Investigating the Role of BEST1 Protein in Best Vitelliform Macular

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Role of BEST1 Protein in Best Vitelliform Macular Investigating the role of BEST1 protein in Best vitelliform macular dystrophy using a novel, disease-specific human embryonic stem cell line Melissa Maree Mangala BSc (Hons) This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Medicine, Western Sydney University, Australia 2016 Statement of authentication I hereby, declare that this thesis contains no material that has been accepted for the award of any other degree or diploma and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference has been made in the text of this thesis. ___________________ Melissa Maree Mangala Acknowledgements This project was supported by an Australian Postgraduate Award and Western Sydney University top-up scholarship. First and foremost I would like to thank my supervisor Dr. Michael O’Connor; for being a great mentor. Thank you for having faith in me, and investing the time, effort, support, enthusiasm and most importantly patience throughout my candidature. I want to thank my co-supervisors Professor John Morley and Dr. Morven Cameron for their time and support during my project. Thank you for providing the equipment I needed for my electrophysiology experiments, as well as your guidance and knowledge. I would like to give a big shout out to Seaky for her moral support and most importantly her friendship. We started out in Honours together as strangers and now she has become one of my closest friends. She has always stayed positive and encouraged me to keep going when I couldn’t and for the most part of it she has kept me sane and entertained. Thank you to Carol, Arlene, Mel, Sarah and Sindy, for your friendship, advice and support. I would especially like to thank my old and new friends who have been in awe of the work I do and have supported me most of all thank you for putting up with my crazy antics. In particular my friends who are like family Tia, Ash, Nadine, Daunia and Elise you have all kept me sane and in check and are always down for DnMs, lots of love. I would also like to thank my sister Jess and my brother Aaron thank you for all your love and support. We have gone through so much together as a family no matter what I will always love you both. Finally to Dad, I owe you so much, you have always supported my decisions in life and I’m grateful for everything you have given me. I love you so much! Table of Contents List of Tables............................................................................................................ vii List of Figures ............................................................................................................. x List of Abbreviations................................................................................................ xii Abstract ................................................................................................................... xvi Chapter 1: General Introduction...................................................................................... 1 1.1. Disease modelling using human pluripotent stem cells ................................... 2 1.1.1. Best vitelliform macular dystrophy ........................................................... 2 1.1.2. An unlimited source of human cells from human pluripotent stem cells . 3 1.1.3. Human pluripotent stem cells: a new paradigm for disease modelling .... 7 1.2. Importance of the RPE ..................................................................................... 8 1.2.1. RPE function ............................................................................................. 8 1.2.1.1. Absorption of light .............................................................................. 8 1.2.1.2. Transepithelial transport and ion homeostasis in the subretinal space 10 1.2.1.3. Phagocytosis of shed photoreceptor outer segments ......................... 11 1.3. Bestrophin-1 protein in focus ......................................................................... 13 1.3.1. The structure and function of the Bestrophin protein ............................. 13 1.3.2. Electrophysiological reports of BEST1 function .................................... 15 1.3.2.1. BEST1 a newly defined Cl- channel activated by Ca2+ ..................... 15 1.3.2.2. BEST1 plays an integral role in Ca2+ regulation ............................... 17 i 1.4. Hypothesis and Aims ...................................................................................... 19 1.4.1. Hypothesis ............................................................................................... 19 1.4.2. Aims ........................................................................................................ 19 Chapter 2: General Materials and Methods .................................................................. 