The Galaxy Evolution Explorer (GALEX). Its Legacy of UV Surveys, and Science Highlights
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
REVIEW ARTICLE the NASA Spitzer Space Telescope
REVIEW OF SCIENTIFIC INSTRUMENTS 78, 011302 ͑2007͒ REVIEW ARTICLE The NASA Spitzer Space Telescope ͒ R. D. Gehrza Department of Astronomy, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, Minnesota 55455 ͒ T. L. Roelligb NASA Ames Research Center, MS 245-6, Moffett Field, California 94035-1000 ͒ M. W. Wernerc Jet Propulsion Laboratory, California Institute of Technology, MS 264-767, 4800 Oak Grove Drive, Pasadena, California 91109 ͒ G. G. Faziod Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 ͒ J. R. Houcke Astronomy Department, Cornell University, Ithaca, New York 14853-6801 ͒ F. J. Lowf Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 ͒ G. H. Riekeg Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 ͒ ͒ B. T. Soiferh and D. A. Levinei Spitzer Science Center, MC 220-6, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125 ͒ E. A. Romanaj Jet Propulsion Laboratory, California Institute of Technology, MS 264-767, 4800 Oak Grove Drive, Pasadena, California 91109 ͑Received 2 June 2006; accepted 17 September 2006; published online 30 January 2007͒ The National Aeronautics and Space Administration’s Spitzer Space Telescope ͑formerly the Space Infrared Telescope Facility͒ is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope ͑1990͒, the Compton Gamma-Ray Observatory ͑1991–2000͒, and the Chandra X-Ray Observatory ͑1999͒. Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. -
In-Flight PSF Calibration of the Nustar Hard X-Ray Optics
In-flight PSF calibration of the NuSTAR hard X-ray optics Hongjun Ana, Kristin K. Madsenb, Niels J. Westergaardc, Steven E. Boggsd, Finn E. Christensenc, William W. Craigd,e, Charles J. Haileyf, Fiona A. Harrisonb, Daniel K. Sterng, William W. Zhangh aDepartment of Physics, McGill University, Montreal, Quebec, H3A 2T8, Canada; bCahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA; cDTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby, Denmark; dSpace Sciences Laboratory, University of California, Berkeley, CA 94720, USA; eLawrence Livermore National Laboratory, Livermore, CA 94550, USA; fColumbia Astrophysics Laboratory, Columbia University, New York NY 10027, USA; gJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; hGoddard Space Flight Center, Greenbelt, MD 20771, USA ABSTRACT We present results of the point spread function (PSF) calibration of the hard X-ray optics of the Nuclear Spectroscopic Telescope Array (NuSTAR). Immediately post-launch, NuSTAR has observed bright point sources such as Cyg X-1, Vela X-1, and Her X-1 for the PSF calibration. We use the point source observations taken at several off-axis angles together with a ray-trace model to characterize the in-orbit angular response, and find that the ray-trace model alone does not fit the observed event distributions and applying empirical corrections to the ray-trace model improves the fit significantly. We describe the corrections applied to the ray-trace model and show that the uncertainties in the enclosed energy fraction (EEF) of the new PSF model is ∼<3% for extraction ′′ apertures of R ∼> 60 with no significant energy dependence. -
Tiny "Chipsat" Spacecra Set for First Flight
7/24/2019 Tiny "Chipsat" Spacecraft Set for First Flight - Scientific American Subscribe S P A C E Tiny "Chipsat" Spacecra Set for First Flight Launch in July will test new way to explore the solar system—and beyond By Nicola Jones, Nature magazine on June 1, 2016 A rearward view of the International Space Station. Credit: NASA/Crew of STS-132 On 6 July, if all goes to plan, a pack of about 100 sticky-note-sized ‘chipsats’ will be launched up to the International Space Station for a landmark deployment. During a brief few days of testing, the minuscule satellites will transmit data on their energy load and orientation before they drift out of orbit and burn up in Earth’s atmosphere. https://www.scientificamerican.com/article/tiny-chipsat-spacecraft-set-for-first-flight/ 1/6 7/24/2019 Tiny "Chipsat" Spacecraft Set for First Flight - Scientific American The chipsats, flat squares that measure just 3.2 centimetres to a side and weigh about 5 grams apiece, were designed for a PhD project. Yet their upcoming test in space is a baby step for the much-publicized Breakthrough Starshot mission, an effort led by billionaire Yuri Milner to send tiny probes on an interstellar voyage. “We’re extremely excited,” says Brett Streetman, an aerospace engineer at the non- profit Charles Stark Draper Laboratory in Cambridge, Massachusetts, who has investigated the feasibility of sending chipsats to Jupiter’s moon Europa. “This will give flight heritage to the chipsat platform and prove to people that they’re a real thing with real potential.” The probes are the most diminutive members of a growing family of small satellites. -
