Haviland Products Company Commodity Chemical List (Condensed)

Total Page:16

File Type:pdf, Size:1020Kb

Haviland Products Company Commodity Chemical List (Condensed) Haviland Products Company Commodity Chemical List (Condensed) A Cobalt Acetate Magnesium Oxide Acetone Cobalt Sulfate Heptahydrate Magnesium Sulfate ACIDS Copper Carbonate Methanol (Methyl Alcohol) Copper Cyanide Methyl Amyl Ketone Copper Sulfate Methyl Ethyl Ketone Acetic Corn Cob Methyl Iso Butyl Ketone Ascorbic Cyclohexanone Methylene Chloride Battery D Metso Beads 2048 Boric DE Filter Powder (Aqua Cel) Metso Penta Beads 20 Chromic Deionized Water Mineral Spirits Citric Del Drum Pump Monoethanolamine Erythorbic Diacetone Alcohol Mono Sodium Phosphate Formic Diatomaceous Earth Fluoboric Di Basic Ester Glacial Acetic Di Sodium Phosphate Anhyd N Glycolic Di Isopropanolamine NMP Hydrobromic Diethanolamine Naptha VMP Hydrochloric Diethylene Glycol Nickel 1”x1” Squares Hydrosulfuric Dipropylene Glycol Nickel Acetate Lactic Dowfrost Nickel Carbonate Muriatic Dowtherm SR1 Nickel Chips Nitric E Nickel Chloride (Liquid & Dry) Oxalic EDTA Nickel Crowns Peracetic Epsom Salts Nickel “S” Rounds Phosphoric Ethyl Acetate Nickel Sulfate (Liquid & Dry) Sulfamic Ethyl Alcohol (Ethanol) P Sulfuric Ethylene Glycol Paint Thinners Tartaric F Perchlorethylene Ferric Chloride Poly Glycol E-400 Potassium Carbonate Aluminum Sulfate (Dry & Liquid) Ferric Sulfate (Ferri Floc) Ferrous Sulfate Potassium Chloride Ammonium Bicarbonate Potassium Cyanide Ammonium Bifluoride Fibra Cel Filter Aids Potassium Hydroxide (Liquid & Dry) Ammonium Chloride Potassium Iodide Ammonium Hydroxide Formaldehyde 25% & 37% G Potassium Permanganate Ammonium Persulfate Potassium Phosphate Mono Basic Ammonium Sulfate Glycerine Glycol Ethers Potassium Sorbate Aqua Ammonia Potassium Stannate B Glycol Fluids H Propyl Acetate Battery Acid Propyl Alcohol Barium Carbonate Hampene 220 Heptane Propylene Glycol Bentonite R Bicarbonate of Soda Hexane Hydrazine Rochelle Salts Bleach (All Strengths) S Borax (5 & 10 Mol) Hydrogen Peroxide Hyflo Super Cel Salt Butyl Acetate Silicate of Soda Butyl Alcohol I Ice Melt Silica Sand C Soda Ash Cabosil M-5 Iso Butyl Acetate Iso Butyl Alcohol Sodium Acetate Calcium Hypochlorite Sodium Acid Pyro Phosphate Calcium Carbonate Iso Propyl Alcohol (IPA) L Sodium Benzoate Calcium Chloride Sodium Bicarbonate Carbon Lacquer Thinners Lead Anodes Sodium Bifluoride Caustic Potash (Flake, Liquid) Sodium Bisulfate Caustic Soda (Beads, Flake, Liquid) Lime & Sulfur Lime (Codex, Hydrated, Quick) Sodium Bisulfite Caustic Soda (Rayon, Membrane, Sodium Borohydride Diaphragm) Ludox HS-40 M Sodium Chlorite Citrus Distillate Magnesium Bisulfite (MBS 7330) Sodium Citrate Sodium Cyanide (Brik) Haviland Products Company Commodity Chemical List (Condensed) Sodium Cyanide (Gran) WATER TREATMENT & FOOD Glycine Sodium Dichromate High Fructose Corn Syrup 42 Sodium Fluoride HP Oxysan Sodium Gluconate Aluminum Chloride Hydrogen Peroxide (All Strengths) Sodium Glycolate Aluminum Chlorhydrate (ACH) Lactic Acid - 50% / 80% / 88% Sodium Hexameta Phosphate Aluminum Sulfate Malic Acid Sodium Hydroxide (Liquid & Dry) Bleach Maltiol Sodium Hypochlorite (All Strengths) Calcium Chloride Oils and Oil Flavorings Sodium Hydrosulfite Carbamates (ENP #2) Phosphates Sodium Hypophosphite Caustic Soda Phosphoric Acid Sodium Metasilicate Ferric Chloride Polysorbates Sodium Nitrate Ferrous Sulfate