De Lircay (Angaraes, Huancavelica, Perú)

Total Page:16

File Type:pdf, Size:1020Kb

De Lircay (Angaraes, Huancavelica, Perú) Ecología Aplicada, 13(1), 2014 Presentado: 27/12/2013 ISSN 1726-2216 Aceptado: 25/02/2014 Depósito legal 2002-5474 © Departamento Académico de Biología, Universidad Nacional Agraria La Molina, Lima – Perú. DIVERSIDAD DE LAS GRAMÍNEAS (POACEAE) DE LIRCAY (ANGARAES, HUANCAVELICA, PERÚ) GRASSES (POACEAE) DIVERSITY OF LIRCAY (ANGARAES, HUANCAVELICA, PERU) Harol Gutiérrez Peralta1 y Roxana Castañeda Sifuentes2 Resumen Para el distrito de Lircay se reporta un total de 46 especies y una subespecie de la familia Poaceae agrupadas en 21géneros, 11 tribus y 6 subfamilias. El género Calamagrostis es el más diverso con 9 especies, seguido por Poa con 5 especies. Asimismo, Aciachne acicularis “paccupaccu”, Arundo donax “carrizo”, Cortaderia hieronymi y Ortachne erectifolia “iruichu” constituyen nuevos registros para la región Huancavelica. Además, se presentan claves dicotómicas para la determinación de las especies en los casos de un género con más de una especie. Para cada especie se incluyen datos sobre su hábitat, distribución, material estudiado y nombre común. Palabras clave: Aciachne, Arundo, Calamagrostis, Cortaderia, Orthacne, Poa, taxonomía. Abstract For the District of Lircay, we report a total of 46 species and one subspecies of the Poaceae family, grouped into 21genera, 11 tribes and 6 subfamilies. The genus Calamagrostis is the most diverse with 9 species, followed by Poa with 5 species. Also, Aciachne acicularis “paccupaccu”, Arundo donax “carrizo”, Cortaderia hieronymi and Ortachne erectifolia “iruichu” are new reports for the region of Huancavelica. Moreover, dichotomous keys are presented for the determination of species in the case a genus has more than one species. For each species, data on habitat, distribution, examined material and common name are included. Key words: Aciachne, Arundo, Calamagrostis, Cortaderia, Orthacne, Poa, taxonomy. Introducción. Pacífico hasta las altas cumbres de los Andes y desde La familia Poaceae está ampliamente distribuida éstas hasta la llanura amazónica atravesando los en el mundo; sus especies se encuentran presentes en Andes orientales. todas las latitudes y altitudes, desde el nivel del mar Si bien se han realizado estudios sobre las Poaceae hasta por encima de los 5000 m (Tovar, 1993). Poaceae es una de las familias con mayor número de especies, con aproximadamente 700 géneros y 10000 especies distribuidas en casi todos los continentes (Clayton & Renvoize, 1986). En la flora peruana, está representada por alrededor de 157 géneros con 750 especies (Brako & Zarucchi, 1993; Ulloa et al., 2004), que se encuentran ocupando todos los pisos bioclimáticos, desde las orillas del Océano Figura 1. Mapa de ubicación del distrito de Lircay (Angaraes, Huancavelica, Perú). DIVERSIDAD DE LAS GRAMÍNEAS DE LIRCAY (HUANCAVELICA) Enero - Julio 2014 __________________________________________________________________________________________ en la región, como los trabajos Tabla 1. Subfamilias, tribus y especies de Poaceae de Lircay (Huancavelica- de Tovar (1957, 1960, 1965, Perú). 1972) en las provincias de Huancavelica y Tayacaja y Subfamilia Tribu Especie registros de la provincia Aristidoideae Aristideae Aristida adscensionis L. Castrovirreyna, no se cuenta Arundinoideae Arundineae Arundo donax L. con información sobre la Chloridoideae Eragrostideae Eragrostis sp. diversidad agrostológica del Eragrostis nigricans (Kunth) Steud. distrito de Lircay (provincia de Chlorideae Bouteloua simplex Lag. Angaraes). Por esta razón el objetivo del trabajo fue realizar Muhlenbergia fastigiata (J. Presl) Henrard un estudio sobre la diversidad Muhlenbergia ligularis (Hack.) Hitchc. específica de la familia Muhlenbergia peruviana (P. Beauv.) Steud Poaceae del distrito de Lircay Zoysieae Sporobolus indicus (L.) R. Br. con