Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CENPT (NM 025082) Human 3' UTR Clone – SC200995 | Origene
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for SC200995 CENPT (NM_025082) Human 3' UTR Clone Product data: Product Type: 3' UTR Clones Product Name: CENPT (NM_025082) Human 3' UTR Clone Vector: pMirTarget (PS100062) Symbol: CENPT Synonyms: C16orf56; CENP-T; SSMGA ACCN: NM_025082 Insert Size: 140 bp Insert Sequence: >SC200995 3’UTR clone of NM_025082 The sequence shown below is from the reference sequence of NM_025082. The complete sequence of this clone may contain minor differences, such as SNPs. Blue=Stop Codon Red=Cloning site GGCAAGTTGGACGCCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCGGAAAGATCGCCGTG TAACAATTGGCAGAGCTCAGAATTCAAGCGATCGCC AGTGGCAACTCTGTCTTCCCTGCCCAGTAGTGGCCAGGCTTCAACACTTTCCCTGTCCCCACCTGGGGA CTCTTGCCCCCACATATTTCTCCAGGTCTCCTCCCCACCCCCCCAGCATCAATAAAGTGTCATAAACAG AA ACGCGTAAGCGGCCGCGGCATCTAGATTCGAAGAAAATGACCGACCAAGCGACGCCCAACCTGCCATCA CGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGG Restriction Sites: SgfI-MluI OTI Disclaimer: Our molecular clone sequence data has been matched to the sequence identifier above as a point of reference. Note that the complete sequence of this clone is largely the same as the reference sequence but may contain minor differences , e.g., single nucleotide polymorphisms (SNPs). RefSeq: NM_025082.4 Summary: The centromere is a specialized chromatin domain, present throughout the cell cycle, that acts as a platform on which the transient assembly of the kinetochore occurs during mitosis. All active centromeres are characterized by the presence of long arrays of nucleosomes in which CENPA (MIM 117139) replaces histone H3 (see MIM 601128). CENPT is an additional factor required for centromere assembly (Foltz et al., 2006 [PubMed 16622419]).[supplied by OMIM, Mar 2008] Locus ID: 80152 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. -
The Heterochromatin Condensation State in Peripheral “Gene Poor” and Central “Gene Rich” Nuclear Regions of Less Differe
L al of euk rn em u i o a J Journal of Leukemia Karel Smetana, J Leuk 2014, 2:4 ISSN: 2329-6917 DOI: 10.4172/2329-6917.1000151 Research Article Open Access The Heterochromatin Condensation State in Peripheral “Gene Poor” and Central “Gene Rich” Nuclear Regions of Less Differentiated and Mature Human Leukemic Cells: A Mini-Review with Additional Original Observations Karel Smetana* Institute of Hematology and Blood Transfusion, Prague, Czech Republic *Corresponding author: Karel Smetana, Senior scientist Institute of Hematology and Blood Transfusion, U nemocnice 1, 128 20 Prague, Czech Republic, Tel: 420 739906473; E-mail: [email protected] Rec date: May 22, 2014; Acc date: Aug 28, 2014; Pub date: Aug 30, 2014 Copyright: © 2014 Karel Smenata. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract In the morphological cytology the heterochromatin is one of very useful tools for the cell identification including the differentiation and maturation stage. However, the heterochromatin condensation state was less studied although it appeared to be different in “gene rich” central and “gene poor” peripheral nuclear regions. The heavy heterochromatin condensation state in the central “gene rich” nuclear regions might reflect a marked structural stability and protect the genomic integrity. It must be also noted that the heterochromatin condensation state in these nuclear regions is more variable than in the nuclear periphery because of the presence of more as well as less condensed heterochromatin territories. -
Diversity in the Organization of Centromeric Chromatin
Available online at www.sciencedirect.com ScienceDirect Diversity in the organization of centromeric chromatin 1 Florian A Steiner and Steven Henikoff Centromeric chromatin is distinguished primarily by lacking. In most species, cenH3 nucleosomes assemble nucleosomes containing the histone variant cenH3, which on particular families of tandemly repetitive satellite organizes the kinetochore that links the chromosome to the DNA, and the intractability of long satellite repeat arrays spindle apparatus. Whereas budding yeast have simple ‘point’ has greatly hindered the analysis of centromeric chroma- centromeres with single cenH3 nucleosomes, and fission yeast tin. Recent studies have begun to shed light on these have ‘regional’ centromeres without obvious sequence enigmatic regions of chromosomes, in part through specificity, the centromeres of most organisms are embedded improvements in sequencing technologies and in part in highly repetitive ‘satellite’ DNA. Recent studies have revealed through analysis of model systems that circumvent the a remarkable diversity in centromere chromatin organization challenges presented by the repeat-richness of most among different lineages, including some that have lost cenH3 higher eukaryotic centromeres. The emerging picture altogether. We review recent progress in understanding point, shows that cenH3 is incorporated into well-positioned regional and satellite centromeres, as well as less well-studied nucleosomes at centromeres that are distinct from canon- centromere types, such as holocentromeres. -