Potassium Sorbate Sodium Nitrite HFS Propylene Glycol USP Grade Sodium Sesquicarbonate Lime Salt Sodium Silicofluoride Magnesium Bisulfite Sodium Benzoate Sodium Stannate Magnesium Hydroxide Sodium Bicarbonate USP Grade Sodium Sulfate Phosphates Sodium Citrate Sodium Sulfide Polyaluminum Chloride (PAC) Sodium Gluconate Sodium Sulfite Sodium Metabisulfite Sodium Tetrasulfide POLYMERS Sodium Saccharin Sodium Thiosulfate Hypo Rice Sorbitol Sodium Tri Poly Phosphate Sulfamic Acid Sodium Xylene Sulfonate Anionic Tartaric Acid Solvent Blends Wheat Gluten Solvent #140 Wheat Starch Cationic Solvent SC-100 Xanthan Gum Solvent SC-150 Yeast Extract Solvent 608 (Deodorized Kerosene) Nonionic Sorbitol Standard Super-Cel Stannous Chloride Polymer Blends Stannous Sulfate Stoddard Solvent Soda Ash Sulfolane W Sodium Chlorite Surfactant NP-9.5 Sodium Hydrosulfite T Sodium Metabisulfite TETA Sulfuric Acid Tetra Potassium 421 Ann St. N.W. Pyrophosphate Tetra Sodium Pyrophosphate FOOD & BEVERAGE Thinner Blends Grand Rapids, MI 49504 Tin Fluoborate Toluol (Toluene) Aluminum Sulfate FCC Grade Tri Sodium Phosphate Ascorbic Acid Trichlorethylene Bicarbonate of Soda USP Grade Triethanolamine Havasan LB 12 – EPA Registered U Calcium Chloride Briner's Grade Ultrasorb Celatom Filter Aids Urea Citric Acid V Versene Corn Syrup 42/43 W Walnut Shells Dowfrost X Dowtherm SR-1 Xylol Dry Spices and custom blends Dyes Epsom Salts Industrial Grade Zinc Ball Anodes Erythorbic Acid Zinc Chloride (Liquid & Dry) Flavorings and Custom Blends Zinc Cyanide Food Grade Defoamers/Antifoams ZorballXylol Glycerin USP 99.5% .
Recommended publications
  • Here the Nonspecific Term Cupreous Metals Is Used for Copper and the Alloys Such As Brass and Bronze Where Copper Predominates
    CONSERVAnON OF CUPREOUS METALS Here the nonspecific term cupreous metals is used for copper and the alloys such as brass and bronze where copper predominates. In general it matters little what the specific alloy is, for they are usually treated in the same way. Care needs to be taken only when there is a high percentage of lead or tin, both of which are amphoteric metals and dissolve in alkaline solutions. There are a considerable number of chemical treatments for copper, bronze and brass, and most are not satisfactory for cupreous metals from marine sites. Consult the bibliography at the end of this section for further information. In a marine environment the two most commonly encountered copper corrosion products are cuprous chloride and cuprous sulfide. However, the mineral alterations in the copper alloys are more complex than those of just copper. Once any cupreous object is recovered and exposed to the air, it continues to corrode by a process referred to as bronze disease. Cuprous cblorides in the presence of moisture and oxygen are hydrolyzed to form hydrochloric acid and basic cupric chloride. The hydrochloric acid in turn attacks thc uncorroded metal to form more cuprous chloride. The reaction continues until no metal remains. Any conservation of chloride contaminated cupreous objects requires that I) the cuprous chlorides be removed, 2) the cuprous chlorides be converted to harmless cuprous oxide, or 3) the chemical action of the chlorides be prevented. Cbemical Cleaning Tecbniques I. ACIDS All acid treatments require a solid metal core. All acids can and will strip off corrosion layers down to bare metal and many will even etch the barc metal.
