X-Inactivation by Chromosomal Pairing Events

Total Page:16

File Type:pdf, Size:1020Kb

X-Inactivation by Chromosomal Pairing Events Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE X-inactivation by chromosomal pairing events York Marahrens1,2 1Department of Human Genetics, University of California at Los Angeles (UCLA), Los Angeles, California 90095 USA X-inactivation is the coordinated silencing of nearly all Dosage compensation is the coordinate regulation of genes on one of the two X chromosomes in female mam- X-linked genes by chromatin remodeling to provide the mals. X-inactivation requires the cis-acting Xist gene. two sexes, which have a twofold difference in X chromo- The highly unusual properties of Xist and the extremely some number, with equal levels of X chromosomal gene long distances over which Xist acts have made it difficult expression. In Drosophila, this is accomplished by large to reconcile X-inactivation with other examples of gene numbers of cis-acting elements, each of which controls a regulation. This paper presents new findings that suggest single gene or a small group of adjacent genes (Baker et that X-inactivation involves transvection and harnesses al. 1994). These elements up-regulate gene expression heterochromatin association. twofold on the single male X chromosome by ‘loosening’ the chromatin of each gene to make it more euchro- matic. In Caenorhabditis elegans, proteins associate Role of chromatin in dosage compensation with numerous sites along both of the X chromosomes of Chromatin is the complex of DNA, histones, and other the XX individuals, down-regulating gene expression factors that compose chromosomes. Originally, eukary- twofold by making each X chromosome slightly more otic chromosomes were believed to consist of euchroma- heterochromatic (Nicoll et al. 1997; Dawes et al. 1999). tin, regions that permit gene expression, and heterochro- The chromatin adjustments that produce twofold matin, chromosomal regions that are condensed and re- changes in gene expression in Drosophila and C. elegans pressive to gene function (Heitz 1928; Karpen 1994). In underscore that a spectrum of chromatin structures are general, the DNA of heterochromatin is more heavily possible, spanning from very heterochromatic to very eu- methylated (in organisms that have DNA methylation) chromatic. (Selker 1990; Klein and Costa 1997; Garrick et al. 1998), Dosage compensation in mammals (X-inactivation) is and replicates later in S phase (Taylor 1960) than the fundamentally different from dosage compensation in DNA of euchromatin. The histones of heterochromatin Drosophila and C. elegans. The mammalian cell is are also less acetylated (Turner 1998). Several lines of thought to first ‘count’ the X chromosomes and, if two X evidence indicate that the terms euchromatin and het- chromosomes are present, activate the X-inactivation erochromatin should both be considered umbrella terms pathway. Rather than regulating all of the X-linked genes for multiple chromatin structures. in a cell equally, the cell ‘chooses’ one X chromosome to There are two types of heterochromatin, constitutive be inactivated through the spread of heterochromatin ∼ heterochromatin and facultative heterochromatin. Con- across 160 Mb. The Xist locus is involved in all three stitutive heterochromatin forms over repetitive se- processes, namely counting, choosing, and long distance quence and serves to maintain genome stability. Consti- heterochromatin formation. Xist, therefore, is required tutive heterochromatin suppresses recombination be- for chromatin remodeling over a far greater distance than tween repetitive sequences and subdues the mutagenic any other known cis-acting locus. potential of transposons by keeping them constitutively The Xist gene was first identified when a large (15 kb) inactive (Yoder et al. 1997; Jensen et al. 1999). This is untranslated RNA was cloned that is expressed exclu- important, as ∼35% of the human genome consists of sively from the inactive X chromosome (Borsani et al. repetitive transposon DNA sequence (Yoder et al. 1997). 