20 2.1. Human ES cell lines ........................................................................................... 21 2.1.1. Cell line details ............................................................................................ 21 2.1.2. Genomic characterisation of the GENEA069 cells ..................................... 21 2.1.3. Human ES cell line maintenance ................................................................ 22 2.1.4. Human ES cell differentiation to RPE ........................................................ 23 2.1.5. Isolating human ES cell-derived RPE ......................................................... 24 2.2. Quantitative polymerase chain reaction ............................................................. 25 2.2.1. RNA collection............................................................................................ 25 2.2.2. cDNA synthesis via reverse transcription ................................................... 26 2.2.3. Primer design .............................................................................................. 27 2.2.4. PCR amplification of mRNA transcripts .................................................... 28 2.2.5. Real-time PCR ............................................................................................ 28 2.2.6. Analysis of relative quantitation of gene expression .................................. 29 2.3. Flow cytometry .................................................................................................. 30 2.3.1. Antibody staining for flow cytometry ......................................................... 30 2.3.2. Flow cytometry data acquisition ................................................................. 31 2.4. Colony forming assay for undifferentiated human ES cells .............................. 32 2.5. Teratoma Assay .................................................................................................. 32 ii 2.6. Immunofluorescence .......................................................................................... 33 2.7. Electrophysiology .............................................................................................. 34 2.7.1. Whole-cell patch clamp data collection ...................................................... 34 2.7.2. Solutions ...................................................................................................... 35 2.7.2.1. Whole-cell Na+ and K+ currents ............................................................... 35 2.7.2.2. Whole-cell Cl- and Ca2+ currents ............................................................. 36 2.7.3. Analysis of whole-cell patch clamp data .................................................... 37 2.8. Affymetrix gene expression analysis ................................................................. 38 2.8.1. Affymetrix microarray analysis .................................................................. 38 2.8.2. Identifying RPE gene expression data ........................................................ 38 2.8.3. Analysis of published human foetal and adult RPE datasets ...................... 39 2.8.4. Identifying Gene ontology categories in human ES cell-derived RPE ....... 39 2.8.5. Identifying ion channels in the expressed gene lists ................................... 40 Chapter 3: Characterisation of a novel human ES cell line containing the F305S BEST1 mutation ............................................................................................................ 41 3.1. Introduction .................................................................................................... 42 3.2. Results ............................................................................................................ 44 3.2.1. GENEA069 cells possess the disease-causing F305S BEST1 mutation 44 3.2.2. F305S-mutant BEST1 human ES cells display typical pluripotency phenotypes ............................................................................................................ 44 3.2.3. F305S-mutant BEST1 human ES cells are functional human ES cells .. 45 3.2.4. F305S-mutant BEST1 human ES cells form teratomas .......................... 46 iii 3.2.5. Characterisation of F305S-mutant BEST1 RPE relative to normal RPE50 3.2.6. Altered BEST1 localisation in the F305S-mutant BEST1 RPE.............. 51 3.2.7. F305S-mutant BEST1 and normal RPE have similar Affymetrix gene expression .............................................................................................................. 54 3.2.8. GO analysis reveals biological processes in human ES cell-derived
Recommended publications
  • Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach
    Mafalda Rita Avó Bacalhau Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach Tese de doutoramento do Programa de Doutoramento em Ciências da Saúde, ramo de Ciências Biomédicas, orientada pela Professora Doutora Maria Manuela Monteiro Grazina e co-orientada pelo Professor Doutor Henrique Manuel Paixão dos Santos Girão e pela Professora Doutora Lee-Jun C. Wong e apresentada à Faculdade de Medicina da Universidade de Coimbra Julho 2017 Faculty of Medicine Establishing the pathogenicity of novel mitochondrial DNA sequence variations: a cell and molecular biology approach Mafalda Rita Avó Bacalhau Tese de doutoramento do programa em Ciências da Saúde, ramo de Ciências Biomédicas, realizada sob a orientação científica da Professora Doutora Maria Manuela Monteiro Grazina; e co-orientação do Professor Doutor Henrique Manuel Paixão dos Santos Girão e da Professora Doutora Lee-Jun C. Wong, apresentada à Faculdade de Medicina da Universidade de Coimbra. Julho, 2017 Copyright© Mafalda Bacalhau e Manuela Grazina, 2017 Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os direitos de autor são pertença do autor da tese e do orientador científico e que nenhuma citação ou informação obtida a partir dela pode ser publicada sem a referência apropriada e autorização. This copy of the thesis has been supplied on the condition that anyone who consults it recognizes that its copyright belongs to its author and scientific supervisor and that no quotation from the
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table S1. Prioritization of Candidate FPC Susceptibility Genes by Private Heterozygous Ptvs
    Supplementary Table S1. Prioritization of candidate FPC susceptibility genes by private heterozygous PTVs Number of private Number of private Number FPC patient heterozygous PTVs in heterozygous PTVs in tumors with somatic FPC susceptibility Hereditary cancer Hereditary Gene FPC kindred BCCS samples mutation DNA repair gene Cancer driver gene gene gene pancreatitis gene ATM 19 1 - Yes Yes Yes Yes - SSPO 12 8 1 - - - - - DNAH14 10 3 - - - - - - CD36 9 3 - - - - - - TET2 9 1 - - Yes - - - MUC16 8 14 - - - - - - DNHD1 7 4 1 - - - - - DNMT3A 7 1 - - Yes - - - PKHD1L1 7 9 - - - - - - DNAH3 6 5 - - - - - - MYH7B 6 1 - - - - - - PKD1L2 6 6 - - - - - - POLN 6 2 - Yes - - - - POLQ 6 7 - Yes - - - - RP1L1 6 6 - - - - - - TTN 6 5 4 - - - - - WDR87 6 7 - - - - - - ABCA13 5 3 1 - - - - - ASXL1 5 1 - - Yes - - - BBS10 5 0 - - - - - - BRCA2 5 6 1 Yes Yes Yes Yes - CENPJ 5 1 - - - - - - CEP290 5 5 - - - - - - CYP3A5 5 2 - - - - - - DNAH12 5 6 - - - - - - DNAH6 5 1 1 - - - - - EPPK1 5 4 - - - - - - ESYT3 5 1 - - - - - - FRAS1 5 4 - - - - - - HGC6.3 5 0 - - - - - - IGFN1 5 5 - - - - - - KCP 5 4 - - - - - - LRRC43 5 0 - - - - - - MCTP2 5 1 - - - - - - MPO 5 1 - - - - - - MUC4 5 5 - - - - - - OBSCN 5 8 2 - - - - - PALB2 5 0 - Yes - Yes Yes - SLCO1B3 5 2 - - - - - - SYT15 5 3 - - - - - - XIRP2 5 3 1 - - - - - ZNF266 5 2 - - - - - - ZNF530 5 1 - - - - - - ACACB 4 1 1 - - - - - ALS2CL 4 2 - - - - - - AMER3 4 0 2 - - - - - ANKRD35 4 4 - - - - - - ATP10B 4 1 - - - - - - ATP8B3 4 6 - - - - - - C10orf95 4 0 - - - - - - C2orf88 4 0 - - - - - - C5orf42 4 2 - - - -
    [Show full text]
  • Mitochondrial Reprogramming Via ATP5H Loss Promotes Multimodal Cancer Therapy Resistance
    Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance Kwon-Ho Song, … , T.C. Wu, Tae Woo Kim J Clin Invest. 2018;128(9):4098-4114. https://doi.org/10.1172/JCI96804. Research Article Immunology Oncology The host immune system plays a pivotal role in the emergence of tumor cells that are refractory to multiple clinical interventions including immunotherapy, chemotherapy, and radiotherapy. Here, we examined the molecular mechanisms by which the immune system triggers cross-resistance to these interventions. By examining the biological changes in murine and tumor cells subjected to sequential rounds of in vitro or in vivo immune selection via cognate cytotoxic T lymphocytes, we found that multimodality resistance arises through a core metabolic reprogramming pathway instigated by epigenetic loss of the ATP synthase subunit ATP5H, which leads to ROS accumulation and HIF-1α stabilization under normoxia. Furthermore, this pathway confers to tumor cells a stem-like and invasive phenotype. In vivo delivery of antioxidants reverses these phenotypic changes and resensitizes tumor cells to therapy. ATP5H loss in the tumor is strongly linked to failure of therapy, disease progression, and poor survival in patients with cancer. Collectively, our results reveal a mechanism underlying immune-driven multimodality resistance to cancer therapy and demonstrate that rational targeting of mitochondrial metabolic reprogramming in tumor cells may overcome this resistance. We believe these results hold important implications for the clinical management of cancer. Find the latest version: https://jci.me/96804/pdf RESEARCH ARTICLE The Journal of Clinical Investigation Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance Kwon-Ho Song,1,2,3 Jae-Hoon Kim,4 Young-Ho Lee,1,2,3 Hyun Cheol Bae,5 Hyo-Jung Lee,1,2,3 Seon Rang Woo,1,2,3 Se Jin Oh,1,2,3 Kyung-Mi Lee,1,2 Cassian Yee,6 Bo Wook Kim,7 Hanbyoul Cho,4 Eun Joo Chung,8 Joon-Yong Chung,9 Stephen M.