    [Show full text]
  • Hydrite General Product Flyer
    PRODUCT OFFERING forms, trade names and a variety of certifi cations. Please call us about your specifi c chemical requirements. PRODUCTS A-Z Acetic Acid Calcium Chloride Calcium Dioctyl Phthalate Glycol Ether DPM Reduction Chemicals Acetone Hydroxide (Lime) Calcium Dipotassium Phosphate Glycol Ether EB Liquid Inorganic Salts Aluminum Brite Dips Hypochlorite Calcium (DKP) Glycol Ether EE Magnesium Bisulfi te Aluminum Chlorhydrate Phosphates Dipropylene Glycol Glycol Ether EE-AC Magnesium Chloride Aluminum Sulfate (Alum) Carboxymethyl Cellulose Disodium Phosphate Glycol Ether EM Magnesium Hydroxide Ammonium Bicarbonate Caustic Potash Dodecylbenzenesulfonic Glycol Ether EP Magnesium Oxide Ammonium Bifl uor ide Caustic Soda Acid (DDBSA) Glycol Ether PM Magnesium Phosphate Ammonium Bisulfi te Chelants Dye Fixatives Glycol Ether PM-AC Magnesium Sulfate Ammonium Chloride Chlorine Epoxy Resins HAN, Heavy Aromatic Magnesium Sulfi te Ammonium Hydroxide Chromic Acid Ethyl Acetate Naphtha Metal Finishing Products (Aqua Ammonia) Citric Acid Ethyl Alcohol Heat Transfer Fluids Methanol Ammonium Persulfate Copper Carbonate Ethylene Diamine Tetra Heptane Methyl Amyl Ketone Ammonium Phosphates Copper Cyanide Acetic Acid (EDTA) Hexane Methyl Ethyl Ketone Ammonium Sulfate Copper Sulfate Ethylene Dichloride Hexylene Glycol Methyl Isobutyl Ketone Ammonium Sulfi te Cyclohexane Ethylene Glycol HTH Methylene Chloride Mineral Anhydrous Ammonia Cyclohexanone Felt & Wire Cleaners Hydrochloric Acid Fillers Anodizing Chemicals Dairy Cleaners Ferric Chloride Hydrofluoric Acid
    [Show full text]
  • Industrial Chemicals
    Wintersun Chemical For the past two decades, Wintersun Chemical has become trusted source of Industrial chemicals. Why Wintersun? • DEA certified • NACD Verified • Sources globally • Fast and excellent performance in Customer Service, On Time Delivery, Quality and Order fill-rate • Capable of FTL/LTL, Mixed load, Hazardous/Non-hazardous shipment • Broad based product Line(Liquid/Dry; Organic/Inorganic; Commodity/Specialty) • Stock Locally and Ship immediately • Repack or OEM per your requirement • Technical Data Sheet and Packing information are available in our website • Experienced Staff in United States and overseas Since 2001, Wintersun has been a premier industrial chemical supplier distributing high quality chemicals to businesses around the world. Wintersun is located in Ontario, California with a 70,000 square feet warehouse stocked full of chemicals ready for shipment. Wintersun is proud member of National Association of Chemical Distributors (NACD) and committed to consistent and reliable source of chemicals at competitive price with exceptional customer service. Call or email Wintersun's customer service for quotations, customer service, and information at (800) 930-1688 or email us at [email protected] Wintersun Chemical 1250 E. Belmont St. Ontario CA 91761 USA http://wintersunchem.com [email protected] Phone: (800) 930-1688 Fax: (909) 947-1788 Industrial Chemicals Acetic Acid Glacial Lanolin Anhydrous USP Grade Sodium Dichloroisocyanurate Dihydrate (SDIC) Acetone L-Cysteine HCL Monohydrate USP Sodium Dichromate,
    [Show full text]
  • Superabsorbent Crosslinked Bacterial Cellulose Biomaterials for Chronic Wound Dressings
