The Facultative Heterochromatin of the Inactive X Chromosome Has a Distinctive Condensed Ultrastructure

Total Page:16

File Type:pdf, Size:1020Kb

The Facultative Heterochromatin of the Inactive X Chromosome Has a Distinctive Condensed Ultrastructure Research Article 1119 The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure Alena Rego, Paul B. Sinclair, Wei Tao*, Igor Kireev and Andrew S. Belmont‡ Department of Cell and Developmental Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA *Present Address: Department of Cell Biology, College of Life Sciences, Peking University, Beijing 100871, Peopleʼs Republic of China ‡Author for correspondence (e-mail: [email protected]) Accepted 8 January 2008 J. Cell Sci. 121, 1119-1127 Published by The Company of Biologists 2008 doi:10.1242/jcs.026104 Summary The mammalian inactive X chromosome (Xi) is a model for condensed regions of the Xi. Serial-section analysis also reveals facultative heterochromatin. Increased DNA compaction for the extensive contacts of the Xi with the nuclear envelope and/or Xi, and for facultative heterochromatin in general, has long nucleolus, with nuclear envelope association being observed been assumed based on recognition of a distinct Barr body in all cells. Implications of our results for models of Xi using nucleic-acid staining. This conclusion has been challenged gene silencing and chromosome territory organization are by a report revealing equal volumes occupied by the inactive discussed. and active X chromosomes. Here, we use light and electron microscopy to demonstrate in mouse and human fibroblasts a unique Xi ultrastructure, distinct from euchromatin and Supplementary material available online at constitutive heterochromatin, containing tightly packed, http://jcs.biologists.org/cgi/content/full/121/7/1119/DC1 heterochromatic fibers/domains with diameters in some cases approaching that of prophase chromatids. Significant space Key words: Facultative heterochromatin, Large-scale chromatin, between these packed structures is observed even within Electron microscopy, Chromocenters, The X chromosome Introduction usually positioned at the nuclear or nucleolar periphery (Barr and Journal of Cell Science Interphase chromatin is typically thought to be decondensed at Carr, 1962; Belmont et al., 1986; Puck and Johnson, 1996; Zhang locations in which genes are transcribed and condensed where genes et al., 2007). Inactivation of one of the X chromosomes in female are silent (Wegel and Shaw, 2005). However, this generalization is cells is the mechanism of mammalian dosage compensation of X- contradicted by observations that inactive genes may reside in linked genes (Lyon, 1961). domains of open chromatin, whereas active genes in regions of low A long-standing assumption has been that sequential epigenetic gene density can be embedded within compact chromatin fibers modifications occurring during X inactivation directly lead to Xi (Gilbert and Bickmore, 2006; Gilbert et al., 2004). A diversity of DNA compaction and increased condensation per se might theoretical models for the nuclear organization of active and silent contribute to gene silencing (Arney and Fisher, 2004; Chow and chromatin (reviewed in Cremer et al., 2006; Spector, 2003) stem Brown, 2003). This assumption has been challenged by comparison from our limited understanding of higher-order chromatin structure of the Xi and the active X chromosome (Xa) conformation using beyond the 30-nm fiber, referred to as large-scale chromatin 3D fluorescence in situ hybridization with X-specific whole- structure. This limited understanding results from technical chromosome probes. In human amniotic cells, Xi and Xa territories limitations in imaging of chromatin by light microscopy (LM) and were observed to occupy similar volumes but differed in shape and electron microscopy (EM) (Horowitz-Scherer and Woodcock, surface area (Eils et al., 1996), suggesting the same average 2006), including sensitivity of higher levels of chromatin folding chromatin compaction for both the Xi and Xa (Pollard and to buffers and EM preparation methods (Belmont et al., 1989) and Earnshaw, 2004). lack of suitable high-contrast DNA-specific staining methods for It has been proposed that the Xi in the interphase nucleus is EM. organized into a core of repetitive sequences surrounded by genic Traditional cytology classifies chromatin into less-condensed regions (Chaumeil et al., 