Hierarchical Looping of Zigzag Nucleosome Chains in Metaphase Chromosomes
Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes Sergei A. Grigoryeva,1, Gavin Bascomb, Jenna M. Buckwaltera, Michael B. Schuberta, Christopher L. Woodcockc, and Tamar Schlickb,d,1 aDepartment of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033; bDepartment of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, NY 10012; cBiology Department, University of Massachusetts, Amherst, MA 01003; and dNYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved December 22, 2015 (received for review September 14, 2015) The architecture of higher-order chromatin in eukaryotic cell nuclei is However, evidence for 30-nm fibers in interphase nuclei of living largely unknown. Here, we use electron microscopy-assisted nucleo- cells has been controversial (reviewed in refs. 9 and 10). For exam- some interaction capture (EMANIC) cross-linking experiments in ple, whereas a distinct 30-nm fiber architecture is observed in ter- combination with mesoscale chromatin modeling of 96-nucleosome minally differentiated cells (11, 12), neither continuous nor periodic arrays to investigate the internal organization of condensed chroma- 30-nm fibers are observed in the nuclei of proliferating cells (13–15). tin in interphase cell nuclei and metaphase chromosomes at nucleo- However, zigzag features of the chromatin fibers are well supported somal resolution. The combined data suggest a novel hierarchical by nucleosome interaction mapping in vitro (16) and in vivo (15). looping model for chromatin higher-order folding, similar to rope For chromatin architecture within metaphase chromosomes, flaking used in mountain climbing and rappelling. -
Gene Knockdown of CENPA Reduces Sphere Forming Ability and Stemness of Glioblastoma Initiating Cells
Neuroepigenetics 7 (2016) 6–18 Contents lists available at ScienceDirect Neuroepigenetics journal homepage: www.elsevier.com/locate/nepig Gene knockdown of CENPA reduces sphere forming ability and stemness of glioblastoma initiating cells Jinan Behnan a,1, Zanina Grieg b,c,1, Mrinal Joel b,c, Ingunn Ramsness c, Biljana Stangeland a,b,⁎ a Department of Molecular Medicine, Institute of Basic Medical Sciences, The Medical Faculty, University of Oslo, Oslo, Norway b Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway c Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Oslo, Norway article info abstract Article history: CENPA is a centromere-associated variant of histone H3 implicated in numerous malignancies. However, the Received 20 May 2016 role of this protein in glioblastoma (GBM) has not been demonstrated. GBM is one of the most aggressive Received in revised form 23 July 2016 human cancers. GBM initiating cells (GICs), contained within these tumors are deemed to convey Accepted 2 August 2016 characteristics such as invasiveness and resistance to therapy. Therefore, there is a strong rationale for targeting these cells. We investigated the expression of CENPA and other centromeric proteins (CENPs) in Keywords: fi CENPA GICs, GBM and variety of other cell types and tissues. Bioinformatics analysis identi ed the gene signature: fi Centromeric proteins high_CENP(AEFNM)/low_CENP(BCTQ) whose expression correlated with signi cantly worse GBM patient Glioblastoma survival. GBM Knockdown of CENPA reduced sphere forming ability, proliferation and cell viability of GICs. We also Brain tumor detected significant reduction in the expression of stemness marker SOX2 and the proliferation marker Glioblastoma initiating cells and therapeutic Ki67. -
5885.Full.Pdf
Research Article 5885 Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is required for de novo formation of human artificial chromosome Hiroshi Nakashima1,2,3, Megumi Nakano1,*, Ryoko Ohnishi1, Yasushi Hiraoka4, Yasufumi Kaneda2, Akio Sugino1,3 and Hiroshi Masumoto1,*,‡ 1Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan 2Division of Gene Therapy Science, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan 3Laboratories for Biomolecular Networks, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan 4Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan *Present address: Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm 5040, 9000 Rockville Pike, Bethesda, MD 20892, USA ‡Author for correspondence (e-mail: [email protected]) Accepted 20 September 2005 Journal of Cell Science 118, 5885-5898 Published by The Company of Biologists 2005 doi:10.1242/jcs.02702 Summary Alpha-satellite (alphoid) DNA is necessary for de novo arms. However, on the stable HAC, chromatin formation of human artificial chromosomes (HACs) in immunoprecipitation analysis showed that HP1␣ and human cultured cells. To investigate the relationship trimethyl histone H3-K9 were enriched at the non- among centromeric, transcriptionally -
Chromatid Cohesion During Mitosis: Lessons from Meiosis