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.975003; this version posted June 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dressings Daria Ciecholewska-Juśkoa, Anna Żywickaa, Adam Junkab, Radosław Drozda, Peter Sobolewskic, Paweł Migdałd, Urszula Kowalskae, Monika Toporkiewiczf, Karol Fijałkowskia* aDepartment of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland; bDepartment of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland; cDepartment of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311 Szczecin, Poland; dDepartment of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51- 630 Wrocław, Poland; eCentre of Bioimmobilization and Innovative Packaging Materials, West Pomeranian University of Technology, Szczecin, Janickiego 35, 71-270 Szczecin, Poland; fLaboratory of Confocal Microscopy, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland. Corresponding author *Karol Fijałkowski, Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70- 311 Szczecin, Poland. Tel.: + 091 449 6714; e-mail address: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.04.975003; this version posted June 27, 2020.
    [Show full text]
  • Bronze Disease: Understanding, Curing, and Preventative Treatment Jason Sanchez Associate, American Numismatic Society Member, Crescent City Coin Club
    Bronze Disease: Understanding, Curing, and Preventative Treatment Jason Sanchez Associate, American Numismatic Society Member, Crescent City Coin Club Dr. Ken Harl, Ph.D Tulane University History Department Fellow and Trustee, American Numismatic Society Agenda Bronze Disease: Understanding, Curing and Preventative Treatment ¨What is Bronze Disease? ¨Do I have a Patina, or Bronze Disease? ¨If I have Bronze Disease, what do I do? ¨Long-term care: serious storage concerns 1 What is Bronze? Before we find out about Bronze Disease, first, the more important question: what is Bronze? ¨ An alloy of Copper (CU) of more than 90% purity in conjunction with other metals (usually tin, antimony and zinc) ¨ One of the first metals used by man – “Bronze Age” man dated from c. 3,000 BCE in Asia Minor, but the use of bronze is noted in some parts of Asia (Chiang Mai, Thailand and Sanxingdui, China) by c. 4,500 BCE ¨ American Pre-Columbian use of Bronze may have begun by 1000 CE ¨ Bronze was one of the first metals that was used for coinage ¨ Bronze coinage by far outstrips silver or gold as a constituent of the money supply for most countries up to the modern age 2 What is Bronze Disease? ¨Bronze “disease” is a condition in which the coin produces acid (normally hydrochloric or hydrosulfuric acid) internally, and begins to disintegrate ¨The exterior usually exhibits green or brown “growths” that cover the pitting that acids will create ¨Because these growths were originally believed to be caused by a bacteria, the condition became known as bronze “disease”
    [Show full text]
  • Monitoring the Conservation Treatment of Corroded Cupreous Artefacts: the Use of Electrochemistry and Synchrotron Radiation Based Spectroelectrochemistry
    FACULTY OF SCIENCE Department of Analytical Chemistry Monitoring the conservation treatment of corroded cupreous artefacts: The use of electrochemistry and synchrotron radiation based spectroelectrochemistry Thesis submitted in fulfilment of the requirements for the degree of Doctor in Science, Chemistry by Karen Leyssens Promoter: Prof. Dr. A. Adriaens Co-promoter: Dr. C. Degrigny Ghent 2006 Woord van Dank Men kan misschien wel onderzoek voeren op z’n eentj e, maar men geraakt zoveel verder met de hulp van anderen. Daarom zou ik langs deze weg graag mijn collega’s, vrienden en familie willen bedanken voor hun voortdurende steun tijdens het voltooien van dit doctoraat. Prof. Dr. A. Adriaens wens ik te bedanken voor de kans dei ze me gaf om te doctoreren, voor haar vertrouwen en de begeleiding gedurende deze 4 jaar. In het bijzonder de contacten en internationale samenwerkingen die zij tot stand bracht waren van enorme waarde voor dit werk. In this respect, I have to start with thanking Dr. C. Degrigny for suggesting several subjects of interest in the area of conservation science and even more for the discussions and support in the years thereafter. I certainly have to thank Prof. Dr. M. Dowsett from the University of Warwick for all the effort and time he invested in the design of the in situ cell and the related software, his enthusiasm during each of the measuring sessions and the hours of discussion for interpretating the XAS results. The second part of this work would not have been possible without him. Of course I should not forget all the other people involved in the synchrotron sessions for their dedication to make a succes out of each measurement.