la finalidad de contribuir Danthoniodeae Danthonieae Cortaderia hieronymi N.P. Barker & H.P. Linder al conocimiento de la flora Cortaderia jubata (Lemoine) Stapf agrostológica huancavelicana e Panicoidae Paniceae Cenchrus clandestinus (Hochst. ex Chiov.) Morrone. incrementar los números de registros y rangos de Cenchrus weberbaueri (Mez) Morrone distribución de las especies de Paspaleae Paspalum pilgerianum Chase gramíneas para el Perú. Paspalum tuberosum Mez Pooideae Bromeae Bromus catharticusVahl Materiales y métodos. Bromus pitensis Kunth Área de Estudio Poeae Avena sterilis L. La zona de estudio Calamagrostis chrysantha (J. Presl) Steud. comprende el distrito de Lircay en la provincia de Angaraes, Calamagrostis intermedia (J. Presl) Steud. región de Huancavelica Calamagrostis jamesonii Steud. (Figura 1), se encuentra en las Calamagrostis minima (Pilg.) Tovar coordenadas geográficas 12° Calamagrostis ovata (J. Presl) Steud. 59’ 23’’S y 74° 43’ 14’’ W, Calamagrostis recta (Kunth) Trin. ex Steud. posee una extensión territorial Calamagrostis rigescens (J. Presl) Scribn. de 1959.03 km2, en su Calamagrostis rigida (Kunth) Trin. ex Steud. geografía se puede observar pisos altitudinales que varían Calamagrostis vicunarum (Wedd.) Pilg. desde los 3000 m hasta los Dactylis glomerata L. 4300 m (INEI, 2010). Festuca dolichophylla J. Presl La capital de Angaraes Festuca weberbaueri Pilg. (Lircay) se encuentra situada Poa annua L. en el extremo este de Poa calycina (J. Presl) Kunth Huancavelica, sobre la margen Poa horridula Pilg. derecha de la cuenca del río Lircay formada por sus Poa lepidula (Nees & Meyen) Soreng & L.J. Gillespie afluentes, el Opamayo y Sicra, Poa serpaiana Refulio que discurren a través de la Polypogon elongatus Kunth capital de distrito. Posee un Polypogon interruptus Kunth clima típico de la sierra Vulpia australis (Nees ex Steud.) C.H. Blom peruana, caracterizado por la Vulpia myuros (L.) C.C. Gmel. alternancia estacional siendo: Vulpia myuros var. hirsuta Hack. i) Época Seca (abril a noviembre), el clima frío se Stipeae Aciachne acicularis Lægaard caracteriza por ser seco en Aciachne pulvinata Benth. invierno, con una temperatura Jarava ichu Ruiz & Pav. media superior a 10°C; ii) Nassella meyeniana (Trin. & Rupr.) Parodi Época Húmeda (diciembre a Nassella mucronata (Kunth) R.W. Pohl marzo), el clima templado Nassella pubiflora (Trin. &Rupr.) E. Desv. moderado lluvioso manifiesta Ortachne erectifolia (Swallen) Clayton un verano seco templado de 24 H. GUTIÉRREZ Y R. CASTAÑEDA Ecol. apl. Vol. 13 No 1, pp. 23-33 __________________________________________________________________________________________ día y frígido en la noche, con una temperatura 3. Espiguillas rodeadas por una o varias cerdas promedio que varía entre los 12°C y 15°C (Gutiérrez, libres o soldadas en la base formando un 2009). involucro. Lema fértil no endurecido, no cartilaginoso. Cenchrus Metodología 3’. Espiguillas sin cerdas involucrales en su base Las colectas de las especies de Poaceae se inflorescencia en espiga o racimo espiciforme realizaron siguiendo las técnicas convencionales de unilateral, estos digitados o esparcidos a lo colectas botánicas (Cerrate, 1964) y los trabajos de La largo del raquis. Lema fértil endurecida, Torre (1998) y La Torre et al. (2003, 2004). No se fuertemente cartilaginosa. Paspalum realizaron colectas en áreas donde la vegetación 1’. Raquilla articulada por encima de las glumas, que presentaba un crecimiento alterado por actividades son persistentes después de la caída de los granos. antrópicas como caminos, terrenos de cultivo 4. Espiguilla uniflora. abandonados o zonas con evidencia de construcciones. 5. Lema con arista simple. Asimismo, se excluyeron las especies cultivadas. 6. Glumas más largas que la lema, agudas El periodo de las colectas se realizó entre marzo de múticas, lema con arista apical. 