Journal of Cell Science 112, 2607-2613 (1999) 2607 Printed in Great Britain © The Company of Biologists Limited 1999 JCS0467 COMMENTARY Chromatid cohesion during mitosis: lessons from meiosis Conly L. Rieder1,2,3 and Richard Cole1 1Wadsworth Center, New York State Dept of Health, PO Box 509, Albany, New York 12201-0509, USA 2Department of Biomedical Sciences, State University of New York, Albany, New York 12222, USA 3Marine Biology Laboratory, Woods Hole, MA 02543-1015, USA *Author for correspondence (e-mail: [email protected]) Published on WWW 21 July 1999 SUMMARY The equal distribution of chromosomes during mitosis and temporally separated under various conditions. Finally, we meiosis is dependent on the maintenance of sister demonstrate that in the absence of a centromeric tether, chromatid cohesion. In this commentary we review the arm cohesion is sufficient to maintain chromatid cohesion evidence that, during meiosis, the mechanism underlying during prometaphase of mitosis. This finding provides a the cohesion of chromatids along their arms is different straightforward explanation for why mutants in proteins from that responsible for cohesion in the centromere responsible for centromeric cohesion in Drosophila (e.g. region. We then argue that the chromatids on a mitotic ord, mei-s332) disrupt meiosis but not mitosis. chromosome are also tethered along their arms and in the centromere by different mechanisms, and that the Key words: Sister-chromatid cohesion, Mitosis, Meiosis, Anaphase functional action of these two mechanisms can be onset INTRODUCTION (related to the fission yeast Cut1P; Ciosk et al., 1998). When Pds1 is destroyed Esp1 is liberated, and this event somehow The equal distribution of chromosomes during mitosis is induces a class of ‘glue’ proteins, called cohesins (e.g. -
Predicting Double-Strand DNA Breaks Using Epigenome Marks Or DNA at Kilobase Resolution
bioRxiv preprint doi: https://doi.org/10.1101/149039; this version posted June 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Predicting double-strand DNA breaks using epigenome marks or DNA at kilobase resolution Rapha¨elMourad1 and Olivier Cuvier1 April 10, 2017 1 Laboratoire de Biologie Mol´eculaireEucaryote (LBME), CNRS, Universit´ePaul Sabatier (UPS), 31000 Toulouse, France Abstract Double-strand breaks (DSBs) result from the attack of both DNA strands by multiple sources, includ- ing exposure to ionizing radiation or reactive oxygen species. DSBs can cause abnormal chromosomal rearrangements which are linked to cancer development, and hence represent an important issue. Recent techniques allow the genome-wide mapping of DSBs at high resolution, enabling the comprehensive study of DSB origin. However these techniques are costly and challenging. Hence we devised a computational approach to predict DSBs using the epigenomic and chromatin context, for which public data are available from the ENCODE project. We achieved excellent prediction accuracy (AUC = 0:97) at high resolution (< 1 kb), and showed that only chromatin accessibility and H3K4me1 mark were sufficient for highly accurate prediction (AUC = 0:95). We also demonstrated the better sensitivity of DSB predictions com- pared to BLESS experiments. We identified chromatin accessibility, activity and long-range contacts as best predictors. In addition, our work represents the first step toward unveiling the "cis-DNA repairing" code underlying DSBs, paving the way for future studies of cis-elements involved in DNA damage and repair. -
Re-Coding the ‘Corrupt’ Code: CRISPR-Cas9 Interventions in Human Germ Line Editing
Re-coding the ‘corrupt’ code: CRISPR-Cas9 interventions in human germ line editing CRISPR-Cas9, Germline Intervention, Human Cognition, Human Rights, International Regulation Master Thesis Tilburg University- Law and Technology 2018-19 Tilburg Institute for Law, Technology, and Society (TILT) October 2019 Student: Srishti Tripathy Supervisors: Prof. Dr. Robin Pierce SRN: 2012391 Dr. Emre Bayamlioglu ANR: 659785 Re-coding the ‘corrupt’ code CRISPR-Cas9, Germline Intervention, Human Cognition, Human Rights, International Regulation This page is intentionally left blank 2 Re-coding the ‘corrupt’ code CRISPR-Cas9, Germline Intervention, Human Cognition, Human Rights, International Regulation 3 Re-coding the ‘corrupt’ code CRISPR-Cas9, Germline Intervention, Human Cognition, Human Rights, International Regulation Table of Contents CHAPTER 1: Introduction .............................................................................................................. 6 1.1 Introduction and Review - “I think I’m crazy enough to do it” ......................................................................... 6 1.2 Research Question and Sub Questions .......................................................................................................................... 9 1.4 Methodology ............................................................................................................................................................................. 9 1.4 Thesis structure: ................................................................................................................................................................. -