2006; Clemson et al., 2006), but a detailed euchromatin and more-condensed heterochromatin. ultrastructural analysis of the Xi has so far been lacking (Heard and Heterochromatin has been further subdivided into permanently Disteche, 2006; Straub and Becker, 2007). Here, we have combined condensed constitutive heterochromatin and facultative LM and EM of the Xi in human and mouse female fibroblasts to heterochromatin, which becomes condensed/decondensed at some demonstrate that the Xi has a unique ultrastructure, containing point during development (Wegel and Shaw, 2005). X inactivation condensed, large-scale chromatin fibers/domains clearly distinct in female mammals is a classic example of the formation of from those observed in euchromatic or constitutive heterochromatin facultative heterochromatin. The inactive X chromosome (Xi) regions. In addition, we demonstrate a distinct position of this appears within interphase nuclei as a heteropycnotic Barr body facultative heterochromatin in the nucleus. 1120 Journal of Cell Science 121 (7) Results in Xi conformation or orientation resulted in comparable DAPI The Xi has a homogeneous size and appearance in confluent contrast as the surrounding chromatin (Fig. 1C). Inspection of single, WI-38 cells unprocessed optical sections by two independent observers revealed For ultrastructural studies, we wanted a homogeneous cell that, in ~85% of confluent cells (n=100), the Barr-body/Xi population in which the Xi was fully silenced and showed minimal condensed core could be identified solely by the presence of a DAPI- variation in appearance. The original concept of increased chromatin dense body. This number rose to 95% for confluent cells when compaction of the Xi comes from its appearance at the LM level optical section stacks were inspected (n=131). as a distinct nuclear Barr body, which stains more intensely with Xi/Barr-body area, as measured by the H3-3mK27 signal, was nucleic-acid stains than the surrounding chromatin, implying a smaller and showed a more uniform size distribution in confluent higher DNA compaction. versus log-phase cells (2.7 versus 3.4 μm2) (Fig. 1D). We therefore We used human female primary fibroblasts, WI-38 cells, which used confluent cells for most of our ultrastructural analysis. have a high percentage of cells showing a distinct Barr body. This percentage peaked in confluent cells, 10 days after passage. The Identifying sample-preparation methods that preserved Xi Barr body was equated to a DAPI bright body with a unique intensity structure and size distinct from all other DAPI bright regions. Immunostaining A major problem in viewing chromatin ultrastructure by against trimethylated histone H3 on lysine 27 (H3-3mK27) provided transmission electron microscopy (TEM) is the lack of an adequate a robust, independent identification of the Xi/Barr body, with a DNA-specific stain. To obtain satisfactory contrast of chromatin discrete, unique, high-contrast stained body recognizable in nearly and to improve accessibility during pre-embedding immunogold 100% of cells. In cells with a clearly defined Barr body, as defined staining, detergent extraction of the nucleoplasm prior to fixation by DAPI staining, the DAPI dense region colocalized nearly is frequently used. However, the extreme sensitivity of large-scale completely with the region of elevated H3-3mK27 staining (Fig. chromatin structure to minor changes in buffer conditions leads to 1A). significant changes in ultrastructure dependent on the choice of We used H3-3mK27 staining to confirm the identification of a permeabilization buffer (Belmont et al., 1989). DAPI-dense body as the Xi, to visualize the Xi in cells without a Here, we used the Barr-body appearance in live cells to optimize recognizable DAPI-dense body, and to assay the variability in Xi sample preparation and verify EM ultrastructural preservation. In size and conformation. Failure to recognize a Barr body exclusively cells expressing GFP-histone H2B, the GFP fluorescence by DAPI staining was either due to the presence of multiple DAPI- distribution was similar to the DAPI staining distribution, which dense bodies elsewhere in the nucleus (Fig. 1B), or because a change we assume was due to its proportional enrichment based on DNA content. In deconvolved optical sections, the Barr body visualized in live cells by GFP-H2B fluorescence displayed obvious fiber substructures measuring 200-400 nm in