1991; Brown et al. 1991). Interestingly, the Xist RNA In contrast, facultative heterochromatin is formed and associates exclusively with the inactive X chromosome dismantled in a controlled manner by specific chromatin (Brown et al. 1992; Clemson et al. 1996; Panning and control sequences to regulate gene expression. The abil- Jaenisch 1996). Targeted mutagenesis revealed that Xist- ity of specific chromatin structures to spread to nearby deficient X chromosomes are incapable of being inacti- genes allows gene expression to be regulated. vated in cultured cells (Penny et al. 1996) or during em- bryogenesis (Marahrens et al. 1997). A surprising discov- ery was the finding that a 450-kb transgene, that 2Corresponding author. includes the Xist locus, could inactivate an autosome E-MAIL [email protected]; FAX (310) 794-5446. (Lee et al. 1996; Lee and Jaenisch 1997). The sequence 2624 GENES & DEVELOPMENT 13:2624–2632 © 1999 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/99 $5.00; www.genesdev.org Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press X-inactivation by chromosomal pairing required for Xist transgene-mediated inactivation was random (Penny et al. 1996) and imprinted (Marahrens et subsequently narrowed down to a 35 kb region that con- al. 1997) X-inactivation, demonstrating that the two tains the Xist transcribed region and 9 kb of upstream types of X-inactivation are mechanistically related. sequence (Herzing et al. 1997). Three different parameters indicate that, for both X- The highly distinctive properties of Xist and the ex- inactivation and autosomal imprinting, the allelic re- tremely long distance effects of the X-inactivation pro- gions in question differ in their chromatin structures. cess have made it difficult to reconcile X-inactivation First, extensive differences in methylation have been re- with other examples of gene regulation by chromatin. ported between the active and inactive X chromosomes However, it is highly unlikely that a new and fundamen- (Mohandas et al. 1981; Migeon 1990) and between the tally different biological process has evolved to take care two copies of autosomal imprinted regions (Bartolomei of the X chromosome gene dosage problem in mammals. and Tilghman 1997). Demethylation results in loss of The available evidence overwhelmingly indicates that allelic differences in gene expression for both imprinted basic biological processes are conserved among diverse genes (Li et al. 1993) and for the X chromosome (Beard et organisms. al. 1995; Panning and Jaenisch 1996). Second, the his- In this paper I consider the possibility that the pro- tones of heterochromatin are less acetylated than in eu- cesses responsible for X-inactivation are not unique to chromatin (Grunstein 1997; Turner 1998). The inactive X-inactivation. I first highlight significant functional X chromosome is less acetylated than the active X chro- similarities between genomic imprinting and X-inacti- mosome (Jeppesen and Turner 1993). The treatment of vation which culminate in recent findings by Rolf Ohls- cells undergoing X-inactivation with trichostatin, a his- son and colleagues. In considering these similarities, I tone deacetylase inhibitor presented normal inactivation propose that X-chromosome counting, choosing, and the (O’Neill et al. 1999). Trichostatin treatment of mouse initiation of heterochromatin formation are the genetic conceptuses attempting to establish the monoallelic ex- consequence of physical pairing interactions between pression pattern of the imprinted H19 gene similarly dis- the homologous X chromosomes (transvection). I next rupts the silencing of one allele of the H19 gene (Svens- discuss recent evidence presented by Lyon (1998) that son et al. 1998). Finally, heterochromatin is later repli- indicates the spread of heterochromatin over long dis- cating than euchromatin and chromatin has been shown tances is brought about by interactions involving repeti- to be an important determinant of replication origin tim- tive elements distributed throughout the X chromo- ing (Fangman and Brewer 1992). Both imprinted genes some. In light of recent findings by Gartler and col- (Kitsberg et al. 1993) and X-chromosomal genes in fe- leagues (1999), Kominami and colleagues, and Henikoff males (Ohno and Hauschka 1960; Taylor 1960) are early and coworkers, I suggest that heterochromatin associa- replicating on one homologous chromosome and late tion is harnessed to control gene expression levels by replicating on the other. heterochromatin spreading. Finally, I show how this new For some examples of autosomal imprinting and X- view of X-inactivation can be adapted in a