2008 y octubre de 2013. La determinación taxonómica 7. Lema endurecida rígida o papirácea de las muestras se realizó empleando claves y con antopodio pubescente agudo y descripciones publicadas en trabajos de la punzante. especialidad, como Burkart (1969), Tovar (1957, 8. Lema fusiforme, terete con arista 1960, 1965, 1972, 1993), Rivas-Martínez & Tovar algo vilosa en la parte basal y (1982) y Rivas-Martínez et al. (1988). El tratamiento plumosa hacia la parte media y nomenclatural se basó en los trabajos de Peterson et superior o si no entonces el ápice al. (2001), Zuloaga et al. (2003), Soreng et al. (2003) de la lema con anillo de pelos y Refulio-Rodríguez et al. (2012). Se ha utilizado la semirrígidos más largos que la nomenclatura actualizada y las combinaciones nuevas lema y glumas membranáceas. a la luz de los trabajos del Grass Phylogeny Working Jarava Group (GPWG, 2001) y revisiones en publicaciones 8’. Lema fusiforme u obovada, sin la recientes (últimos 5 años). combinación de caracteres anteriores. Nassella Resultados. 7’. Lema membranácea sin arista o con Se registró un total de 46 especies y una arista dorsal o subapical, antopodio no subespecie de la familia Poaceae agrupadas en 21 pungente. Calamagrostis géneros, 11 tribus y 6 subfamilias (Tabla 1). Las 6’. Glumas más cortas que la lema, rara vez subfamilias con mayor número de especies son mayores, múticas o aristadas, lema con Pooideae con 31 especies y una subespecie, arista apical o subapical. Chloridoideae con 7 especies, Panicoidae con 4 y 9’ láminas rígidas, con ápices punzantes Danthoniodeae con 2 especies. 10. Glumas obtusas, arista de la lema En cuanto a la riqueza de especies, el género pungente, planta pulviniforme. Calamagrostis es el más diverso con 9 especies, Aciachne seguido por Poa con 5 especies, mientras que los 10’. Glumas truncadas, arista de la géneros con menor número de especies son Aristida, lema
Recommended publications
  • Carrying Capacity of Vicunas in the Chimborazo Faunal Production Reserve, Ecuador
    Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Undergraduate theses 2020 Carrying capacity of vicunas in the Chimborazo Faunal Production Reserve, Ecuador Scott, David http://knowledgecommons.lakeheadu.ca/handle/2453/4610 Downloaded from Lakehead University, KnowledgeCommons CARRYING CAPACITY OF VICUNA IN THE CHIMBORAZO FAUNAL PRODUCTION RESERVE, ECUADOR by David Scott FACULTY OF NATURAL RESOURCES MANAGEMENT LAKEHEAD UNIVERSITY THUNDER BAY, ONTARIO April 2020 ii CARRYING CAPACITY OF VICUNAS IN THE CHIMBORAZO FAUNAL PRODUCTION RESERVE, ECUADOR by David Scott An Undergraduate Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Honours Bachelor of Environmental Management Faculty of Natural Resources Management Lakehead University April 2020 --------------------------------------- ---------------------------------- Dr. Brian McLaren Patricio Lozano Major Advisor Second Reader iii LIBRARY RIGHTS STATEMENT In presenting this thesis in partial fulfillment of the requirements for the HBEM degree at Lakehead University in Thunder Bay, I agree that the University will make it freely available for inspection. This thesis is made available by my authority solely for the purpose of private study and may not be copied or reproduced in whole or in part (except as permitted by the Copyright Laws) without my written authority. Date: _____________________________April 22nd 2020 iv A CAUTION TO THE READER This HBEM thesis has been through a semi-formal process of review and comment by at least two faculty members. It is made available for loan by the Faculty of Natural Resources Management for the purpose of advancing the practice of professional and scientific environmental management. The reader should be aware that the opinions and conclusions expressed in this document are those of the student and do not necessarily reflect the opinions of the thesis supervisor, the faculty or of Lakehead University.