width (Fig. 2A). After live- cell imaging, the same samples were then fixed or permeabilized in various buffers prior to fixation in 2% glutaraldehyde (GA) and a repeat optical sectioning. Comparison of images before and after Journal of Cell Science fixation (data not shown) identified buffer A, used in our previous work to preserve large-scale chromatin structures, as most suitable for Barr-body structural preservation after permeabilization (Belmont et al., 1989). As a higher-resolution test, we used the TEM appearance of Xi large-scale chromatin fibers in unextracted cells (Fig. 2B) to guide selection of buffer and fixation conditions preserving these fibers during nucleoplasm extraction and immunostaining. To minimize buffer-induced alterations in chromatin ultrastructure, we also explored the use of a UV pre-fixation procedure prior to detergent permeabilization
Recommended publications
  • The Heterochromatin Condensation State in Peripheral “Gene Poor” and Central “Gene Rich” Nuclear Regions of Less Differe
    L al of euk rn em u i o a J Journal of Leukemia Karel Smetana, J Leuk 2014, 2:4 ISSN: 2329-6917 DOI: 10.4172/2329-6917.1000151 Research Article Open Access The Heterochromatin Condensation State in Peripheral “Gene Poor” and Central “Gene Rich” Nuclear Regions of Less Differentiated and Mature Human Leukemic Cells: A Mini-Review with Additional Original Observations Karel Smetana* Institute of Hematology and Blood Transfusion, Prague, Czech Republic *Corresponding author: Karel Smetana, Senior scientist Institute of Hematology and Blood Transfusion, U nemocnice 1, 128 20 Prague, Czech Republic, Tel: 420 739906473; E-mail: [email protected] Rec date: May 22, 2014; Acc date: Aug 28, 2014; Pub date: Aug 30, 2014 Copyright: © 2014 Karel Smenata. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract In the morphological cytology the heterochromatin is one of very useful tools for the cell identification including the differentiation and maturation stage. However, the heterochromatin condensation state was less studied although it appeared to be different in “gene rich” central and “gene poor” peripheral nuclear regions. The heavy heterochromatin condensation state in the central “gene rich” nuclear regions might reflect a marked structural stability and protect the genomic integrity. It must be also noted that the heterochromatin condensation state in these nuclear regions is more variable than in the nuclear periphery because of the presence of more as well as less condensed heterochromatin territories.
    [Show full text]
  • Dosage Compensation∗ a Mechanism to Equalize X-Linked Gene Products Between the Sexes
    GENERAL ARTICLE Dosage Compensation∗ A Mechanism to Equalize X-linked Gene Products Between the Sexes Rajiva Raman The sex chromosomes evolved from a pair of autosomes that deviated over a period of time, with one chromosome losing most of its genes. In many animal groups, females have two X-chromosomes—a large chromosome with numerous genes. Males have one X and a Y chromosome, which has lost most genes except those involved in sex determination and fertility. Thus males are effectively monosomic for the X-chromosome. Monosomy being lethal for other chromosomes, organisms Rajiva Raman had his evolved a mechanism called ‘dosage compensation’ (DC) which university education from quantitatively equalizes X-linked gene products between the Banaras Hindu University. After his retirement from the sexes, compensating for their numerical disparity (dosage). Department of Zoology at Best studied in Drosophila, Caenorhabditis elegans, and mam- BHU as Professor, he is now mals, different species adopt different mechanisms of DC. In serving in the same Drosophila, genes on the male X-chromosome are twice as ac- department as Distinguished Professor. He is also the tive as on each X-chromosome in females. In C. elegans, DC Senior Scientist of the Indian is achieved by the lowered activity of each X-chromosome in National Science Academy. XX individuals vis-a-vis the male X. In mammals, the inac- He has a teaching experience tivation of an entire X-chromosome in the female results in of nearly 40 years. the parity between the two sexes. Despite the difference in gross mechanisms, the molecular processes achieving DC are uniform due to chromatin modifications (histone acetylation, methylation, and DNA methylation) and synthesis of various noncoding RNAs (lncRNAs ).
