Heterochromatin Protects Retinal Pigment Epithelium Cells
Heterochromatin protects retinal pigment epithelium PNAS PLUS cells from oxidative damage by silencing p53 target genes Lili Gonga,1,2, Fangyuan Liua,1, Zhen Xionga,1, Ruili Qia,1, Zhongwen Luoa,1, Xiaodong Gonga, Qian Niea,b, Qian Suna, Yun-Fei Liua, Wenjie Qinga,b, Ling Wanga,b,c, Lan Zhanga, Xiangcheng Tanga, Shan Huanga, Gen Lia, Hong Ouyanga, Mengqing Xianga,d,e, Quan Dong Nguyenf, Yizhi Liua,2, and David Wan-Cheng Lia,b,c,2 aState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 Guangdong, China; bKey Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China; cTruhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198; dCenter for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854; eDepartment of Pediatrics, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854; and fByers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94303 Edited by Michael Karin, University of California San Diego School of Medicine, La Jolla, CA, and approved February 20, 2018 (received for review September 6, 2017) Oxidative stress (OS)-induced retinal pigment epithelium (RPE) cell thought to be maintained in a transcriptionally silenced state by apoptosis is critically implicated in the pathogenesis of age-related the repressive H3K9me3 mark; however, aberrant satellite macular degeneration (AMD), a leading cause of blindness in the transcription can cause heterochromatin disorganization and elderly. Heterochromatin, a compact and transcriptional inert chro- genome instability, which have been linked to carcinogenesis (8, matin structure, has been recently shown to be dynamically regu- 9).
[Show full text]