Cosmic Origins Newsletter, September 2016, Vol. 5, No. 2
National Aeronautics and Space Administration Cosmic Origins Newsletter September 2016 Volume 5 Number 2 Summer 2016 Cosmic Origins Program Inside this Issue Update Summer 2016 Cosmic Origins Program Update ............................1 Mansoor Ahmed, COR Program Manager Hubble Reveals Stellar Fireworks in ‘Skyrocket’ Galaxy ................2 Message from the Astrophysics Division Director .........................2 Susan Neff, COR Program Chief Scientist Light Echoes Give Clues to Protoplanetary Disk ............................3 Far-IR Surveyor Study Status .............................................................5 Welcome to the September 2016 Cosmic Origins (COR) newslet- LUVOIR Study Status .........................................................................5 ter. In this issue, we provide updates on several activities relevant to Strategic Astrophysics Technology (SAT) Selections the COR Program objectives. Some of these activities are not under for ROSES-2015 ...................................................................................6 the direct purview of the program, but are relevant to COR goals, Technology Solicitations to Enable Astrophysics Discoveries ......6 therefore we try to keep you informed about their progress. Cosmic Origins Suborbital Program: Balloon Program – BETTII ................................................................7 In January 2016, Paul Hertz (Director, NASA Astrophysics) News from SOFIA ...............................................................................8 presented his -
Abstract Observation Overview Nustar HXR Imaging Microflare
Imaging and Spectroscopy of Six NuSTAR MicroFlares SH11D-2898 Contact: J. Duncan1, L. Glesener1, I. Hannah2, D. Smith3, B. Grefenstette4 (1Univ, of Minnesota; 2Univ. of Glasgow; 3UC Santa Cruz; 4California Institute of Technology) [email protected] Abstract MicroFlare Time Evolution Hard X-ray (HXR) emission in solar flares originates from regions of high temperature plasma, as well as from non-thermal particle populations [1]. Both of these sources of HXR radiation make solar observation in this band important for study of • NuSTAR observed 6 MicroFlares during this observation. Time evolution is shown in both raw and normalized NuSTAR flare energetics. NuSTAR is the first HXR telescope with direct focusing optics, giving it a dramatic increase in sensitivity countsLivetime acrosscorrection several applied energy ranges for each flare. Counts are livetime-corrected (NuSTAR livetime ranged from 1-14%). Livetime correction applied over previous indirect imaging methods. Here we present NuSTAR observation of six microflares from one solar active Livetime correction applied 5 5 6 5×10 4×10 2.0 10 5 × 4×10 5 region during a period of several hours on May 29th, 2018. In conjunction with simultaneous data from SDO/AIA, data 3×10 5 2-4 keV 2-4 keV 6 3×10 1.5 10 Orbit1, Flare B 4-6 keV 2×105 4-6 keV × 5 counts 2 10 2-4 keV × Orbit1, Flare A 6-8 keV counts Orbit1, Flare C 6-8 keV from this observation has been used to create flare-time images showing the spatial extent of HXR emission. Additionally, 5 5 1 10 1×10 8-10 keV × 8-10 keV 6 4-6 keV 1.0×10 (Left) Estimated GOES A5 flare, with 0 0 1.2 1.2 16:07 16:08 16:09 16:10 16:11 16:46 16:48 16:50 16:52 16:54 NuSTAR lightcurves show time evolution in four different HXR energy ranges over the course of each flare. -
Build a Spacecraft Activity
UAMN Virtual Family Day: Amazing Earth Build a Spacecraft SMAP satellite. Image: NASA. Discover how scientists study Earth from above! Scientists use satellites and spacecraft to study the Earth from outer space. They take pictures of Earth's surface and measure cloud cover, sea levels, glacier movements, and more. Materials Needed: Paper, pencil, craft materials (small recycled boxes, cardboard pieces, paperclips, toothpicks, popsicle sticks, straws, cotton balls, yarn, etc. You can use whatever supplies you have!), fastening materials (glue, tape, rubber bands, string, etc.) Instructions: Step 1: Decide what you want your spacecraft to study. Will it take pictures of clouds? Track forest fires? Measure rainfall? Be creative! Step 2: Design your spacecraft. Draw a picture of what your spacecraft will look like. It will need these parts: Container: To hold everything together. Power Source: To create electricity; solar panels, batteries, etc. Scientific Instruments: This is the why you launched your satellite in the first place! Instruments could include cameras, particle collectors, or magnometers. Communication Device: To relay information back to Earth. Image: NASA SpacePlace. Orientation Finder: A sun or star tracker to show where the spacecraft is pointed. Step 3: Build your spacecraft! Use any craft materials you have available. Let your imagination go wild. Step 4: Your spacecraft will need to survive launching into orbit. Test your spacecraft by gently shaking or spinning it. How well did it hold together? Adjust your design and try again! Model spacecraft examples. Courtesy NASA SpacePlace. Activity adapted from NASA SpacePlace: spaceplace.nasa.gov/build-a-spacecraft/en/ UAMN Virtual Early Explorers: Amazing Earth Studying Earth From Above NASA is best known for exploring outer space, but it also conducts many missions to investigate Earth from above. -