    [Show full text]
  • Chromosomal Condensation Leads to a Preference for Peripheral Heterochromatin Quinn Macpherson 1 and Andrew J
    i bioRxiv preprint doi: https://doi.org/10.1101/714360; this version posted July 25, 2019. The copyright holder for this preprint (which was not i certified by peer review) is the author/funder,“output” who —has 2019/7/24granted bioRxiv — a 20:56 license — to display page 1the — preprint #1 in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. i i Published online – —– 2019 Chromosomal condensation leads to a preference for peripheral heterochromatin Quinn MacPherson 1 and Andrew J. Spakowitz 2;3;4∗ 1Department of Physics, Stanford University, Stanford University, Stanford, CA 94305 2Department of Chemical Engineering, Stanford University, Stanford, CA 94305 3Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 4Department of Applied Physics, Stanford University, Stanford, CA 94305, USA ABSTRACT (LADs). The position of LADs are correlated with regions of low gene density, genes with low expression levels, regions A layer of dense heterochromatin is found at the periphery of pericentric heterochromatin, and regions with high levels of the nucleus. Because this peripheral heterochromatin of the epigenetic marks H3K9me2/3 (12, 13). However, the functions as a repressive phase, mechanisms that relocate mechanisms that bring the LADs in contact with the nuclear genes to the periphery play an important role in regulating periphery remain poorly understood (13, 14). transcription. Using Monte-Carlo simulations, we show Knockouts of lamin A and lamin C—proteins that form the that an interaction between chromatin and the nuclear fibrous layer at the periphery—lead to a loss of peripheral boundary need not be specific to heterochromatin in order heterochromatin (9) and a loss of peripheral positioning for to preferentially locate heterochromatin to the nuclear tested LADs.
    [Show full text]
  • Chapter 4: Epigenesis and Genetic Regulation
    © 1998, Gregory Carey Chapter 4: Epigenesis - 1 Chapter 4: Epigenesis and Genetic Regulation Introduction Virtually every cell in your body contains all the genetic information about making a complete human being that would be your identical twin.1 This fact makes cloning you a theoretical possibility. A mad geneticist could try this by extracting the DNA from one of your cells, placing it into the nucleus of a human egg where the DNA has been removed, inducing the egg to start dividing, and then inserting it into the uterus of a woman. If the resulting zygote were viable, the organism would be your identical twin, albeit in a different phase of the life cycle. But if every cell has the same genetic code, then why are some cells liver cells while others are neurons? Another problem arises from the consideration of cell division. You and I begin as a single fertilized egg. This egg divides into two cells that contain the same genetic material. These two genetically identical cells each divide, giving four genetically identical cells; these four divide, giving eight and so on. Why were our parents not rewarded for nine months of pregnancy by bouncing, seven pound blobs of identical cells? Although the answers for these questions are complicated and not well understood, a major reason is that genes are differentially expressed in some tissues and are also regulated over time even within the same tissue. To oversimplify, even though a liver cell has all the genetic information to make a neuron, only those “liver cell” genes are © 1998, Gregory Carey Chapter 4: Epigenesis - 2 working in the liver.
    [Show full text]
  • Dosage Compensation in Mammals: Fine-Tuning the Expression of the X Chromosome
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Dosage compensation in mammals: fine-tuning the expression of the X chromosome Edith Heard1,3 and Christine M. Disteche2,4 1CNRS UMR218, Curie Institute, 75248 Paris, Cedex 05, France; 2Department of Pathology and Department of Medicine, University of Washington, Seattle, Washington 98195, USA Mammalian females have two X chromosomes and somes. In eutherians, X-chromosome inactivation (XCI) males have only one. This has led to the evolution of affects the paternal or maternal X chromosome ran- special mechanisms of dosage compensation. The inac- domly during early development, and the inactive state tivation of one X chromosome in females equalizes gene is then stably inherited, giving rise to adults that are expression between the sexes. This process of X-chromo- mosaics for two cell types, expressing one or the other X some inactivation (XCI) is a remarkable example of long- chromosome. The initiation of X inactivation is con- range, monoallelic gene silencing and facultative hetero- trolled by the X-inactivation center (Xic), which pro- chromatin formation, and the questions surrounding it duces the noncoding Xist transcript responsible for trig- have fascinated biologists for decades. How does the in- gering silencing in cis. In marsupials and in the extraem- activation of more than a thousand genes on one X chro- bryonic tissues of some placental mammals such as mosome take place while the other X chromosome, rodents, XCI is imprinted, with the paternal X chromo- present in the same nucleus, remains genetically active? some (Xp) being inactivated.