Combinatorial Genetic Control of Rpd3s Through Histone H3K4 and H3K36 Methylation
bioRxiv preprint doi: https://doi.org/10.1101/376046; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Combinatorial Genetic Control of Rpd3S through histone H3K4 and H3K36 Methylation 2 in Budding Yeast 3 4 Kwan Yin Lee*, Mathieu Ranger*, and Marc D. Meneghini* 5 *Department of Molecular Genetics, University of Toronto, ON, M5S 1A8, Canada 6 Running title: Rpd3S control by H3K4me and H3K36me 7 Keywords: Rpd3S; histone methylation; SET1; JHD2; RPH1; SET2 8 Corresponding author mailing addresses: 9 Marc Meneghini 10 Dept. of Molecular Genetics University of Toronto 11 MaRS2 1532 12 661 University Avenue 13 Toronto, ON M5G 1M1 14 Office: 416-978-7578 15 Fax: 416-978-6885 16 email: [email protected] 17 18 19 1 bioRxiv preprint doi: https://doi.org/10.1101/376046; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract 2 Much of euchromatin regulation occurs through reversible methylation of histone H3 3 lysine-4 and lysine-36 (H3K4me and H3K36me). Using the budding yeast Saccharomyces 4 cerevisiae, we previously found that levels of H3K4me modulated temperature sensitive alleles 5 of the transcriptional elongation complex Spt6-Spn1 through an unknown H3K4me effector 6 pathway. Here we identify the Rpd3S histone deacetylase complex as the H3K4me effector 7 underlying these Spt6-Spn1 genetic interactions. -
Ftsk Actively Segregates Sister Chromosomes in Escherichia Coli
FtsK actively segregates sister chromosomes in Escherichia coli Mathieu Stoufa,b, Jean-Christophe Meilea,b, and François Corneta,b,1 aLaboratoire de Microbiologie et de Génétique Moléculaires, Centre National de la Recherche Scientifique, F-31000, Toulouse, France; and bUniversité Paul Sabatier, Université de Toulouse, F-31000, Toulouse, France Edited by Nancy E. Kleckner, Harvard University, Cambridge, MA, and approved May 23, 2013 (received for review March 6, 2013) Bacteria use the replication origin-to-terminus polarity of their cir- with the divisome, is also required (13, 14). FtsK acts in a region cular chromosomes to control DNA transactions during the cell cy- about 400 kb long (15) and translocates DNA toward dif.Trans- cle. Segregation starts by active migration of the region of origin location is oriented by recognition of the FtsK-orienting polar followed by progressive movement of the rest of the chromo- sequences (KOPS) DNA motifs that are preferentially oriented somes. The last steps of segregation have been studied extensively toward dif, particularly in the ter region (4, 16–18). Upon reaching in the case of dimeric sister chromosomes and when chromosome the dif site, FtsK activates XerCD-mediated recombination that organization is impaired by mutations. In these special cases, the resolves chromosome dimers. The oriented translocation activity divisome-associated DNA translocase FtsK is required. FtsK pumps of FtsK also is strictly required when chromosome organization is chromosomes toward the dif chromosome dimer resolution site impaired by mutations, for instance by inactivation of the MukBEF using polarity of the FtsK-orienting polar sequence (KOPS) DNA complex (19, 20) or in strains carrying important asymmetry of the motifs. -
The Basic Karyotype of Rye Giemsa and Fluorescence
Heredity (1974) 33 (3), 403-408 THEBASIC KARYOTYPE OF RYE (SECALE CEREALE) ANALYSED WITH GIEMSA AND FLUORESCENCE METHODS CANIO G. VOSA Botany School, Oxford Received26.iii.74 SUMMARY The basic karyotype of Rye (Secale cereale L.) has been analysed with several fluorochromes and with a Giemsa staining technique. Only the fluoro- chrome Hoechst 33258 and the Giemsa technique were successful in differenti- ating the heterochromatic segments. Five cultivated varieties were studied. In the haploid set there are 11 large and two small terminally located bands, four small intercalary bands and a variable band adjacent to the nucleolar constriction on chromosome VII which are constant for all varieties. Five more very small intercalary bands occur sporadically in all the varieties. All the chromosomes possess thin centromeric bands. 1. INTRODUCTION RYE is the hardiest of the cereals and its cultivation reaches beyond the Arctic Circle. It is of considerable importance in Russia, Sweden, Poland, the Netherlands and Belgium. In Britain, Rye has ceased to be of any great importance since the change to wheaten bread in the eighteenth century. Compared with other cereals, Rye has fewer varieties and these are not very uniform because of cross-pollination which is the rule in Rye but the exception in other cereal crops. It probably occurred as a weed in fields before being accepted as a crop rather later in the history of civilisation.Its oldest archaeological records date from the first Iron Age (Halstatt period, c. 900-700 B.C.). Thefirst chromosome counts are those of Nemec (1910) as cited by Emme (1928), giving 18 chromosomes for endosperm cells.