    [Show full text]
  • Safety Assessment of Simple Carbonate Salts As Used in Cosmetics
    Safety Assessment of Simple Carbonate Salts as Used in Cosmetics Status: Tentative Report for Public Comment Release Date: June 16, 2016 Panel Date: September 26-27, 2016 All interested persons are provided 60 days from the above date to comment on this safety assessment and to identify additional published data that should be included or provide unpublished data which can be made public and included. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, will be available at the CIR office for review by any interested party and may be cited in a peer-reviewed scientific journal. Please submit data, comments, or requests to the CIR Director, Dr. Lillian J. Gill. The 2016 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This report was prepared by Wilbur Johnson, Jr., M.S., Senior Scientific Analyst and Bart Heldreth, Ph.D., Chemist. © Cosmetic Ingredient Review 1620 L STREET, NW, SUITE 1200 ◊ WASHINGTON, DC 20036-4702 ◊ PH 202.331.0651 ◊ FAX 202.331.0088 ◊ [email protected] ABSTRACT: The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of 6 simple carbonate salts which function as absorbents, bulking agents, opacifying agents, pH adjusters, buffering agents, abrasives, and oral care agents in cosmetic products.
    [Show full text]
  • Air Permit Application for Dry Sorbent and Activated Carbon Injection Units 5R4 and Sr6
    AL) CJFZX AIR PERMIT APPLICATION FOR DRY SORBENT AND ACTIVATED CARBON INJECTION UNITS 5R4 AND SR6 SCHILLER STATION PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR: Public Service Company of New Hampshire Manchester, New Hampshire PREPARED BY: GZA GeoEnvironmental, Inc. Manchester, New Hampshire February 2014 File No. 04.0029995.00 Copyright © 2014 GZA GeoEnvironmental, Inc. Public Service PSNH Energy Park of New Hampshire 780 North Commercial Street, Manchester, NH 03101 A Northeast lJiilities Company Pul)lic Service Company of New Hampshire P.O. Box 330 Manchester, NH 03105-0330 February 27, 2014 (603) 634-2851 [email protected] D32795 1ECEIVEO 7J HAMPSHIRE Mr. Craig Wright, Acting Director , William H. Smagula, P.E. Air Resources Division EB 2 / 2014 Vice President - Generation NH Dept. of Environmental Services 29 Hazen Drive, P0 Box 95 AIR OURCES Di VISION Concord, NH 03302-0095 Re: Public Service Company of New Hampshire Schiller Station - Temporary Permit Application for Installation of Dry Sorbent and Activated Carbon Injection Emission Control Technology Dear Mr. Wright: Public Service Company of New Hampshire (PSNH) submits the enclosed temporary permit application for the installation of dry sorbent (DSI) and activated carbon injection (ACI) emission control technologies on Schiller Station Units SR4 and SR6. The installation of the DSL'ACI systems will be used in conjunction with existing control technologies to meet the requirements of 40 CFR 63, Subpart UUUUU and National Emission Standards for Hazardous Air Pollutant: Coal and Oil Fired Electric Utility Steam Generating Units (Mercury and Air Toxics Standard-MATS). The proposed DSI and ACI systems are intended to reduce the emissions of acid gases (hydrogen chloride and hydrogen fluoride) and mercury, and are anticipated to also reduce emissions of sulfur dioxide and sulfuric acid mist.