    [Show full text]
  • Epigenetic Factors That Control Pericentric Heterochromatin Organization in Mammals
    G C A T T A C G G C A T genes Review Epigenetic Factors that Control Pericentric Heterochromatin Organization in Mammals Salvatore Fioriniello y , Domenico Marano y , Francesca Fiorillo, Maurizio D’Esposito * and Floriana Della Ragione * Institute of Genetics and Biophysics ‘A. Buzzati-Traverso’, CNR, 80131 Naples, Italy; salvatore.fi[email protected] (S.F.); [email protected] (D.M.); francesca.fi[email protected] (F.F.) * Correspondence: [email protected] (M.D.); fl[email protected] (F.D.R.); Tel.: +39-081-6132606 (M.D.); +39-081-6132338 (F.D.R.); Fax: +39-081-6132706 (M.D. & F.D.R.) These authors contributed equally to this work as first authors. y Received: 6 April 2020; Accepted: 25 May 2020; Published: 28 May 2020 Abstract: Pericentric heterochromatin (PCH) is a particular form of constitutive heterochromatin that is localized to both sides of centromeres and that forms silent compartments enriched in repressive marks. These genomic regions contain species-specific repetitive satellite DNA that differs in terms of nucleotide sequences and repeat lengths. In spite of this sequence diversity, PCH is involved in many biological phenomena that are conserved among species, including centromere function, the preservation of genome integrity, the suppression of spurious recombination during meiosis, and the organization of genomic silent compartments in the nucleus. PCH organization and maintenance of its repressive state is tightly regulated by a plethora of factors, including enzymes (e.g., DNA methyltransferases, histone deacetylases, and histone methyltransferases), DNA and histone methylation binding factors (e.g., MECP2 and HP1), chromatin remodeling proteins (e.g., ATRX and DAXX), and non-coding RNAs.
    [Show full text]
  • Heterochromatin: New Possibilities for the Inheritance of Structure Shiv IS Grewal* and Sarah CR Elgin†
    178 Heterochromatin: new possibilities for the inheritance of structure Shiv IS Grewal* and Sarah CR Elgin† Significant portions of the eukaryotic genome are Two key observations have linked formation of such a heterochromatic, made up largely of repetitious sequences and condensed heterochromatic structure with the inactivation possessing a distinctive chromatin structure associated with of genes normally resident in euchromatic domains. First, gene silencing. New insights into the form of packaging, the X chromosome inactivation in mammals leaves the associated histone modifications, and the associated inactive X as a visibly staining structure, the Barr body. nonhistone chromosomal proteins of heterochromatin have Although the choice of which chromosome to inactivate — suggested a mechanism for providing an epigenetic mark that either maternal or paternal — appears to be random in allows this distinctive chromatin structure to be maintained most mammalian species, the decision is clonally inherited following replication and to spread within a given domain. once made [4]. Second, in Drosophila, a similar phenome- non of clonally inherited silencing is observed following Addresses chromosome rearrangements with one breakpoint within *Cold Spring Harbor Laboratory, One Bungtown Road, heterochromatin (position effect variegation [PEV]; see Cold Spring Harbor, New York 11724, USA; Figure 1). For example, juxtaposition of the white gene e-mail: [email protected] with such a breakpoint results in silencing of white in some †Washington University, One Brookings Drive, Department of Biology, CB-1229, St Louis, Missouri 63130, USA; of the cells in which the gene is normally active; patches of e-mail: [email protected] expressing cells are observed, again suggesting a stochastic ‘decision’ stably inherited through mitosis.