straightfor- inactivation, chromatin differences between the ho- ward manner to explain reports of skewed X-inactiva- mologous chromosomes span large regions. Many, but tion. The mechanisms discussed are useful in under- not all imprinted genes are grouped into megabase-sized standing a rapidly increasing number of characterized clusters. Some mutations within these gene clusters ex- genetic diseases. hibit long distance effects on gene expression. One of the best studied imprinted clusters is on human chromo- some 15 and is implicated in both Prader-Willi syndrome (PWS) and Angelman syndrome (AS) (Mutirangura et al. Similarities between autosomal imprinting 1993; Driscoll 1994; DeLorey et al. 1998). Some PWS and and X-inactivation AS patients carry mutations in this imprinted gene clus- Important
Recommended publications
  • The Heterochromatin Condensation State in Peripheral “Gene Poor” and Central “Gene Rich” Nuclear Regions of Less Differe
    L al of euk rn em u i o a J Journal of Leukemia Karel Smetana, J Leuk 2014, 2:4 ISSN: 2329-6917 DOI: 10.4172/2329-6917.1000151 Research Article Open Access The Heterochromatin Condensation State in Peripheral “Gene Poor” and Central “Gene Rich” Nuclear Regions of Less Differentiated and Mature Human Leukemic Cells: A Mini-Review with Additional Original Observations Karel Smetana* Institute of Hematology and Blood Transfusion, Prague, Czech Republic *Corresponding author: Karel Smetana, Senior scientist Institute of Hematology and Blood Transfusion, U nemocnice 1, 128 20 Prague, Czech Republic, Tel: 420 739906473; E-mail: [email protected] Rec date: May 22, 2014; Acc date: Aug 28, 2014; Pub date: Aug 30, 2014 Copyright: © 2014 Karel Smenata. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract In the morphological cytology the heterochromatin is one of very useful tools for the cell identification including the differentiation and maturation stage. However, the heterochromatin condensation state was less studied although it appeared to be different in “gene rich” central and “gene poor” peripheral nuclear regions. The heavy heterochromatin condensation state in the central “gene rich” nuclear regions might reflect a marked structural stability and protect the genomic integrity. It must be also noted that the heterochromatin condensation state in these nuclear regions is more variable than in the nuclear periphery because of the presence of more as well as less condensed heterochromatin territories.
    [Show full text]
  • Chromosomal Condensation Leads to a Preference for Peripheral Heterochromatin Quinn Macpherson 1 and Andrew J
    i bioRxiv preprint doi: https://doi.org/10.1101/714360; this version posted July 25, 2019. The copyright holder for this preprint (which was not i certified by peer review) is the author/funder,“output” who —has 2019/7/24granted bioRxiv — a 20:56 license — to display page 1the — preprint #1 in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. i i Published online – —– 2019 Chromosomal condensation leads to a preference for peripheral heterochromatin Quinn MacPherson 1 and Andrew J. Spakowitz 2;3;4∗ 1Department of Physics, Stanford University, Stanford University, Stanford, CA 94305 2Department of Chemical Engineering, Stanford University, Stanford, CA 94305 3Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 4Department of Applied Physics, Stanford University, Stanford, CA 94305, USA ABSTRACT (LADs). The position of LADs are correlated with regions of low gene density, genes with low expression levels, regions A layer of dense heterochromatin is found at the periphery of pericentric heterochromatin, and regions with high levels of the nucleus. Because this peripheral heterochromatin of the epigenetic marks H3K9me2/3 (12, 13). However, the functions as a repressive phase, mechanisms that relocate mechanisms that bring the LADs in contact with the nuclear genes to the periphery play an important role in regulating periphery remain poorly understood (13, 14). transcription. Using Monte-Carlo simulations, we show Knockouts of lamin A and lamin C—proteins that form the that an interaction between chromatin and the nuclear fibrous layer at the periphery—lead to a loss of peripheral boundary need not be specific to heterochromatin in order heterochromatin (9) and a loss of peripheral positioning for to preferentially locate heterochromatin to the nuclear tested LADs.