Nustar Observatory Guide
NuSTAR Guest Observer Program NuSTAR Observatory Guide Version 3.2 (June 2016) NuSTAR Science Operations Center, California Institute of Technology, Pasadena, CA NASA Goddard Spaceflight Center, Greenbelt, MD nustar.caltech.edu heasarc.gsfc.nasa.gov/docs/nustar/index.html i Revision History Revision Date Editor Comments D1,2,3 2014-08-01 NuSTAR SOC Initial draft 1.0 2014-08-15 NuSTAR GOF Release for AO-1 Addition of more information about CZT 2.0 2014-10-30 NuSTAR SOC detectors in section 3. 3.0 2015-09-24 NuSTAR SOC Update to section 4 for release of AO-2 Update for NuSTARDAS v1.6.0 release 3.1 2016-05-10 NuSTAR SOC (nusplitsc, Section 5) 3.2 2016-06-15 NuSTAR SOC Adjustment to section 9 ii Table of Contents Revision History ......................................................................................................................................................... ii 1. INTRODUCTION ................................................................................................................................................... 1 1.1 NuSTAR Program Organization ..................................................................................................................................................................................... 1 2. The NuSTAR observatory .................................................................................................................................... 2 2.1 NuSTAR Performance ........................................................................................................................................................................................................ -
+ New Horizons
Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16 -
Building the Coolest X-Ray Satellite
National Aeronautics and Space Administration Building the Coolest X-ray Satellite 朱雀 Suzaku A Video Guide for Teachers Grades 9-12 Probing the Structure & Evolution of the Cosmos http://suzaku-epo.gsfc.nasa.gov/ www.nasa.gov The Suzaku Learning Center Presents “Building the Coolest X-ray Satellite” Video Guide for Teachers Written by Dr. James Lochner USRA & NASA/GSFC Greenbelt, MD Ms. Sara Mitchell Mr. Patrick Keeney SP Systems & NASA/GSFC Coudersport High School Greenbelt, MD Coudersport, PA This booklet is designed to be used with the “Building the Coolest X-ray Satellite” DVD, available from the Suzaku Learning Center. http://suzaku-epo.gsfc.nasa.gov/ Table of Contents I. Introduction 1. What is Astro-E2 (Suzaku)?....................................................................................... 2 2. “Building the Coolest X-ray Satellite” ....................................................................... 2 3. How to Use This Guide.............................................................................................. 2 4. Contents of the DVD ................................................................................................. 3 5. Post-Launch Information ........................................................................................... 3 6. Pre-requisites............................................................................................................. 4 7. Standards Met by Video and Activities ...................................................................... 4 II. Video Chapter 1 -
Nustar and XMM-Newton Observations of the Hard X-Ray Spectrum of Centaurus A
Downloaded from orbit.dtu.dk on: Sep 27, 2021 NuSTAR and XMM-Newton Observations of the Hard X-Ray Spectrum of Centaurus A Fürst, F.; Müller, C.; Madsen, K. K.; Lanz, L.; Rivers, E.; Brightman, M.; Arevalo, P.; Balokovi, M.; Beuchert, T.; Boggs, S. E. Total number of authors: 31 Published in: The Astrophysical Journal Link to article, DOI: 10.3847/0004-637X/819/2/150 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Fürst, F., Müller, C., Madsen, K. K., Lanz, L., Rivers, E., Brightman, M., Arevalo, P., Balokovi, M., Beuchert, T., Boggs, S. E., Christensen, F. E., Craig, W. W., Dauser, T., Farrah, D., Graefe, C., Hailey, C. J., Harrison, F. A., Kadler, M., King, A., ... Zhang, W. W. (2016). NuSTAR and XMM-Newton Observations of the Hard X-Ray Spectrum of Centaurus A. The Astrophysical Journal, 819(2), [150]. https://doi.org/10.3847/0004- 637X/819/2/150 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Software Error Doomed Japanese Hitomi Spacecraft!
