Cosmonauts Exhibition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mars Reconnaissance Orbiter Navigation Strategy for the Exomars Schiaparelli EDM Lander Mission
Jet Propulsion Laboratory California Institute of Technology Mars Reconnaissance Orbiter Navigation Strategy for the ExoMars Schiaparelli EDM Lander Mission Premkumar R. Menon Sean V. Wagner, David C. Jefferson, Eric J. Graat, Kyong J. Lee, and William B. Schulze AAS/AIAA Astrodynamics Specialist Conference San Antonio, Texas February 5–9, 2017 AAS Paper 17-337 © 2017 California Institute of Technology. Government Sponsorship Acknowledged. Mars Reconnaissance Orbiter Project Mars Reconnaissance Orbiter (Mission, Spacecraft and PSO) The Mars Reconnaissance Orbiter mission launched in August 2005 from the Cape Canaveral Air Force Station arriving at Mars in March 2006 started science operations in November 2006. MRO has completed 10 years since launch (50,000 orbits by Mar 2017) and to date has returned nearly 300 Terabytes of data. MRO Primary Science Orbit (PSO): • Sun-synchronous orbit ascending node at 3:00 PM ± 15 minutes Local Mean Solar Time (LMST) (daylight equatorial crossing) • Periapsis is frozen about the Mars South Pole • Near-repeat ground track walk (GTW) every 17-day, 211 orbit (short-term repeat) MRO targeting cycle, exact repeat after 4602 orbits. The nominal GTW is 32.45811 km West each 211 orbit cycle (maintained with periodic maneuvers). MRO Spacecraft: • Spacecraft Bus: 3-axis stabilized ACS system; 3-meter diameter High Gain Antenna; hydrazine propulsion system • Instrument Suite: HiRISE Camera, CRISM Imaging spectrometer, Mars Climate Sounder, Mars Color Imager, Context Camera, Shallow Subsurface Radar, Electra engineering payload (among other instrument payloads) 2/07/17 MRO support of ExoMars Schiaparelli Lander Overflight Relay PRM-3 4. MRO shall have good overflight pass geometry within the first 2 Sols after landing. -
Matematikken Viser Vej Til Mars
S •Matematikken The viser vej til Mars Kim Plauborg © The Terma Group 2016 THE BEGINNING Terma has been in Space since man walked on the Moon! © The Terma Group 2016 FROM ESRO TO EXOMARS Terma powered the first comet landing ever! BREAKING NEWS The mission ends today when the Rosetta satellite will set down on the surface In 2014 the Rosetta satellite deployed the small lander Philae, which landed on the cometof 67P morethe than 10 comet years after Rosetta was launched. © The Terma Group 2016 FROM ESRO TO EXOMARS Rosetta Mars Express Technology Venus Express evolution and Galileo enhancement Small GEO BepiColombo ExoMars © The Terma Group 2016 Why go Mars? Getting to and landing on Mars is difficult ! © The Terma Group 2016 THE EXOMARS PROGRAMME Two ESA missions to Mars in cooperation with Roscosmos with the main objective to search for evidence of life 2016 Mission Trace Gas Orbiter Schiaparelli 2020 Mission Rover Surface platform © The Terma Group 2016 EXOMARS 2016 14th March 2016 Launched from Baikonur cosmodrome, Kazakhstan © The Terma Group 2016 EXOMARS 2016 16th October 2016 Separation of Schiaparelli from the orbiter © The Terma Group 2016 SCHIAPARELLI Schiaparelli (EDM) - an entry, descent and landing demonstrator module © The Terma Group 2016 EXOMARS 2016 19th October 2016 Landing of Schiaparelli the surface of Mars © The Terma Group 2016 EXOMARS 2016 19th October 2016 Landing of Schiaparelli the surface of Mars © The Terma Group 2016 EXOMARS 2020 © The Terma Group 2016 TERMA AND EXOMARS Terma deliveries to the ExoMars 2016 mission • Remote Terminal Power Unit for Schiaparelli • Mission Control System • Spacecraft Simulator • Support for the Launch and Early Orbit Phase © The Terma Group 2016 ExoMars RTPU The RTPU is a central unit in the Schiaparelli lander. -
Exomars 2016