    [Show full text]
  • S41467-020-18249-3.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible.
    [Show full text]
  • Macropinocytosis Requires Gal-3 in a Subset of Patient-Derived Glioblastoma Stem Cells
    ARTICLE https://doi.org/10.1038/s42003-021-02258-z OPEN Macropinocytosis requires Gal-3 in a subset of patient-derived glioblastoma stem cells Laetitia Seguin1,8, Soline Odouard2,8, Francesca Corlazzoli 2,8, Sarah Al Haddad2, Laurine Moindrot2, Marta Calvo Tardón3, Mayra Yebra4, Alexey Koval5, Eliana Marinari2, Viviane Bes3, Alexandre Guérin 6, Mathilde Allard2, Sten Ilmjärv6, Vladimir L. Katanaev 5, Paul R. Walker3, Karl-Heinz Krause6, Valérie Dutoit2, ✉ Jann N. Sarkaria 7, Pierre-Yves Dietrich2 & Érika Cosset 2 Recently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3high glio- 1234567890():,; blastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3- mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion, in vitro and in vivo. Mechanistically, we demonstrate that Gal-3 binds to RAB10, a member of the RAS superfamily of small GTPases, and β1 integrin, which are both required for macro- pinocytosis activity and cell survival. Finally, by defining a Gal-3/macropinocytosis molecular signature, we could predict sensitivity to this dependency pathway and provide proof-of- principle for innovative therapeutic strategies to exploit this Achilles’ heel for a significant and unique subset of GBM patients. 1 University Côte d’Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging (IRCAN), Nice, France. 2 Laboratory of Tumor Immunology, Department of Oncology, Center for Translational Research in Onco-Hematology, Swiss Cancer Center Léman (SCCL), Geneva University Hospitals, University of Geneva, Geneva, Switzerland.
    [Show full text]
  • ATP5H Antibody (Center) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AW5527
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 ATP5H Antibody (Center) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AW5527 Specification ATP5H Antibody (Center) - Product Information Application WB, IHC-P, FC,E Primary Accession O75947 Reactivity Human Host Rabbit Clonality Polyclonal Calculated MW H=18;M=19;R=19 KDa Isotype Rabbit Ig Antigen Source HUMAN ATP5H Antibody (Center) - Additional Information Gene ID 10476 Antigen Region 68-97 All lanes : Anti-ATP5H Antibody (Center) at 1:1000 dilution Lane 1: MDA-MB-453 whole Other Names cell lysate Lane 2: HepG2 whole cell lysate ATP synthase subunit d, mitochondrial, Lysates/proteins at 20 µg per lane. ATPase subunit d, ATP5H Secondary Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/10000 dilution. Dilution Predicted band size : 18 kDa WB~~1:1000 Blocking/Dilution buffer: 5% NFDM/TBST. IHC-P~~1:50~100 FC~~1:10~50 Target/Specificity This ATP5H antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 68-97 amino acids from the Central region of human ATP5H. Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. Precautions ATP5H Antibody (Center) is for research use only and not for use in diagnostic or therapeutic procedures. ATP5H antibody (Center) (Cat. #AW5527) immunohistochemistry analysis in formalin fixed and paraffin embedded human brain Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 ATP5H Antibody (Center) - Protein Information tissue followed by peroxidase conjugation of the secondary antibody and DAB staining.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]