    [Show full text]
  • Breeding System Diversification and Evolution in American Poa Supersect. Homalopoa (Poaceae: Poeae: Poinae)
    Annals of Botany Page 1 of 23 doi:10.1093/aob/mcw108, available online at www.aob.oxfordjournals.org Breeding system diversification and evolution in American Poa supersect. Homalopoa (Poaceae: Poeae: Poinae) Liliana M. Giussani1,*, Lynn J. Gillespie2, M. Amalia Scataglini1,Marıa A. Negritto3, Ana M. Anton4 and Robert J. Soreng5 1Instituto de Botanica Darwinion, San Isidro, Buenos Aires, Argentina, 2Research and Collections Division, Canadian Museum of Nature, Ottawa, Ontario, Canada, 3Universidad de Magdalena, Santa Marta, Colombia, 4Instituto Multidisciplinario de Biologıa Vegetal (IMBIV), CONICET-UNC, Cordoba, Argentina and 5Department of Botany, Smithsonian Institution, Washington, DC, USA *For correspondence. E-mail [email protected] Received: 11 December 2015 Returned for revision: 18 February 2016 Accepted: 18 March 2016 Downloaded from Background and Aims Poa subgenus Poa supersect. Homalopoa has diversified extensively in the Americas. Over half of the species in the supersection are diclinous; most of these are from the New World, while a few are from South-East Asia. Diclinism in Homalopoa can be divided into three main types: gynomonoecism, gynodioe- cism and dioecism. Here the sampling of species of New World Homalopoa is expanded to date its origin and diver- sification in North and South America and examine the evolution and origin of the breeding system diversity. Methods A total of 124 specimens were included in the matrix, of which 89 are species of Poa supersect. http://aob.oxfordjournals.org/ Homalopoa sections Acutifoliae, Anthochloa, Brizoides, Dasypoa, Dioicopoa, Dissanthelium, Homalopoa sensu lato (s.l.), Madropoa and Tovarochloa, and the informal Punapoa group. Bayesian and parsimony analyses were conducted on the data sets based on four markers: the nuclear ribosomal internal tanscribed spacer (ITS) and exter- nal transcribed spacer (ETS), and plastid trnT-L and trnL-F.
    [Show full text]
  • Project Report
    THE APPLICATION OF PHYTOLITH AND STARCH GRAIN ANALYSIS TO UNDERSTANDING FORMATIVE PERIOD SUBSISTENCE, RITUAL, AND TRADE ON THE TARACO PENINSULA, HIGHLAND BOLIVIA ___________________________________________________________________ A Thesis Presented to the Faculty of the Graduate School University of Missouri, Columbia ___________________________________________________________________ In Partial Fulfillment Of the Requirements for the Degree Master of Arts ___________________________________________________________________ By AMANDA LEE LOGAN Supervisor: Dr. Deborah M. Pearsall AUGUST 2006 Dedicated to the memory of my grandmother Joanne Marie Higgins 1940-2005 ACKNOWLEDGEMENTS There are a great number of people who have helped in this process in passing or in long, detailed conversations, and everything in between. First and foremost, many thanks to my advisor, Debby Pearsall, for creative and inspired guidance, and for taking the time to talk over everything from the smallest detail to the biggest challenges. Debby introduced me to the world of phytoliths, and then to the wonders of starch grains, and encouraged me to find and pursue the issues that drive me. My committee has been very helpful and patient, and made my oral exams and defense far more enjoyable then expected—Dr. Christine Hastorf, Dr. Bob Benfer, and Dr. Randy Miles. Dr. Benfer was crucial in helping me sort through the statistical applications. I also benefited tremendously from conversations with and advice from my cohorts in the MU Paleoethnobotany lab, or as we are better known, the “Pearsall Youth”— Neil Duncan, Shawn Collins, Meghann O’Brien, Tom Hart, and Nicole Little. Dr. Karol Chandler-Ezell gave me great advice on calcium oxalate and chemical processing. Dr. Todd VanPool graciously provided much needed advice on the statistical applications.