    [Show full text]
  • “Inert” Ingredients Used in Organic Production
    “Inert” Ingredients Used in Organic Production Terry Shistar, PhD A Beyond Pesticides Report he relatively few registered pesticides allowed in organic production are contained in product formulations with so-called “inert” ingredients that are not disclosed on the T product label. The “inerts” make up the powder, liquid, granule, or spreader/sticking agents in pesticide formulations. The “inerts” are typically included in products with natural or synthetic active pesticide ingredients recommended by the National Organic Standards Board (NOSB) and listed by the National Organic Program (NOP) on the National List of Allowed and Prohibited Substances. Any of the pesticides that meet the standards of public health and environmental protection and organic compatibility in the Organic Foods Production Act (OFPA) may contain “inert” ingredients. Because the standards of OFPA are different from those used by the U.S. Environmental Protection Agency (EPA) to regulate pesticides and given changes in how the agency categorizes inerts, the NOSB has adopted a series of recommendations since 2010 that established a substance review process as part of the sunset review. NOP has not followed through on the Board’s recommendations and, as a result, there are numerous materials in use that have not been subject to OFPA criteria. This report (i) traces the history of the legal requirements for review by the NOSB, (ii) identifies the universe of toxic and nontoxic materials that make of the category of “inerts” used in products permitted in organic production, and (iii) suggests a path forward to ensure NOSB compliance with OFPA and uphold the integrity of the USDA organic label.
    [Show full text]
  • Sodium Sesquicarbonate (Trona) CAS No
    Product Safety Summary Sodium Sesquicarbonate (Trona) CAS No. 533-96-0 This Product Safety Summary is intended to provide a general overview of the chemical substance. The information on the summary is basic information and is not intended to provide emergency response information, medical information or treatment information. The summary should not be used to provide in-depth safety and health information. In-depth safety and health information can be found on the Safety Data Sheet (SDS) for the chemical substance. Names Trisodium hydrogendicarbonate dihydrate Hydrated sodium bicarbonate Trona Sodium sesquicarbonate Sodium sesquicarbonate dihydrate Product Overview Solvay Chemicals, Inc. does not sell sodium sesquicarbonate (trona) directly to consumers. Consumers will not generally be exposed to sodium sesquicarbonate. Sodium sesquicarbonate is a naturally occurring mineral which is mined as a raw material used to manufacture sodium carbonate (soda ash). Trona is an off-white to tan colored crystalline solid, usually sold as granules or powder. There are a number of applications for trona and products derived from it. For example, in a minimally purified state, trona is used as a rumen buffer (digestive aid) in cattle feed. It has also been used to reduce acid gas stack emissions in industries ranging from the electric power generation to cement manufacturing for over twenty years. Exposure to trona, especially the powder, can cause irritation to the skin, eyes, and respiratory tract. Page 1 of 5 Copyright 2010-2013, Solvay America, Inc. All Rights Reserved. Manufacture of Product Solvay Chemicals, Inc. manufactures trona products by extracting trona ore (natural trisodium hydrogendicarbonate dihydrate) from deep underground.
