Epigenetic Factors That Control Pericentric Heterochromatin Organization in Mammals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Heterochromatin Condensation State in Peripheral “Gene Poor” and Central “Gene Rich” Nuclear Regions of Less Differe
L al of euk rn em u i o a J Journal of Leukemia Karel Smetana, J Leuk 2014, 2:4 ISSN: 2329-6917 DOI: 10.4172/2329-6917.1000151 Research Article Open Access The Heterochromatin Condensation State in Peripheral “Gene Poor” and Central “Gene Rich” Nuclear Regions of Less Differentiated and Mature Human Leukemic Cells: A Mini-Review with Additional Original Observations Karel Smetana* Institute of Hematology and Blood Transfusion, Prague, Czech Republic *Corresponding author: Karel Smetana, Senior scientist Institute of Hematology and Blood Transfusion, U nemocnice 1, 128 20 Prague, Czech Republic, Tel: 420 739906473; E-mail: [email protected] Rec date: May 22, 2014; Acc date: Aug 28, 2014; Pub date: Aug 30, 2014 Copyright: © 2014 Karel Smenata. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract In the morphological cytology the heterochromatin is one of very useful tools for the cell identification including the differentiation and maturation stage. However, the heterochromatin condensation state was less studied although it appeared to be different in “gene rich” central and “gene poor” peripheral nuclear regions. The heavy heterochromatin condensation state in the central “gene rich” nuclear regions might reflect a marked structural stability and protect the genomic integrity. It must be also noted that the heterochromatin condensation state in these nuclear regions is more variable than in the nuclear periphery because of the presence of more as well as less condensed heterochromatin territories. -
Diversity in the Organization of Centromeric Chromatin
Available online at www.sciencedirect.com ScienceDirect Diversity in the organization of centromeric chromatin 1 Florian A Steiner and Steven Henikoff Centromeric chromatin is distinguished primarily by lacking. In most species, cenH3 nucleosomes assemble nucleosomes containing the histone variant cenH3, which on particular families of tandemly repetitive satellite organizes the kinetochore that links the chromosome to the DNA, and the intractability of long satellite repeat arrays spindle apparatus. Whereas budding yeast have simple ‘point’ has greatly hindered the analysis of centromeric chroma- centromeres with single cenH3 nucleosomes, and fission yeast tin. Recent studies have begun to shed light on these have ‘regional’ centromeres without obvious sequence enigmatic regions of chromosomes, in part through specificity, the centromeres of most organisms are embedded improvements in sequencing technologies and in part in highly repetitive ‘satellite’ DNA. Recent studies have revealed through analysis of model systems that circumvent the a remarkable diversity in centromere chromatin organization challenges presented by the repeat-richness of most among different lineages, including some that have lost cenH3 higher eukaryotic centromeres. The emerging picture altogether. We review recent progress in understanding point, shows that cenH3 is incorporated into well-positioned regional and satellite centromeres, as well as less well-studied nucleosomes at centromeres that are distinct from canon- centromere types, such as holocentromeres. -
5885.Full.Pdf
Research Article 5885 Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is required for de novo formation of human artificial chromosome Hiroshi Nakashima1,2,3, Megumi Nakano1,*, Ryoko Ohnishi1, Yasushi Hiraoka4, Yasufumi Kaneda2, Akio Sugino1,3 and Hiroshi Masumoto1,*,‡ 1Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan 2Division of Gene Therapy Science, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan 3Laboratories for Biomolecular Networks, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan 4Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan *Present address: Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm 5040, 9000 Rockville Pike, Bethesda, MD 20892, USA ‡Author for correspondence (e-mail: [email protected]) Accepted 20 September 2005 Journal of Cell Science 118, 5885-5898 Published by The Company of Biologists 2005 doi:10.1242/jcs.02702 Summary Alpha-satellite (alphoid) DNA is necessary for de novo arms. However, on the stable HAC, chromatin formation of human artificial chromosomes (HACs) in immunoprecipitation analysis showed that HP1␣ and human cultured cells. To investigate the relationship trimethyl histone H3-K9 were enriched at the non- among centromeric, transcriptionally -
20P Deletions FTNW
20p deletions rarechromo.org Deletions from chromosome 20p A chromosome 20p deletion is a rare genetic condition caused by the loss of material from one of the body’s 46 chromosomes. The material has been lost from the short arm (the top part in the diagram on the next page) of chromosome 20. Chromosomes are the structures in the nucleus of the body’s cells that carry the genetic information that controls development and function. In total every human individual normally has 46 chromosomes. Of these, two are a pair of sex chromosomes, XX (a pair of X chromosomes) in females and XY (one X chromosome and one Y chromosome) in males. The remaining 44 chromosomes are grouped in pairs. One chromosome from each pair is inherited from the mother while the other one is inherited from the father. Each chromosome has a short arm (called p) and a long arm (called q). Chromosome 20 is one of the smallest chromosomes in man. At present it is known to contain 737 genes out of the total of 20,000 to 25,000 genes in the human genome. You can’t see chromosomes with the naked eye, but if you stain them and magnify their image enough - about 850 times - you can see that each one has a distinctive pattern of light and dark bands. The diagram on the next page shows the bands of chromosome 20. These bands are numbered outwards starting from the point where the short and long arms meet (the centromere ). A low number, as in p11 in the short arm, is close to the centromere. -
Aneuploidy and Aneusomy of Chromosome 7 Detected by Fluorescence in Situ Hybridization Are Markers of Poor Prognosis in Prostate Cancer'
[CANCERRESEARCH54,3998-4002,August1, 19941 Advances in Brief Aneuploidy and Aneusomy of Chromosome 7 Detected by Fluorescence in Situ Hybridization Are Markers of Poor Prognosis in Prostate Cancer' Antonio Alcaraz, Satoru Takahashi, James A. Brown, John F. Herath, Erik J- Bergstralh, Jeffrey J. Larson-Keller, Michael M Lieber, and Robert B. Jenkins2 Depart,nent of Urology [A. A., S. T., J. A. B., M. M. U, Laboratory Medicine and Pathology (J. F. H., R. B. fl, and Section of Biostatistics (E. J. B., J. J. L-JCJ, Mayo Clinic and Foundation@ Rochester, Minnesota 55905 Abstract studies on prostate carcinoma samples. Interphase cytogenetic analy sis using FISH to enumerate chromosomes has the potential to over Fluorescence in situ hybridization is a new methodologj@which can be come many of the difficulties associated with traditional cytogenetic used to detect cytogenetic anomalies within interphase tumor cells. We studies. Previous studies from this institution have demonstrated that used this technique to identify nonrandom numeric chromosomal alter ations in tumor specimens from the poorest prognosis patients with path FISH analysis with chromosome enumeration probes is more sensitive ological stages T2N@M,Jand T3NOMOprostate carcinomas. Among 1368 than FCM for detecting aneuploid prostate cancers (4, 5, 7). patients treated by radical prostatectomy, 25 study patients were ascer We designed a case-control study to test the hypothesis that spe tamed who died most quickly from progressive prostate carcinoma within cific, nonrandom cytogenetic changes are present in tumors removed 3 years of diagnosis and surgery. Tumors from 25 control patients who from patients with prostate carcinomas with poorest prognoses . -
Centromere Chromatin: a Loose Grip on the Nucleosome?
