 Terms of use: © Circolo Matematico di Palermo, 2001 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO Serie II, Suppl. 66 (2001) pp. 29-57 COHERENCE CONSTRAINTS FOR OPERADS, CATEGORIES AND ALGEBRAS MARTIN MARKL AND STEVE SHNIDER ABSTRACT. Coherence phenomena appear in two different situations. In the context of category theory the term 'coherence constraints' refers to a set of diagrams whose commutativity implies the commutativity of a larger class of diagrams. In the context of algebra coherence constrains are a minimal set of generators for the second syzygy, that is, a set of equations which generate the full set of identities among the defining relations of an algebraic theory. A typical example of the first type is Mac Lane's coherence theorem for monoidal categories [9, Theorem 3.1], an example of the second type is the result of [2] saying that pentagon identity for the 'associator' $ of a quasi-Hopf algebra implies the validity of a set of identities with higher instances of $.