    [Show full text]
  • Rbm10 Facilitates Heterochromatin Assembly Via the Clr6 HDAC Complex
    Weigt et al. Epigenetics & Chromatin (2021) 14:8 https://doi.org/10.1186/s13072-021-00382-y Epigenetics & Chromatin RESEARCH Open Access Rbm10 facilitates heterochromatin assembly via the Clr6 HDAC complex Martina Weigt1†, Qingsong Gao1†, Hyoju Ban2†, Haijin He2, Guido Mastrobuoni3, Stefan Kempa3, Wei Chen1,4,5* and Fei Li2* Abstract Splicing factors have recently been shown to be involved in heterochromatin formation, but their role in control- ling heterochromatin structure and function remains poorly understood. In this study, we identifed a fssion yeast homologue of human splicing factor RBM10, which has been linked to TARP syndrome. Overexpression of Rbm10 in fssion yeast leads to strong global intron retention. Rbm10 also interacts with splicing factors in a pattern resembling that of human RBM10, suggesting that the function of Rbm10 as a splicing regulator is conserved. Surprisingly, our deep-sequencing data showed that deletion of Rbm10 caused only minor efect on genome-wide gene expression and splicing. However, the mutant displays severe heterochromatin defects. Further analyses indicated that the het- erochromatin defects in the mutant did not result from mis-splicing of heterochromatin factors. Our proteomic data revealed that Rbm10 associates with the histone deacetylase Clr6 complex and chromatin remodelers known to be important for heterochromatin silencing. Deletion of Rbm10 results in signifcant reduction of Clr6 in heterochroma- tin. Our work together with previous fndings further suggests that diferent splicing subunits may play distinct roles in heterochromatin regulation. Keywords: Epigenetics, Splicing factor, Schizosaccharomyces pombe, Histone deacetylase, H3K9 methylation Introduction expression, chromosome segregation, and genome stabil- In eukaryotic cells, DNA and histones are organized ity [1–3].
    [Show full text]
  • Karyotype Characterization, Constitutive Heterochromatin and Nucleolus Organizer Regions of Paranaita Opima (Coleoptera, Chrysomelidae, Alticinae)
    Genetics and Molecular Biology, 29, 3, 475-481 (2006) Copyright by the Brazilian Society of Genetics. Printed in Brazil www.sbg.org.br Research Article Karyotype characterization, constitutive heterochromatin and nucleolus organizer regions of Paranaita opima (Coleoptera, Chrysomelidae, Alticinae) Mara Cristina de Almeida1, Carlos Campaner2 and Doralice Maria Cella3 1Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil. 2Museu de Zoologia da Universidade de São Paulo, São Paulo, SP, Brazil. 3Universidade Estadual Paulista, UNESP, Instituto de Biociências, Departamento de Biologia, Rio Claro, SP, Brazil. Abstract Species of the subtribe Oedionychina not only have a highly uniform diploid number of 2n = 22 (20+X+y) but have the karyotypic peculiarity of possessing extremely large sex chromosomes. We analyzed Paranaita opima embryos and gonadal cells to determine their diploid number, chromosomal morphology, type of sex determination system, consti- tutive heterochromatin pattern and which chromosomes bear nucleolus organizer regions (NORs). The diploid num- ber of P. opima was 2n = 22 (20+XY/XX) with all chromosomes being metacentric. Chromosome pair 6 showed an interstitial secondary constriction on the short arm. The C-banding technique revealed centromeric constitutive heterochromatin in all chromosomes, which, in pair 6, extended up to the secondary constriction of the short arm, ad- ditional C-bands also being present on the Y chromosome. Silver nitrate nucleolar organizer region (Ag-NOR) stain- ing showed NORs on the secondary constriction of pair 6. Fluorochrome analysis with chromomycin A3 (CMA3), 4’-6-diamidino-2-phenylindole (DAPI) and the distamycin A (DA) counterstain showed that the short arm of chromo- some pair 6 exhibited a GC-rich block extending from the proximal to the median region, including part of the second- ary constriction.
    [Show full text]
  • The Barr Body Is a Looped X Chromosome Formed by Telomere
    Proc. Nati. Acad. Sci. USA Vol. 88, pp. 6191-6195, July 1991 Genetics The Barr body is a looped X chromosome formed by telomere association (chromosome structure/X-inactivation/centromere/interphase cytogenetics/in situ hybridization) CHERI L. WALKER*t, COLYN B. CARGILE*, KIMBERLY M. FLOY*, MICHAEL DELANNOYt, AND BARBARA R. MIGEON*§ Departments of *Pediatrics and *Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 Communicated by Victor A. McKusick, April 15, 1991 ABSTRACT We examined Barr bodies formed by isodi- long arms (3935 and 7213) and the third attached at the short centric human X chromosomes in cultured human cells and in arms (411). We isolated these dicentric chromosomes from mouse-human hybrids using confocal microscopy and DNA their normal homologue in hybrid cells so that all signals probes for centromere and subtelomere regions. At interphase, would come from the dicentric X chromosome and to exam- the two ends of these chromosomes are only a micron apart, ine the human Barr body in a mouse cell environ. Finally, we indicating that these inactive X chromosomes are in a nonlinear simultaneously hybridized centromere and subtelomere configuration. Additional studies of normal X chromosomes probes using differential labels and confocal microscopy. reveal the same telomere association for the inactive X but not for the active X chromosome. This nonlinear configuration is maintained during mitosis and in a murine environment. MATERIALS AND METHODS Cell Lines. These are characterized in Table 1. The hybrids Barr bodies are unique chromatin structures formed in nuclei derived from A9 mouse fibroblasts were selected in hypo- of the mammalian female as a means of sex chromosome xanthine/aminopterin/thymidine medium, back selected in dosage compensation.