    [Show full text]
  • Leaflets14-4.Pdf
    For many of us it is exciting just to know that there can still be surprises and survivors in our altered landscapes. Keep looking! Gary D. Wallace President, SCB ________________________________________________ 2005 SCB Symposium Volume 14 Number 4 July-August 2005 ________________________________________________ The Southern California Botanists’ Annual Symposium will be held on October 22, 2005 at President’s Message California State University, Fullerton. The preliminary program is below. Please mark your calendars and plan to attend a day of very This has been quite a year for discovery. Thanks to interesting and informative talks. the diligence of Jenny McCune on Santa Catalina Island Dissanthelium californicum has been rediscovered. The species was described by Nuttall TOOLS FOR PLANT from a specimen collected on Catalina in 1847 by CONSERVATION Gamble and had not been collected since that time. Edward Palmer found the same annual grass on SPEAKERS AND TENTATIVE TOPICS Guadalupe Island in 1875 and Blanch Trask found it on San Clemente Island in 1903. These were the Roxanne Bittman - The California Natural Diversity known collections of this plant. Jenny’s discovery Data Base. of this grass on Catalina Island Conservancy lands was the first time the plant was collected in over Scott Eliason - Diverse methods for conserving 100 years. I heard that crawling through Opuntia plants on National Forest lands. was the cost to some visiting botanists. Dr. Elizabeth Friar - Application of genetics as a This discovery and others made recently, gives us conservation tool. hope that other species may yet be rediscovered. Monardella pringlei may still survive on the sandy Dr.
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings.
    [Show full text]
  • Diversidad De Plantas Y Vegetación Del Páramo Andino
    Plant diversity and vegetation of the Andean Páramo Diversidad de plantas y vegetación del Páramo Andino By Gwendolyn Peyre A thesis submitted for the degree of Doctor from the University of Barcelona and Aarhus University University of Barcelona, Faculty of Biology, PhD Program Biodiversity Aarhus University, Institute of Bioscience, PhD Program Bioscience Supervisors: Dr. Xavier Font, Dr. Henrik Balslev Tutor: Dr. Xavier Font March, 2015 Aux peuples andins Summary The páramo is a high mountain ecosystem that includes all natural habitats located between the montane treeline and the permanent snowline in the humid northern Andes. Given its recent origin and continental insularity among tropical lowlands, the páramo evolved as a biodiversity hotspot, with a vascular flora of more than 3400 species and high endemism. Moreover, the páramo provides many ecosystem services for human populations, essentially water supply and carbon storage. Anthropogenic activities, mostly agriculture and burning- grazing practices, as well as climate change are major threats for the páramo’s integrity. Consequently, further scientific research and conservation strategies must be oriented towards this unique region. Botanical and ecological knowledge on the páramo is extensive but geographically heterogeneous. Moreover, most research studies and management strategies are carried out at local to national scale and given the vast extension of the páramo, regional studies are also needed. The principal limitation for regional páramo studies is the lack of a substantial source of good quality botanical data covering the entire region and freely accessible. To meet the needs for a regional data source, we created VegPáramo, a floristic and vegetation database containing 3000 vegetation plots sampled with the phytosociological method throughout the páramo region and proceeding from the existing literature and our fieldwork (Chapter 1).