    [Show full text]
  • Epigenetic Factors That Control Pericentric Heterochromatin Organization in Mammals
    G C A T T A C G G C A T genes Review Epigenetic Factors that Control Pericentric Heterochromatin Organization in Mammals Salvatore Fioriniello y , Domenico Marano y , Francesca Fiorillo, Maurizio D’Esposito * and Floriana Della Ragione * Institute of Genetics and Biophysics ‘A. Buzzati-Traverso’, CNR, 80131 Naples, Italy; salvatore.fi[email protected] (S.F.); [email protected] (D.M.); francesca.fi[email protected] (F.F.) * Correspondence: [email protected] (M.D.); fl[email protected] (F.D.R.); Tel.: +39-081-6132606 (M.D.); +39-081-6132338 (F.D.R.); Fax: +39-081-6132706 (M.D. & F.D.R.) These authors contributed equally to this work as first authors. y Received: 6 April 2020; Accepted: 25 May 2020; Published: 28 May 2020 Abstract: Pericentric heterochromatin (PCH) is a particular form of constitutive heterochromatin that is localized to both sides of centromeres and that forms silent compartments enriched in repressive marks. These genomic regions contain species-specific repetitive satellite DNA that differs in terms of nucleotide sequences and repeat lengths. In spite of this sequence diversity, PCH is involved in many biological phenomena that are conserved among species, including centromere function, the preservation of genome integrity, the suppression of spurious recombination during meiosis, and the organization of genomic silent compartments in the nucleus. PCH organization and maintenance of its repressive state is tightly regulated by a plethora of factors, including enzymes (e.g., DNA methyltransferases, histone deacetylases, and histone methyltransferases), DNA and histone methylation binding factors (e.g., MECP2 and HP1), chromatin remodeling proteins (e.g., ATRX and DAXX), and non-coding RNAs.
    [Show full text]
  • Heterochromatin: New Possibilities for the Inheritance of Structure Shiv IS Grewal* and Sarah CR Elgin†
    178 Heterochromatin: new possibilities for the inheritance of structure Shiv IS Grewal* and Sarah CR Elgin† Significant portions of the eukaryotic genome are Two key observations have linked formation of such a heterochromatic, made up largely of repetitious sequences and condensed heterochromatic structure with the inactivation possessing a distinctive chromatin structure associated with of genes normally resident in euchromatic domains. First, gene silencing. New insights into the form of packaging, the X chromosome inactivation in mammals leaves the associated histone modifications, and the associated inactive X as a visibly staining structure, the Barr body. nonhistone chromosomal proteins of heterochromatin have Although the choice of which chromosome to inactivate — suggested a mechanism for providing an epigenetic mark that either maternal or paternal — appears to be random in allows this distinctive chromatin structure to be maintained most mammalian species, the decision is clonally inherited following replication and to spread within a given domain. once made [4]. Second, in Drosophila, a similar phenome- non of clonally inherited silencing is observed following Addresses chromosome rearrangements with one breakpoint within *Cold Spring Harbor Laboratory, One Bungtown Road, heterochromatin (position effect variegation [PEV]; see Cold Spring Harbor, New York 11724, USA; Figure 1). For example, juxtaposition of the white gene e-mail: [email protected] with such a breakpoint results in silencing of white in some †Washington University, One Brookings Drive, Department of Biology, CB-1229, St Louis, Missouri 63130, USA; of the cells in which the gene is normally active; patches of e-mail: [email protected] expressing cells are observed, again suggesting a stochastic ‘decision’ stably inherited through mitosis.
    [Show full text]
  • Rbm10 Facilitates Heterochromatin Assembly Via the Clr6 HDAC Complex
    Weigt et al. Epigenetics & Chromatin (2021) 14:8 https://doi.org/10.1186/s13072-021-00382-y Epigenetics & Chromatin RESEARCH Open Access Rbm10 facilitates heterochromatin assembly via the Clr6 HDAC complex Martina Weigt1†, Qingsong Gao1†, Hyoju Ban2†, Haijin He2, Guido Mastrobuoni3, Stefan Kempa3, Wei Chen1,4,5* and Fei Li2* Abstract Splicing factors have recently been shown to be involved in heterochromatin formation, but their role in control- ling heterochromatin structure and function remains poorly understood. In this study, we identifed a fssion yeast homologue of human splicing factor RBM10, which has been linked to TARP syndrome. Overexpression of Rbm10 in fssion yeast leads to strong global intron retention. Rbm10 also interacts with splicing factors in a pattern resembling that of human RBM10, suggesting that the function of Rbm10 as a splicing regulator is conserved. Surprisingly, our deep-sequencing data showed that deletion of Rbm10 caused only minor efect on genome-wide gene expression and splicing. However, the mutant displays severe heterochromatin defects. Further analyses indicated that the het- erochromatin defects in the mutant did not result from mis-splicing of heterochromatin factors. Our proteomic data revealed that Rbm10 associates with the histone deacetylase Clr6 complex and chromatin remodelers known to be important for heterochromatin silencing. Deletion of Rbm10 results in signifcant reduction of Clr6 in heterochroma- tin. Our work together with previous fndings further suggests that diferent splicing subunits may play distinct roles in heterochromatin regulation. Keywords: Epigenetics, Splicing factor, Schizosaccharomyces pombe, Histone deacetylase, H3K9 methylation Introduction expression, chromosome segregation, and genome stabil- In eukaryotic cells, DNA and histones are organized ity [1–3].