CORRESPONDENCE Stanford, California, USA. 7. Black, B.E. et al. Nature 430, 578–582 (2004). Natl. Acad. Sci. USA 104, 15974–15981 (2007). e-mail: [email protected] 8. Walkiewicz, M.P., Dimitriadis, E.K. & Dalal, Y. Nat. 16. Godde, J.S. & Wolffe, A.P.J. Biol. Chem. 270, 27399– Struct. Mol. Biol. 21, 2–3 (2014). 27402 (1995). 1. Dalal, Y., Wang, H., Lindsay, S. & Henikoff, S. PLoS 9. Codomo, C.A., Furuyama, T. & Henikoff, S. Nat. Struct. 17. de Frutos, M., Raspaud, E., Leforestier, A. & Livolant, F. Biol. 5, e218 (2007). Mol. Biol. 21, 4–5 (2014). Biophys. J. 81, 1127–1132 (2001). 2. Dimitriadis, E.K., Weber, C., Gill, R.K., Diekmann, S. 10. Yoda, K. et al. Proc. Natl. Acad. Sci. USA 97, 7266– 18. Gansen, A. et al. Proc. Natl. Acad. Sci. USA 106, & Dalal, Y. Proc. Natl. Acad. Sci. USA 107, 20317– 7271 (2000). 15308–15313 (2009). 20322 (2010). 11. Tomschik, M., Karymov, M.A., Zlatanova, J. & Leuba, S.H. 19. Zhang, W., Colmenares, S.U. & Karpen, G.H. Mol. Cell 3. Bui, M. et al. Cell 150, 317–326 (2012). Structure 9, 1201–1211 (2001). 45, 263–269 (2012). 4. Furuyama, T., Codomo, C.A. & Henikoff, S. Nucleic 12. Bui, M., Walkiewicz, M.P., Dimitriadis, E.K. & Dalal, Y. 20. Tachiwana, H. et al. Nature 476, 232–235 (2011). Acids Res. 41, 5769–5783 (2013). Nucleus 4, 37–42 (2013). 21. Hasson, D. et al. Nat. Struct. Mol. Biol. 20, 687–695 5. Dunleavy, E.M., Zhang, W. & Karpen, G.H. -
Chromosomal Condensation Leads to a Preference for Peripheral Heterochromatin Quinn Macpherson 1 and Andrew J
i bioRxiv preprint doi: https://doi.org/10.1101/714360; this version posted July 25, 2019. The copyright holder for this preprint (which was not i certified by peer review) is the author/funder,“output” who —has 2019/7/24granted bioRxiv — a 20:56 license — to display page 1the — preprint #1 in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. i i Published online – —– 2019 Chromosomal condensation leads to a preference for peripheral heterochromatin Quinn MacPherson 1 and Andrew J. Spakowitz 2;3;4∗ 1Department of Physics, Stanford University, Stanford University, Stanford, CA 94305 2Department of Chemical Engineering, Stanford University, Stanford, CA 94305 3Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 4Department of Applied Physics, Stanford University, Stanford, CA 94305, USA ABSTRACT (LADs). The position of LADs are correlated with regions of low gene density, genes with low expression levels, regions A layer of dense heterochromatin is found at the periphery of pericentric heterochromatin, and regions with high levels of the nucleus. Because this peripheral heterochromatin of the epigenetic marks H3K9me2/3 (12, 13). However, the functions as a repressive phase, mechanisms that relocate mechanisms that bring the LADs in contact with the nuclear genes to the periphery play an important role in regulating periphery remain poorly understood (13, 14). transcription. Using Monte-Carlo simulations, we show Knockouts of lamin A and lamin C—proteins that form the that an interaction between chromatin and the nuclear fibrous layer at the periphery—lead to a loss of peripheral boundary need not be specific to heterochromatin in order heterochromatin (9) and a loss of peripheral positioning for to preferentially locate heterochromatin to the nuclear tested LADs. -
CENP-B ANTIGEN AROTEC CENP-B Product Info.Pdf Version/Date: A/08.04.09 ATC02-02 CENP-B Antigen 0.20 Mg ATC02-10 CENP-B Antigen 1.0 Mg ______
CENP-B ANTIGEN AROTEC_CENP-B_Product_Info.pdf Version/Date: A/08.04.09 ATC02-02 CENP-B antigen 0.20 mg ATC02-10 CENP-B antigen 1.0 mg _________________________________________________________________________________ Description of the Product 2. Coat ELISA plates with 100 µl of diluted antigen per well. Cover and incubate 24 hours at +4oC. Purified recombinant full-length human sequence protein. After 3. Empty the plates and remove excess liquid by tapping on a coating onto ELISA plates the product will bind autoantibodies to paper towel. CENP-B. 4. Block excess protein binding sites by adding 200 µl PBS containing 1% BSA per well. Cover and incubate at +4oC Purity: The CENP-B autoantigen (80 kDa) is more than 90% overnight. pure, as assessed by SDS-polyacrylamide gel electrophoresis. 