University of California, Davis Department of Mechanical and Aerospace Engineering ExoMars 2016 Critical Design Review Final Report David Bartolo Shazib Elahi Aaron Tun Junyi Zhang EAE 198: Intro to Space Vehicles Professor S. K. Robinson 3/23/2019 Contents 1. Introduction 4 1.1 ExoMars 2016 Overview 4 1.1.1 ExoMars Program Vision 4 1.1.2 Timeline of Events 6 1.1.3 Spacecraft and Launch Vehicle Specifications 6 1.2 ExoMars 2016 Mission Stakeholders and Requirements 7 1.3 Mission Objectives 7 1.3.1 Trace Gas Orbiter 7 1.3.2 Schiaparelli EDM 7 1.4 Concept of Operations 8 1.4.1 Space Segment 8 1.4.2 Ground Segment 9 1.5 Subsystems 10 1.5.1 Trace Gas Orbiter 10 1.5.2 Schiaparelli EDM 11 2. Background 12 2.1 Similar Spacecraft 13 2.1.1 Trace Gas Orbiter 13 2.1.2 Schiaparelli EDM 13 2.2 ExoMars 2016 Innovations 13 3. Modifications to Design 14 3.1 Functional Hierarchy Diagram, Analysis/Modification Requirements 14 3.2 Rationale for Chosen Requirements, Potential Benefits and Downsides 15 3.3 Modified Subsystem Requirements 16 4. Analyses 17 4.1 Major Analysis: Power 17 4.1.1 Goals of Analysis 17 4.1.2 Assumptions, Principles, and Methods 17 4.1.2.1 Power Generation and Sources 17 4.1.2.3 Power Regulation and Control 18 4.1.2.4 Power Regulators 19 4.1.2.5 Power Distribution and Heat Dissipation 19 4.1.3 Math, Models, and Code 19 4.1.3.1 Power Generation and Sources 19 2 4.1.3.2 Power Energy Storage 21 4.1.3.3 Power Regulation and Control 21 4.1.3.5 Power Distribution and Heat Dissipation 22 4.1.4 Results 22 4.1.5 Discussion of Importance of Results 26 4.2 Minor Analysis I: Deployable Array Design 26 4.2.1 Goals of Analysis 26 4.2.2 Assumptions, Principles, and Methods 26 4.2.3 Math, Models, and Code 29 4.2.4 Results 32 4.2.5 Discussion of Importance of Results 35 4.3 Minor Analysis II: Influence of Adding Solar Array on Lander 36 4.3.1 Goals of Analysis 36 4.3.2 Assumptions, Principles, and Methods 37 4.3.3 Math, Models, and Code 38 4.3.4 Results 42 4.3.5 Discussion 43 5. -
Russian Museums Visit More Than 80 Million Visitors, 1/3 of Who Are Visitors Under 18
Moscow 4 There are more than 3000 museums (and about 72 000 museum workers) in Russian Moscow region 92 Federation, not including school and company museums. Every year Russian museums visit more than 80 million visitors, 1/3 of who are visitors under 18 There are about 650 individual and institutional members in ICOM Russia. During two last St. Petersburg 117 years ICOM Russia membership was rapidly increasing more than 20% (or about 100 new members) a year Northwestern region 160 You will find the information aboutICOM Russia members in this book. All members (individual and institutional) are divided in two big groups – Museums which are institutional members of ICOM or are represented by individual members and Organizations. All the museums in this book are distributed by regional principle. Organizations are structured in profile groups Central region 192 Volga river region 224 Many thanks to all the museums who offered their help and assistance in the making of this collection South of Russia 258 Special thanks to Urals 270 Museum creation and consulting Culture heritage security in Russia with 3M(tm)Novec(tm)1230 Siberia and Far East 284 © ICOM Russia, 2012 Organizations 322 © K. Novokhatko, A. Gnedovsky, N. Kazantseva, O. Guzewska – compiling, translation, editing, 2012 [email protected] www.icom.org.ru © Leo Tolstoy museum-estate “Yasnaya Polyana”, design, 2012 Moscow MOSCOW A. N. SCRiAbiN MEMORiAl Capital of Russia. Major political, economic, cultural, scientific, religious, financial, educational, and transportation center of Russia and the continent MUSEUM Highlights: First reference to Moscow dates from 1147 when Moscow was already a pretty big town. -
Commercialization of Russian Technology in Cooperation with American Companies
Stanford University CISAC Center for International Security and Cooperation The Center for International Security and Cooperation, part of Stanford University’s Institute for International Studies, is a multidisciplinary community dedicated to research and train- ing in the field of international security. The Center brings together scholars, policymakers, scientists, area specialists, members of the business community, and other experts to examine a wide range of international security issues. Center for International Security and Cooperation Stanford University Encina Hall Stanford, California 94305-6165 (415) 723-9625 http://www.stanford.edu/group/CISAC/ Commercialization of Russian Technology in Cooperation with American Companies David Bernstein June 1999 David Bernstein, an engineering research associate at Stanford University’s Center for Inter- national Security and Cooperation, participates in the