    [Show full text]
  • Karyotype Characterization, Constitutive Heterochromatin and Nucleolus Organizer Regions of Paranaita Opima (Coleoptera, Chrysomelidae, Alticinae)
    Genetics and Molecular Biology, 29, 3, 475-481 (2006) Copyright by the Brazilian Society of Genetics. Printed in Brazil www.sbg.org.br Research Article Karyotype characterization, constitutive heterochromatin and nucleolus organizer regions of Paranaita opima (Coleoptera, Chrysomelidae, Alticinae) Mara Cristina de Almeida1, Carlos Campaner2 and Doralice Maria Cella3 1Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil. 2Museu de Zoologia da Universidade de São Paulo, São Paulo, SP, Brazil. 3Universidade Estadual Paulista, UNESP, Instituto de Biociências, Departamento de Biologia, Rio Claro, SP, Brazil. Abstract Species of the subtribe Oedionychina not only have a highly uniform diploid number of 2n = 22 (20+X+y) but have the karyotypic peculiarity of possessing extremely large sex chromosomes. We analyzed Paranaita opima embryos and gonadal cells to determine their diploid number, chromosomal morphology, type of sex determination system, consti- tutive heterochromatin pattern and which chromosomes bear nucleolus organizer regions (NORs). The diploid num- ber of P. opima was 2n = 22 (20+XY/XX) with all chromosomes being metacentric. Chromosome pair 6 showed an interstitial secondary constriction on the short arm. The C-banding technique revealed centromeric constitutive heterochromatin in all chromosomes, which, in pair 6, extended up to the secondary constriction of the short arm, ad- ditional C-bands also being present on the Y chromosome. Silver nitrate nucleolar organizer region (Ag-NOR) stain- ing showed NORs on the secondary constriction of pair 6. Fluorochrome analysis with chromomycin A3 (CMA3), 4’-6-diamidino-2-phenylindole (DAPI) and the distamycin A (DA) counterstain showed that the short arm of chromo- some pair 6 exhibited a GC-rich block extending from the proximal to the median region, including part of the second- ary constriction.
    [Show full text]
  • Nature of Heterochromatin·
    lZqJrinlell [rom til<' JIOW')/£I[ of Scientijic (~. Indllstriat Resc{/nil. \'o\' 32. :'\0. l), September ]<i73. PI'. +67-+80 Nature of Heterochromatin· Y. C. SHAH & S. C. LAKHOTIA Depa.rlment o( Zoolog~-. Cniversity School of Sciences, Gujarat l:niver,il~', Ahmedabad 9 & S. R V. R,\O DC'partment of Zoology, lTnivcrsity of Delhi, Delhi 7 I. Introduction Y-chromosome, the flies were 'IOrma lly viable and of male phenotypel'. ECENT developments in mOlcc. ular cytogenetics The original concc:pt of total inactivity of hetero­ have revivccl intercst in the nature and fUlle­ chromatin could not be main tained for long, though R tion of heterochromatin. The concept of the idea of absenc" of major genes on heterochro­ heteroc romatin. from its very inception, has been matin is held to date. Gradually, a confusing array one of uncertainty ;lI1cl vagueness. The data of 'functions' of hc,terochromatin were proposed. obtained from various cytological and genetical MatherlG suggested the localization of 'polygenes' sourceS ha.vL: not in any way helped in developing for quantitative traits in the heterochromatic a unified cOl1cept of heterochromatin. The litera­ regions. Position-effect variegation was also founel tun:: is exhaustive, both with respect to direct to be associated with hetero chromatin 17-~O ()b~('rva speculation~. tions and theoretical In A new dimension to tlw study of heterochromatin 1950's, though the importance of heterochromatin was added by tritium-autorac1iography~J. Lima-cle­ was reali71:d, there was, in general, a resigned Faria22 first showed that in grasshopper and rye, approach to the illusiveness of heterochromatin l-:l, 4 the heterochromatin synthesizes its DXA later and this was summed up by Pontecorvo in the than euchromatin.