5. Empty plates and apply 100 µl of serum samples diluted 1:100 in PBS / 1% BSA / 1% casein / 0.1% Tween 20. Incubate at room temperature for 1 hour. Storage: Store at -65oC or below (long term). Avoid repeated 6. Empty plates and add 200 µl PBS / 0.1% Tween 20 per freezing and thawing. Mix thoroughly before use. well. Incubate 5 minutes then empty plates. Repeat this step twice. Clinical and Biochemical Data 7. Apply 100 µl anti-human IgG-enzyme conjugate (horseradish peroxidase or alkaline phosphatase) diluted in Autoantibodies to centromeric proteins in the sera of patients PBS / 1% BSA / 1% casein / 0.1% Tween 20 per well and with scleroderma were first described in 19801. Subsequent incubate for 1 hour. studies confirmed that anti-centromere antibodies (ACA) were 8. -
RNA Interference, Heterochromatin, and Centromere Function
46_Symp69_Allshire_p.389_396 4/21/05 10:34 AM Page 389 RNA Interference, Heterochromatin, and Centromere Function R.C. ALLSHIRE Wellcome Trust Centre for Cell Biology, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JR, Scotland, United Kingdom The centromere regions of most eukaryotic metaphase poacetylated state is important for centromere integrity chromosomes are distinctive. The narrower, more com- and function (Ekwall et al. 1997). pact appearance of these regions reflects two important The formation of a functional centromere and kineto- related features: centromeric cohesion and extensive chore assembly requires at least one outer repeat and a blocks of heterochromatin. First, sister centromeres re- central core region (Takahashi et al. 1992; Marschall and main associated because the cohesin complex remains in- Clarke 1995; Ngan and Clarke 1997). The central core tact at centromeres until anaphase. Second, the chromatin alone is unable to be packaged in unusual chromatin coating these regions is very different since they remain when replicated on an extrachromosomal plasmid or condensed throughout the cell cycle and are clearly visi- other sites in the genome or when replicated in Saccha- ble as the most concentrated foci of DNA in interphase romyces cerevisiae (Polizzi and Clarke 1991; Takahashi cells; this has been termed heterochromatin (Bernard and et al. 1992). Thus, this “unusual” CENP-A chromatin is Allshire 2002). not specified by the underlying DNA sequence within It has been known for many years that marker genes this region alone, but it must be induced by the context in placed close to or within such centromeric heterochro- which these sequences are placed. -
The Genomic Landscape of Centromeres in Cancers Anjan K
www.nature.com/scientificreports OPEN The Genomic Landscape of Centromeres in Cancers Anjan K. Saha 1,2,3, Mohamad Mourad3, Mark H. Kaplan3, Ilana Chefetz4, Sami N. Malek3, Ronald Buckanovich5, David M. Markovitz2,3,6,7 & Rafael Contreras-Galindo3,4 Received: 8 March 2019 Centromere genomics remain poorly characterized in cancer, due to technologic limitations in Accepted: 23 July 2019 sequencing and bioinformatics methodologies that make high-resolution delineation of centromeric Published: xx xx xxxx loci difcult to achieve. We here leverage a highly specifc and targeted rapid PCR methodology to quantitatively assess the genomic landscape of centromeres in cancer cell lines and primary tissue. PCR- based profling of centromeres revealed widespread heterogeneity of centromeric and pericentromeric sequences in cancer cells and tissues as compared to healthy counterparts. Quantitative reductions in centromeric core and pericentromeric markers (α-satellite units and HERV-K copies) were observed in neoplastic samples as compared to healthy counterparts. Subsequent phylogenetic analysis of a pericentromeric endogenous retrovirus amplifed by PCR revealed possible gene conversion events occurring at numerous pericentromeric loci in the setting of malignancy. Our fndings collectively represent a more comprehensive evaluation of centromere genetics in the setting of malignancy, providing valuable insight into the evolution and reshufing of centromeric sequences in cancer development and progression. Te centromere is essential to eukaryotic biology due to its critical role in genome inheritance1,2. Te nucleic acid sequences that dominate the human centromeric landscape are α-satellites, arrays of ~171 base-pair monomeric units arranged into higher-order arrays throughout the centromere of each chromosome3–103 1–3. -