    [Show full text]
  • Barr Bodies and Blood Types
    11/13/2015 Barr Bodies and Blood Types Barr Bodies 1 11/13/2015 X-inactivation in female mammals In females, one of the two X chromosomes in each somatic (body) cell becomes inactive during embryonic development Why? ◦ Cells of females and males would have same effective dose of genes on the X chromosome Inactive X chromosomes called Barr bodies BARR BODY Found in females One X chromosome in each cell is randomly inactivated Inactivated X chromosome seen as a darkly staining area in the nucleus of a cell How many active chromosomes are found in the cells of a human female? 2 11/13/2015 Barr Body Do you see the Barr body? Barr Bodies in Cats Calico cat ◦ Generally all females ◦ One of several genes controlling fur color found on X chromosome ◦ Gene on X chromosome codes for either orange or black color ◦ Color pattern determined by random inactivation (Barr body) Why do you think Calico Cats are usually all female? 3 11/13/2015 Ex: Tortoiseshell (Calico) cats animation Calico Cat Color Inheritance 4 11/13/2015 Calico Cat There have been instances of male Calico cats found ◦ How could this happen? ◦ HINT: Male calico cats are sterile Example in humans Anhidrotic ectodermal dysplasia ◦ X linked mutation prevents the development of sweat glands ◦ A woman who is heterozygous will have patches of normal skin and patches of skin without sweat glands ◦ Difficulty controlling body temperature 5 11/13/2015 Blood Types ABO BLOOD TYPES Example of codominance Blood type depends on the presence or absence of certain carbohydrates (antigens) on surface of red blood cells 3 alleles are possible: ◦ IA :Type A Blood ◦ IB :Type B Blood ◦ i :Type O Blood 6 11/13/2015 ABO BLOOD TYPES IA and IB are codominant to each other when they are paired.
    [Show full text]
  • X-Inactivation by Chromosomal Pairing Events
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE X-inactivation by chromosomal pairing events York Marahrens1,2 1Department of Human Genetics, University of California at Los Angeles (UCLA), Los Angeles, California 90095 USA X-inactivation is the coordinated silencing of nearly all Dosage compensation is the coordinate regulation of genes on one of the two X chromosomes in female mam- X-linked genes by chromatin remodeling to provide the mals. X-inactivation requires the cis-acting Xist gene. two sexes, which have a twofold difference in X chromo- The highly unusual properties of Xist and the extremely some number, with equal levels of X chromosomal gene long distances over which Xist acts have made it difficult expression. In Drosophila, this is accomplished by large to reconcile X-inactivation with other examples of gene numbers of cis-acting elements, each of which controls a regulation. This paper presents new findings that suggest single gene or a small group of adjacent genes (Baker et that X-inactivation involves transvection and harnesses al. 1994). These elements up-regulate gene expression heterochromatin association. twofold on the single male X chromosome by ‘loosening’ the chromatin of each gene to make it more euchro- matic. In Caenorhabditis elegans, proteins associate Role of chromatin in dosage compensation with numerous sites along both of the X chromosomes of Chromatin is the complex of DNA, histones, and other the XX individuals, down-regulating gene expression factors that compose chromosomes. Originally, eukary- twofold by making each X chromosome slightly more otic chromosomes were believed to consist of euchroma- heterochromatic (Nicoll et al.
    [Show full text]