    [Show full text]
  • Spreading and Epigenetic Inheritance of Heterochromatin Require a Critical Density of Histone H3 Lysine 9 Tri-Methylation
    Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation Amber R. Cutter DiPiazzaa, Nitika Tanejaa,1, Jothy Dhakshnamoorthya, David Wheelera, Sahana Hollaa, and Shiv I. S. Grewala,2 aLaboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892 Edited by Steven E. Jacobsen, University of California, Los Angeles, CA, and approved April 20, 2021 (received for review January 12, 2021) Heterochromatin assembly requires methylation of histone H3 domains coat pericentromeric, subtelomeric, and the silent mating- lysine 9 (H3K9me) and serves as a paradigm for understanding the type (mat) regions (9–12). Heterochromatin assembly is a multistep importance of histone modifications in epigenetic genome control. process that includes nucleation and spreading. The de novo nu- Heterochromatin is nucleated at specific genomic sites and spreads cleation of heterochromatin occurs at specific sites, such as repeat across extended chromosomal domains to promote gene silencing. elements within constitutive heterochromatin domains, from where Moreover, heterochromatic structures can be epigenetically inherited heterochromatin factors spread to surrounding sequences (13, 14). in a self-templating manner, which is critical for stable gene repres- RNAi machinery (13, 15), as well as factors involved in nuclear sion. The spreading and inheritance of heterochromatin are believed RNA processing and noncanonical RNA polymerase II termi- to be dependent on preexisting H3K9 tri-methylation (H3K9me3), nation (12, 16–19), nucleate heterochromatin by targeting the which is recognized by the histone methyltransferase Clr4/Suv39h multisubunit Clr4 methyltransferase complex (ClrC) (20) that is via its chromodomain, to promote further deposition of H3K9me. responsible for mono-, di-, and tri-methylation of histone H3K9 However, the process involving the coupling of the “read” and “write” (H3K9me1/2/3) (6, 21).
    [Show full text]
  • Centromere Drive and Suppression by Parallel Pathways for Recruiting Microtubule Destabilizers 4 5 Authors 6 7 Tomohiro Kumon1, Jun Ma1, Derek Stefanik1, Erik C
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.26.400515; this version posted November 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title 2 3 Centromere drive and suppression by parallel pathways for recruiting microtubule destabilizers 4 5 Authors 6 7 Tomohiro Kumon1, Jun Ma1, Derek Stefanik1, Erik C. Nordgren1, R. Brian Akins1, Junhyong 8 Kim1, Mia T. Levine1, Michael A. Lampson1,2,* 9 10 1Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, 11 PA 19104, USA 12 2Lead Contact 13 *Correspondence: [email protected] 14 15 Summary 16 17 Selfish centromere DNA sequences bias their transmission to the egg in female meiosis. 18 Evolutionary theory suggests that centromere proteins evolve to suppress costs of this 19 “centromere drive”. In hybrid mouse models with genetically different maternal and paternal 20 centromeres, selfish centromere DNA exploits a kinetochore pathway to recruit microtubule- 21 destabilizing proteins that act as drive effectors. We show that such functional differences are 22 suppressed by a parallel pathway for effector recruitment by heterochromatin, which is similar 23 between centromeres in this system. Disrupting heterochromatin by CENP-B deletion amplifies 24 functional differences between centromeres, whereas disrupting the kinetochore pathway with a 25 divergent allele of CENP-C reduces the differences. Molecular evolution analyses using newly 26 sequenced Murinae genomes identify adaptive evolution in proteins in both pathways.