A Physical Map of Chromosome 7 of Candida Albicans
Copyright 1998 by the Genetics Society of America A Physical Map of Chromosome 7 of Candida albicans Hiroji Chibana,* B. B. Magee,* Suzanne Grindle,* Ye Ran,*,1 Stewart Scherer²,2 and P. T. Magee* *Department of Genetics and Cell Biology, University of Minnesota, St. Paul, Minnesota 55108 and ²Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455 Manuscript received February 2, 1998 Accepted for publication May 20, 1998 ABSTRACT As part of the ongoing Candida albicans Genome Project, we have constructed a complete sequence- tagged site contig map of chromosome 7, using a library of 3840 clones made in fosmids to promote the stability of repeated DNA. The map was constructed by hybridizing markers to the library, to a blot of the electrophoretic karyotype, and to a blot of the pulsed-®eld separation of the S®I restriction fragments of the genome. The map includes 149 fosmids and was constructed using 79 markers, of which 34 were shown to be genes via determination of function or comparison of the DNA sequence to the public databases. Twenty-®ve of these genes were identi®ed for the ®rst time. The absolute position of several markers was determined using random breakage mapping. Each of the homologues of chromosome 7 is approximately 1 Mb long; the two differ by about 20 kb. Each contains two major repeat sequences, oriented so that they form an inverted repeat separated by 370 kb of unique DNA. The repeated sequence CARE2/Rel2 is a subtelomeric repeat on chromosome 7 and possibly on the other chromosomes as well. Genes located on chromosome 7 in Candida are found on 12 different chromosomes in Saccharomyces cerevisiae. -
H2A.Z Contributes to the Unique 3D Structure of the Centromere
H2A.Z contributes to the unique 3D structure of the centromere Ian K. Greaves, Danny Rangasamy, Patricia Ridgway, and David J. Tremethick* The John Curtin School of Medical Research, Australian National University, P.O. Box 334, Canberra, The Australian Capital Territory 2601, Australia Edited by Steven Henikoff, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved November 1, 2006 (received for review September 10, 2006) Mammalian centromere function depends upon a specialized chro- In this study, we investigated: (i) whether H2A.Z is a core matin organization where distinct domains of CENP-A and di- constituent of pericentric heterochromatin; (ii) the interplay methyl K4 histone H3, forming centric chromatin, are uniquely between H2A.Z and CENP-A, including whether H2A.Z is a positioned on or near the surface of the chromosome. These component of centric chromatin; (iii) the 3D spatial organization distinct domains are embedded in pericentric heterochromatin of H2A.Z chromatin at metaphase and its relationship to the (characterized by H3 methylated at K9). The mechanisms that other marks of the centromere; and (iv) whether the histone underpin this complex spatial organization are unknown. Here, we modifications that define centric and pericentric chromatin in identify the essential histone variant H2A.Z as a new structural flies, humans (3), and fission yeast (7) are conserved in mice. component of the centromere. Along linear chromatin fibers H2A.Z is distributed nonuniformly throughout heterochromatin, and cen- Results tric chromatin where regions of nucleosomes containing H2A.Z and H2A.Z Is Present in Pericentric Heterochromatin at the Inner Centro- dimethylated K4 H3 are interspersed between subdomains of mere.