    [Show full text]
  • Distribution of the Native Grasses of California
    HILGARDIA A Journal of Agricultural Science Published by the California Agricultural Experiment Station VOLUME 17 APRIL, 1947 NUMBER 9 CONTENTS DISTRIBUTION OF THE NATIVE GRASSES OF CALIFORNIA ALAN A. BEETLE UNIVERSITY OF CALIFORNIA • BERKELEY, CALIFORNIA HILGARDIA A Journal of Agricultural Science Published by the California Agricultural Experiment Station VOL. 17 APRIL, 1947 NO. 9 DISTRIBUTION OF THE NATIVE GRASSES OF CALIFORNIA1 ALAN A. BEETLE2 THE grasses, supplemented by certain legumes, form the principal basis for range wealth. The natural forage value of the Gramineae as a whole makes an intensive study of their characteristics important, for the broader the knowledge concerning them the more readily may any problem be met. The following paper presents a picture of the current distributions of grasses in California, together with evidences of their floral origins by migration from other regions. Vegetation has many characteristics which are not always apparent at first glance. For instance, certain elements of the vegetation are native in their location, some are native elsewhere and have only recently been introduced. Some are old species often representative of a primitive condition in their genus, still others appear to be recently evolved. Some of the migrants arrived in California from the north during glacial periods, some crossed the ocean, and others came from the south during interglacial periods. Some plants are distributionally restricted for a number of reasons, including: (1) specialization as to habitat or environmental repression, as the species of vernal pools; (2) recent origin (plants sometimes referred to as neoendemics or initiates), as the endemic varieties of Distichlis spicata; (3) ancient origin (paleoendemics or relics); and (4) genotypic specialization (genetic endemics).
    [Show full text]
  • Arbuscular Mycorrhizal Fungi and Dark Septate Fungi in Plants Associated with Aquatic Environments Doi: 10.1590/0102-33062016Abb0296
    Arbuscular mycorrhizal fungi and dark septate fungi in plants associated with aquatic environments doi: 10.1590/0102-33062016abb0296 Table S1. Presence of arbuscular mycorrhizal fungi (AMF) and/or dark septate fungi (DSF) in non-flowering plants and angiosperms, according to data from 62 papers. A: arbuscule; V: vesicle; H: intraradical hyphae; % COL: percentage of colonization. MYCORRHIZAL SPECIES AMF STRUCTURES % AMF COL AMF REFERENCES DSF DSF REFERENCES LYCOPODIOPHYTA1 Isoetales Isoetaceae Isoetes coromandelina L. A, V, H 43 38; 39 Isoetes echinospora Durieu A, V, H 1.9-14.5 50 + 50 Isoetes kirkii A. Braun not informed not informed 13 Isoetes lacustris L.* A, V, H 25-50 50; 61 + 50 Lycopodiales Lycopodiaceae Lycopodiella inundata (L.) Holub A, V 0-18 22 + 22 MONILOPHYTA2 Equisetales Equisetaceae Equisetum arvense L. A, V 2-28 15; 19; 52; 60 + 60 Osmundales Osmundaceae Osmunda cinnamomea L. A, V 10 14 Salviniales Marsileaceae Marsilea quadrifolia L.* V, H not informed 19;38 Salviniaceae Azolla pinnata R. Br.* not informed not informed 19 Salvinia cucullata Roxb* not informed 21 4; 19 Salvinia natans Pursh V, H not informed 38 Polipodiales Dryopteridaceae Polystichum lepidocaulon (Hook.) J. Sm. A, V not informed 30 Davalliaceae Davallia mariesii T. Moore ex Baker A not informed 30 Onocleaceae Matteuccia struthiopteris (L.) Tod. A not informed 30 Onoclea sensibilis L. A, V 10-70 14; 60 + 60 Pteridaceae Acrostichum aureum L. A, V, H 27-69 42; 55 Adiantum pedatum L. A not informed 30 Aleuritopteris argentea (S. G. Gmel) Fée A, V not informed 30 Pteris cretica L. A not informed 30 Pteris multifida Poir.