    [Show full text]
  • Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants
    International Journal of Molecular Sciences Review Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants Guo-Jun Zhang 1,2, Ran Dong 1, Li-Na Lan 1, Shu-Fen Li 1, Wu-Jun Gao 1,* and Hong-Xing Niu 1,* 1 College of Life Sciences, Henan Normal University, Xinxiang 453007, China; [email protected] (G.-J.Z.); [email protected] (R.D.); [email protected] (L.-N.L.); [email protected] (S.-F.L.) 2 School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China * Correspondence: [email protected] (W.-J.G.); [email protected] (H.-X.N.) Received: 27 December 2019; Accepted: 18 January 2020; Published: 21 January 2020 Abstract: The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants.
    [Show full text]
  • Heterochromatin: an Epigenetic Point of View in Aging Jong-Hyuk Lee1,Edwardw.Kim1, Deborah L
    Lee et al. Experimental & Molecular Medicine (2020) 52:1466–1474 https://doi.org/10.1038/s12276-020-00497-4 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Heterochromatin: an epigenetic point of view in aging Jong-Hyuk Lee1,EdwardW.Kim1, Deborah L. Croteau1 and Vilhelm A. Bohr 1,2 Abstract Aging is an inevitable process of life. Defined by progressive physiological and functional loss of tissues and organs, aging increases the risk of mortality for the organism. The aging process is affected by various factors, including genetic and epigenetic ones. Here, we review the chromatin-specific epigenetic changes that occur during normal (chronological) aging and in premature aging diseases. Taking advantage of the reversible nature of epigenetic modifications, we will also discuss possible lifespan expansion strategies through epigenetic modulation, which was considered irreversible until recently. Introduction and we discuss the current progress in the development of Aging results from complex biological processes that interventions for its amelioration or reversal. are fundamental to all living organisms. Characterized by a gradual loss of molecular fidelity after reaching sexual Histone and chromatin structure maturity, aging leads to the functional loss of cells and DNA encodes essential information for maintaining tissues and ultimately causes the disease and death of an organismal homeostasis. The total length of human 1 fi 5 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; organism . Aging signi cantly increases susceptibility to genomic DNA in every cell is almost 2 m , and a cell must cancer, neurodegeneration, cardiovascular diseases, and pack this genomic DNA into its nucleus, which is only – metabolic disorders2 4. Although many studies have 6 μm in diameter.
    [Show full text]
  • Fission Yeast CENP-B Homologs Nucleate Centromeric Heterochromatin by Promoting Heterochromatin-Specific Histone Tail Modifications
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Fission yeast CENP-B homologs nucleate centromeric heterochromatin by promoting heterochromatin-specific histone tail modifications Hiromi Nakagawa,1 Joon-Kyu Lee,2 Jerard Hurwitz,2 Robin C. Allshire,3 Jun-ichi Nakayama,4,6 Shiv I.S. Grewal,4 Katsunori Tanaka,5 and Yota Murakami1,7 1Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; 2Graduate program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA; 3Medical Research Center Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, Scotland, UK; 4Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 5Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan Heterochromatin is a functionally important chromosomal component, especially at centromeres. In fission yeast, conserved heterochromatin-specific modifications of the histone H3 tail, involving deacetylation of Lys 9 and Lys 14 and subsequent methylation of Lys 9, promote the recruitment of a heterochromatin protein, Swi6, a homolog of the Drosophila heterochromatin protein 1. However, the primary determinants of the positioning of heterochromatin are still unclear. The fission yeast proteins Abp1, Cbh1, and Cbh2 are homologs of the human protein CENP-B that bind to centromeric ␣-satellite DNA and associate with centromeric heterochromatin. We show that the CENP-B homologs are functionally redundant at centromeres, and that Abp1 binds specifically to centromeric heterochromatin. In the absence of Abp1 or Cbh1, the centromeric association of Swi6 is diminished, resulting in a decrease in silencing of the region. CENP-B-homolog double disruptants show a synergistic reduction of Swi6 at centromeric heterochromatin, indicating that the three proteins are functionally redundant in the recruitment of Swi6.
    [Show full text]