    [Show full text]
  • I - H2o N2o2 2 6 O P4 Burner 8, H2o 4
    July 9, 1968 J. F. HERINK S. A. 3,391,991 PRODUCTION OF SODIUM TRIPOLYPHOSPHATE Filed Aug. 8. 1966 P4 4. SODM SR 12 G - AIR coa SESQUCARBONATE MY H2O - I - H2O O2N2 2 6 O P4 BURNER 8, H2O 4. R SODUM X-SSESQUICARBONATE is CO2 ho H2O 24 2 5R MONOSODIUM PHOSPHATE SOUTON Na Nos 26 8 2O 22 S. S. MONOSODUM PHOSPHATE SOLUTION MONOSODUM PHOSPHATE 3O DISODIUM PHOSPHATE SOLUTION H2O + COMBUSTION GAS STPP PRODUCT | WVEVTORS JOHN F. HERNK 'a-232.HAROLD J. COMERSA-2 3,391,991 United States Patent Office Patented July 9, 1968 2 mixture to at least 250 C., removing uncombined water 3,391,991 therefrom and recovering STPP from the heated reaction PRODUCTION OF SODIUM TRPOLYPHOSPHATE mixture. John Fred Herink, Rock Springs, and Harold J. Comer, Green River, Wyo., assignors to FMC Corporation, The use of aqueous slurries of sodium sesquicarbonate New York, N.Y., a corporation of Delaware in place of soda ash in the above process has been found Filed Aug. 8, 1966, Ser. No. 570,804 to have many advantages. Among these is that sodium 4 Claims. (CI. 23-107) sesquicarbonate does not result in as violent a reaction with phosphoric acid as Soda ash when forming a so The present invention is concerned with the formation dium phosphate solution. In addition, the sodium sesqui of sodium tripolyphosphate and, more specifically, to the carbonate, which contains 2 moles of water of crystalli manufacture of sodium tripolyphosphate in which the re 10 Zation per mole of sodium sesquicarbonate, requires the quired sodium values are derived from sources other than use of much less water since the water in the sesquicar Soda ash.
    [Show full text]
  • United States Patent (10) Patent No.: US 9,133,046 B2 Blokker Et Al
    USOO9133046B2 (12) United States Patent (10) Patent No.: US 9,133,046 B2 Blokker et al. (45) Date of Patent: Sep. 15, 2015 (54) METHOD OF INHIBITING SCALE 5,284,590 A 2f1994 Kohlhofer et al. FORMATION AND DEPOSITION IN 5,358,640 A * 10/1994 Zeiher et al. .................. 210/639 5,858,240 A 1/1999 Twardowski et al. DESALINATION SYSTEMS 5,874,026 A 2/1999 Pilsits, Jr. et al. 5,932,074 A 8, 1999 Hoiss (75) Inventors: Peter Blokker, Heerhugowaard (NL); 5,986,030 A 1 1/1999 Murray et al. Jasbir S. Gill, Naperville, IL (US); 6,190,556 B1 2/2001 Uhlinger Paloma López-Serrano, Delft (NL) 6,344,531 B1 2/2002 Murray et al. 6,508,936 B1 1/2003 Hassan 6,572,789 B1* 6/2003 Yang et al. ............... 252.389.23 (73) Assignee: Nalco Company, Naperville, IL (US) 6,685,840 B2 2/2004 Hatch 6,699,369 B1 3/2004 Hartman et al. (*) Notice: Subject to any disclaimer, the term of this 6,966,213 B2 11/2005 Hoots et al. patent is extended or adjusted under 35 7,220,382 B2 5/2007 Godfrey et al. 7,862,727 B2 * 1/2011 Blandford et al. ............ 210,699 U.S.C. 154(b) by 271 days. 2008. O169243 A1 7/2008 Dave et al. (21) Appl. No.: 13/173,804 FOREIGN PATENT DOCUMENTS (22) Filed: Jun. 30, 2011 WO OO,58228 10, 2000 (65) Prior Publication Data OTHER PUBLICATIONS US 2011 FO253.628A1 Oct. 20, 2011 Glossary of Basic Terms in Polymer Science, Pure and Appl Chem.
    [Show full text]