Center’s Project on Industrial Restruc- turing and the Political Economy in Russia. The opinions expressed here are those of the author and do not represent positions of the Center, its supporters, or Stanford University. © 1999 by the Board of Trustees of the Leland Stanford Junior University ISBN 0-935371-53-2 i ii Contents I. Introduction 1 II. Background 5 III. Case Studies Introduction to Case Studies 17 Air Products & Chemicals, Incorporated 19 Boeing 21 Corning, Incorporated 27 Energia, Ltd. 29 NPO Energomash 33 FMC 37 General Electric 41 The State Scientific Research Institute of Aviation Systems (GosNIIAS) 43 Karpov Institute -
Signature Redacted a Uthor
Evaluating Human-EVA Suit Injury Using Wearable Sensors MASS ACUS0 ILNSTITUTE )F TECHNOLOGY by JUN 28 2016 Ensign Sabrina Reyes, U.S. Navy IBRARIES B.S., Aerospace Engineering United States Naval Academy (2014) ARCHIVES Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2016 @ Massachusetts Institute of Technology 2016. All rights reserved. Signature redacted A uthor ............... ;....... Department of Aeronauticand Astronautics V~ \ %, \ May 19, 2016 am= Signature redacted-- Certified by.. ........... Jelfrey A. Hoffman, Ph.D. Professor of theractice, Aeronautics and Astronautics Siqnature redacted A ccepted by .................. I........ .............................. PauloI C Lozno7n PhDT Associate Professor of Aeronautics and Astronautics Chair, Graduate Program Committee 2 Evaluating Human-EVA Suit Injury Using Wearable Sensors by Ensign Sabrina Reyes, U.S. Navy Submitted to the Department of Aeronautics and Astronautics on May 19, 2016, in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics Abstract All the current flown spacesuits are gas pressurized and require astronauts to exert a substantial amount of energy in order to move the suit into a desired position. The pressurization of the suit therefore limits human mobility, causes discomfort, and leads to a variety of contact and strain injuries. While suit-related injuries have been observed for many years and some basic countermeasures have been implemented, there is still a lack of understanding of how humans move within the spacesuit. The rise of wearable technologies is changing the paradigm of biomechanics and allowing a continuous monitoring of motion performance in fields like athletics or medical re- habilitation. -
ESOG 120 Issue 8 – Rev
TYPE APPROVAL AND CHARACTERIZATION PROCEDURES ESOG 120 Issue 8 – Rev. 1, May 2021 Antennas and Transmissions Team Antenna and VSAT Type Approval/Characterization ESOG 120 – Issue 8 - Rev. 1 May 2021 Antennas and VSATs Type Approval / Characterization Table of Contents Forward .................................................................................................................................. v 1 Overview of the ESOG modules ...................................................................................... 6 1.1 Volume I: Eutelsat S.A. system management and policies ........................................................ 6 1.2 Volume II: Eutelsat S.A. system operations and procedures ..................................................... 6 2 Introduction ................................................................................................................... 7 2.1 About this document .................................................................................................................. 7 2.2 Disclaimer ................................................................................................................................... 7 2.3 Eutelsat certification .................................................................................................................. 7 2.3.1 Type Approval ........................................................................................................................ 8 2.3.2 Characterization .................................................................................................................... -
Classification of Geosynchronous Objects
esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 www.esa.int CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Produced with the DISCOS Database Prepared by T. Flohrer & S. Frey Reference GEN-DB-LOG-00195-OPS-GR Issue 18 Revision 0 Date of Issue 3 June 2016 Status ISSUED Document Type TN European Space Agency Agence spatiale europeenne´ Abstract This is a status report on geosynchronous objects as of 1 January 2016. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring is analysed. From 1434 objects for which orbital data are available (of which 2 are outdated, i.e. the last available state dates back to 180 or more days before the reference date), 471 are actively controlled, 747 are drifting above, below or through GEO, 190 are in a libration orbit and 15 are in a highly inclined orbit. For 11 objects the status could not be determined. Furthermore, there are 50 uncontrolled objects without orbital data (of which 44 have not been cata- logued). Thus the total number of known objects in the geostationary region is 1484. In issue 18 the previously used definition of ”near the geostationary ring” has been slightly adapted. If you detect any error or if you have any comment or question please contact: Tim Flohrer, PhD European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str. 5 64293 Darmstadt, Germany Tel.: +49-6151-903058 E-mail: tim.fl[email protected] Page 1 / 178 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 3 June 2016 Issue 18 Rev 0 Table of contents 1 Introduction 3 2 Sources 4 2.1 USSTRATCOM Two-Line Elements (TLEs) . -
Hotbird Playboy Tv Key
Hotbird Playboy Tv Key Hotbird Playboy Tv Key 1 / 3 2 / 3 Playboy TV Chat - Satellite TV from United Kingdom , satellite frequency , satellite channel list, free channels, satellite position, c band, ku band, tv free.. Originally Posted by love123 View Post. Hello Friend, Kindly post playboy Tv softcam hex key on hotbird 13E (16byts key only).. Private TV / Dorcel TV Hotbird Viaccess Key - 2017 biss key dorcel code, ... Playboy TV Biss Key 2017 NAME : http://Wordsat. lundi 19 juin 2017. blogspot.. Thaicom 8 Ku Band Biss key & CHANNL list . #NewKey •11170 H 30000 . TVLAO HD SID: 0501/1F5 3B80 EBA6 2F32 6DCE #sahilfreedish .... DMC: New SR for Playboy TV on 11150.00MHz, pol.H: SR:21600 ( FEC:3/4 SID:10 PID:3801/3810 English,3813 German - Cryptoworks). Hot .... Playboy TV UK. TP modified: 28.02.2020. Added: 14.09.2014 14:57:30. Updated: 04.10.2014 17:39:50. ID tag: Playboy TV. Satellite(s):, Eutelsat Hot Bird .... 07.10.2012, 20:47. 13°E [Hot Bird 13B] 11727.00V (DVB-S QPSK) SR 27500 FEC 3/4 ... BFM TV CCW KEY: E38E43B4D64ED2F64D34D556C19E1A79 Gulli CCW ... F 007D00DA 00 2608396712345678 ;PLAYBOY (36°E). Playboy tv and man tv channel biss key code, latest frequency on thaicom 5. Portail des frequences des chaines alpha sat frequency new biss key at eutelsat 21.. Eutelsat 8 West B, 8°W 18h08 A new channel has started in DVB-S Clear: Gouraya TV undefined on 12685. Hot Bird 13E, 13°E 15h58 .... BissKey BISS KEY 2015 HD TV Movie Cable TV FTA TV Premium TV Free TV Online TVÂ Biss key for playboy hotbird 2014 - An opinion about the is engaged ... -
Canales Libres Del Satélite Hot Bird 13º Actualización Septiembre 2013
Emitek Servicios Técnicos Canales libres del satélite Hot Bird 13º Actualización Septiembre 2013 www.emitek.es 14 Islam Channel Medidas para evitar interferencias Polonia (blindaje LNB, etc.). Canal religioso islámico suní con sede Cambiar orientación de antena de Hot en Londres. Bird a Eutelsat W3A Programación Programación rectificar polaco rectificar Reino Unido Temporalmente en abierto del 12/12/2012 al 10/04/2013 árabe tamil Truth TV Deepam TV 4fun.TV Truth TV Deepam TV 4 Fun TV Canal religioso islámico de Mohammed rectificar Canal polaco de vídeos musicales. Bin Rashid Alhashimi. rectificar rectificar Cese el 22/08/2013 Cese el 8/03/2010 Portugal tamil Thendral polaco Global Tamil Vision (GTV) PATIO TV portugués rectificar Patio TV rectificar Irak RTPi Cese el 2/09/2013 RTPi Canal internacional de la televisión kurdo polaco pública portuguesa. RODIN TV Programación rectificar Rodin TV rectificar Reino Unido Nueva frecuencia 7/12/2011. Cese el Zagros 14/05/2012 inglés Zagros TV o urdu casubio Canal del Kurdistán Iraquí, con sede en o polaco su capital, Erbil. Llamado así por la cordillera de los montes Zagros. CSB TV rectificar CSB TV (Cassubia TV) MTA INTL rectificar MTA International - Muslim Cese el 19/09/2013 Television Ahmadiyya Int. italiano Canal musulmán ahmadía en varios idiomas, siendo el principal el urdu RTB Virgilio (idioma de Paquistán), también en Frecuencia y polaridad inglés, francés. RTB International rectificar rectificar 10723 H Tasa de símbolos (SR), FEC y modulación Desde el 17/09/2013 Estados Unidos 29900 3/4 DVB-S QPSK Emiratos Árabes Unidos Satélite Hot Bird 13B darí farsi o pashto Reino Unido inglés Farsi1 Farsi 1 Canal a base de telenovelas sudamericanas y series americanas dobladas al farsi. -