    [Show full text]
  • Flora-Lab-Manual.Pdf
    LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae
    [Show full text]
  • Phylogeny, Morphology and the Role of Hybridization As Driving Force Of
    bioRxiv preprint doi: https://doi.org/10.1101/707588; this version posted July 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Phylogeny, morphology and the role of hybridization as driving force of evolution in 2 grass tribes Aveneae and Poeae (Poaceae) 3 4 Natalia Tkach,1 Julia Schneider,1 Elke Döring,1 Alexandra Wölk,1 Anne Hochbach,1 Jana 5 Nissen,1 Grit Winterfeld,1 Solveig Meyer,1 Jennifer Gabriel,1,2 Matthias H. Hoffmann3 & 6 Martin Röser1 7 8 1 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 9 Garden, Dept. of Systematic Botany, Neuwerk 21, 06108 Halle, Germany 10 2 Present address: German Centre for Integrative Biodiversity Research (iDiv), Deutscher 11 Platz 5e, 04103 Leipzig, Germany 12 3 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 13 Garden, Am Kirchtor 3, 06108 Halle, Germany 14 15 Addresses for correspondence: Martin Röser, [email protected]; Natalia 16 Tkach, [email protected] 17 18 ABSTRACT 19 To investigate the evolutionary diversification and morphological evolution of grass 20 supertribe Poodae (subfam. Pooideae, Poaceae) we conducted a comprehensive molecular 21 phylogenetic analysis including representatives from most of their accepted genera. We 22 focused on generating a DNA sequence dataset of plastid matK gene–3'trnK exon and trnL– 23 trnF regions and nuclear ribosomal ITS1–5.8S gene–ITS2 and ETS that was taxonomically 24 overlapping as completely as possible (altogether 257 species).
    [Show full text]
  • NEARBY, a Computer Program for Phytogeographic Analysis Using Georeferenced Specimen Data
    NEARBY, a Computer Program for Phytogeographic Analysis Using Georeferenced Specimen Data Daryl L. Lafferty & Leslie R. Landrum Natural History Collections, School of Life Sciences Arizona State University, Tempe, Arizona 85287-4108, U.S.A. Author emails: [email protected]; [email protected] ABSTRACT: We present a computer program, NEARBY, that uses databases of georeferenced specimens to explore plant and lichen distributions and co-occurrences. NEARBY utilizes three SYMBIOTA databases: SEINet (mainly vascular plants of North America), NEOTROPICAL (mainly vascular plants of neotropical and temperate South America), and CNALH (lichens, mainly of the western hemisphere). A Primary species is entered into the program and a geographic area is defined. Parameters are chosen that limit the search for specimens of Secondary species that have been collected near the Primary species. The output consists of: a summary of the input data and how it was modified for the search; a list of the most commonly found Secondary species that occur with the Primary species in the defined area; and additional data and links to images for each species. These data can be manipulated in various ways or copied into another program for analysis. NEARBY includes a map option that allows the user to compare distributions of the Primary and Secondary species. An example of a search is discussed in detail and case studies that illustrate the use of the program are provided. An appendix describing the program function is provided. INTRODUCTION The distribution of organisms across landscapes, continents, and the globe have long been an interest of biologists, including Humboldt and Bonpland (1807; English translation 2009), Hooker (1853), and Darwin (1859; reprint 1985).
    [Show full text]
  • Following the Footsteps of Naturalist Alexander Von Humboldt Through the Ecuadorian Andes
    Following the Footsteps of Naturalist Alexander Von Humboldt Through the Ecuadorian Andes RHS Travel Scholarship Report Figure 1: At 4,500m elevation stands the enchanting forest of Polylepis australis on Mount Chimborazo, Ecuador. By Timothy Shaw July 2019 1 | P a g e Contents Following the Footsteps of Naturalist Alexander Von Humboldt Through the Ecuadorian Andes .... 1 Contents ........................................................................................................................................ 2 Introduction .................................................................................................................................. 3 Aims and Objectives ...................................................................................................................... 4 Itinerary ........................................................................................................................................ 5 Quito Botanic Garden .................................................................................................................... 7 Santa Lucia Nature Reserve ........................................................................................................... 8 Los Cedros Nature Reserve ............................................................................................................ 9 Cotopaxi Nature Reserve ............................................................................................................. 11 Parque Etnobotanico Omaere- Chris Canaday .............................................................................
    [Show full text]