Software error doomed Japanese Hitomi spacecraft! ! Space agency declares the astronomy satellite a loss.! ! Japan’s flagship Hitomi astronomical satellite, which launched successfully on 17 February but tumbled out of control five weeks later, may have been doomed by a basic engineering error. Confused about how it was oriented in space and trying to stop itself from spinning, Hitomi's software apparently fired a thruster jet in the wrong direction — accelerating rather than slowing the craft's rotation.! ! http://www.nature.com/news/software-error-doomed-japanese-hitomi- spacecraft-1.19835! 1! Gamma-Ray Bursts- Longair 22.7! • Are bright flashes of γ-rays- for a short period of time (<100 sec )! • fluxes of ~0.1-100 photon/cm2/sec/keV emitted primarily in the 20-500 keV band.! – Distribution is isotropic on the sky! • Because of these properties it took ~30 years from their discovery (1967) to their identification! – They are at very large distances (z up to 8 (!)) with apparent luminosities of 3x1054 erg/sec! – Rate is ~10-7/yr/galaxy ! • What are they??- short timescales imply compact object ; what could the 2 33 energy reservoir be- Mc implies M~10 gms~ Msun if total conversion of mass into energy How does all this energy end up as γ-rays ?! – Location of long γRBs is in and near star forming regions in smallish galaxies- associated with star formation! – a few γRBs have been associated with a type Ic supernova! 2! 3! Gamma-Ray Bursts ! • Cosmic γ-ray bursts (GRBs) were first reported in 1973 by Klebesadel et al (l973) but were first seen -
The Spitzer Space Telescope and the IR Astronomy Imaging Chain
Spitzer Space Telescope (A.K.A. The Space Infrared Telescope Facility) The Infrared Imaging Chain Fundamentals of Astronomical Imaging – Spitzer Space Telescope – 8 May 2006 1/38 The infrared imaging chain Generally similar to the optical imaging chain... 1) Source (different from optical astronomy sources) 2) Object (usually the same as the source in astronomy) 3) Collector (Spitzer Space Telescope) 4) Sensor (IR detector) 5) Processing 6) Display 7) Analysis 8) Storage ... but steps 3) and 4) are a bit more difficult! Fundamentals of Astronomical Imaging – Spitzer Space Telescope – 8 May 2006 2/38 The infrared imaging chain Longer wavelength – need a bigger telescope to get the same resolution or put up with lower resolution Fundamentals of Astronomical Imaging – Spitzer Space Telescope – 8 May 2006 3/38 Emission of IR radiation Warm objects emit lots of thermal infrared as well as reflecting it Including telescopes, people, and the Earth – so collection of IR radiation with a telescope is more complicated than an optical telescope Optical image of Spitzer Space Telescope launch: brighter regions are those which reflect more light IR image of Spitzer launch: brighter regions are those which emit more heat Infrared wavelength depends on temperature of object Fundamentals of Astronomical Imaging – Spitzer Space Telescope – 8 May 2006 4/38 Atmospheric absorption The atmosphere blocks most infrared radiation Need a telescope in space to view the IR properly Fundamentals of Astronomical Imaging – Spitzer Space Telescope – 8 May 2006 5/38