Romanov News Новости Романовых
Romanov News Новости Романовых By Paul Kulikovsky №90 September 2015 Monument to H.H. Prince of Imperial Blood Oleg Konstantinovich was opened in Tsarskoye Selo September 29, in Tsarskoye Selo, in the territory of the St. Sophia Cathedral was inaugurated a monument to the son of Grand Duke Konstantin Konstantinovich - Prince Oleg Konstantinovich, who participated in the First World War and was mortally wounded during a battle, and died a few days later. He gave his life for the Faith, Tsar and Fatherland. The monument is made on the initiative of the Fund Ludvig Nobel. The location for the monument is well chosen and not at all accidental. St. Sophia cathedral was the regimental church of the Life-Guard Hussar Regiment, in which served Prince Oleg. The sculpture is not entirely new, as it is cast after the pre-revolutionary model by the sculptor Vsevolod Lishev. Anna Yakovleva, Ludvig Nobel Foundation: "The sketch of the monument was designed by sculptor Lishev in 1915. But after the events that followed, it could not be put, but it was casted. By the way, the sketch was approved by the father of Oleg Konstantinovich." The new monument is made by sculptor Yaroslav Borodin. The ceremony began with a memorial service at the St. Sophia Cathedral, which was headed by Dean of the Tsarskoye Selo district Archpriest Gennady (Zverev). Chairman of the Imperial Orthodox Palestine Society, Sergey Stepashin said - "Today is a truly historic day. It is a day when we remember the wonderful and worthy representative of the Romanov dynasty, who died at age 22 on the front of the First World War. -
Секретариат Distr.: General 26 November 2015 Russian
Организация Объединенных Наций ST/SG/SER.E/756 Секретариат Distr.: General 26 November 2015 Russian Original: French Комитет по использованию космического пространства в мирных целях Информация, представляемая в соответствии с Конвенцией о регистрации объектов, запускаемых в космическое пространство Вербальная нота Постоянного представительства Франции при Организации Объединенных Наций (Вена) от 3 ноября 2015 года на имя Генерального секретаря Постоянное представительство Франции при Организации Объединенных Наций (Вена) в соответствии со статьей IV Конвенции о регистрации объектов, запускаемых в космическое пространство (резолюция 3235 (XXIX) Генеральной Ассамблеи, приложение), и положениями резолюции 62/101 Генеральной Ассамблеи имеет честь представить информацию о космических объектах, запущенных Францией в период с 1 января по 31 декабря 2014 года (приложение I), информацию о зарегистрированных Францией космических объектах, которые в период с 1 января по 31 декабря 2014 года возвратились в атмосферу Земли (приложение II), и дополнительную информацию о космических объектах, зарегистрированных Францией по состоянию на 31 декабря 2014 года (приложение III). В 2014 году Франция зарегистрировала 16 космических объектов (3 спутника и 13 элементов ракет-носителей) во Французском национальном регистре объектов, запускаемых в космическое пространство, который ведется Национальным центром космических исследований (КНЕС) от имени государства, в соответствии со статьями 12 и 28 Закона № 2008-518 от 3 июня 2008 года, касающимися космических операций, статьями 14-1-14-6 Декрета № 84-510 от 28 июня 1984 года, касающимися КНЕС, и положениями приказа от 12 августа 2011 года о введении перечня информации, необходимой для идентификации космического объекта. Постоянное представительство Франции также имеет честь информировать Генерального секретаря о том, что по состоянию на 31 декабря 2014 года во Французском национальном регистре содержались записи о 329 космических объектах, включая 125 спутников (из которых 67 находились в эксплуатации) и 204 элемента ракет-носителей.