Condensed DNA: Condensing the Concepts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
For the Safe Delivery of Essential Proteins
Dedicated ‘Bodyguards’ for the Safe Delivery of Essential Proteins Dr Brigitte Pertschy DEDICATED ‘BODYGUARDS’ FOR THE SAFE DELIVERY OF ESSENTIAL PROTEINS Ribosomes are undoubtedly one of the most essential cellular components in life. These macromolecules are responsible for the synthesis of proteins in all living cells. Dr Brigitte Pertschy, Dr Ingrid Rössler and Jutta Hafner at the Institute of Molecular Biosciences at the University of Graz, Austria, have discovered that the safe delivery of essential ribosomal proteins that make up the ribosomes is dependant on ‘private bodyguards’ or ‘chaperones’. Nascent Ribosomal Proteins Journey Ribosome synthesis is an important of their synthesis and proper folding Across the Cell to the Nucleus and continuous process. Dr Pertschy of the proteins. Importins have also describes that a growing cell requires been reported as aides in the import of The ribosome is the intricate nano- up to 1,000 ribosomes to be synthesised proteins to the cell nucleus as well as in machinery that translates messenger per minute. The r-proteins are protecting proteins from aggregation. RNA strands (mRNA) into protein. Our produced in the cell cytoplasm by the DNA holds the instructions for building ribosome itself (that way, the ribosome The team speculated that since every protein needed for our bodies to participates in its own reproduction). r-proteins are produced at extremely function. Initially, DNA is transcribed From there the r-proteins must travel high amounts and their correct into mRNA, which contains the amino to the cell nucleus where in a complex functioning is so critical for a cell, these acid sequence of a particular protein. -
How Human H1 Histone Recognizes DNA
molecules Article How Human H1 Histone Recognizes DNA Olesya P. Luzhetskaya, Sergey E. Sedykh and Georgy A. Nevinsky * Institute of Chemical Biology and Fundamental Medicine, SD of Russian Academy of Sciences, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia; [email protected] (O.P.L.); [email protected] (S.E.S.) * Correspondence: [email protected]; Tel.: +7-383-363-51-26; Fax: +7-383-363-51-53 Received: 11 August 2020; Accepted: 1 October 2020; Published: 5 October 2020 Abstract: Linker H1 histone is one of the five main histone proteins (H1, H2A, H2B, H3, and H4), which are components of chromatin in eukaryotic cells. Here we have analyzed the patterns of DNA recognition by free H1 histone using a stepwise increase of the ligand complexity method; the affinity of H1 histone for various single- and double-stranded oligonucleotides (d(pN)n; n = 1–20) was evaluated using their competition with 12-mer [32P]labeled oligonucleotide and protein–oligonucleotide complex delaying on nitrocellulose membrane filters. It was shown that minimal ligands of H1 histone (like other DNA-dependent proteins and enzymes) are different mononucleotides (dNMPs; Kd = (1.30 0.2) 2 ± 10 M). An increase in the length of single-stranded (ss) homo- and hetero-oligonucleotides (d(pA)n, × − d(pT)n, d(pC)n, and d(pN)n with different bases) by one nucleotide link regardless of their bases, leads to a monotonic increase in their affinity by a factor of f = 3.0 0.2. This factor f corresponds ± to the Kd value = 1/f characterizing the affinity of one nucleotide of different ss d(pN)n for H1 at n = 2–6 (which are covered by this protein globule) is approximately 0.33 0.02 M. -
H2A Ubiquitylated Mononucleosomes Next-Generation Substrates for Deubiquitylation Enzyme (DUB) Assays
H2A Ubiquitylated Mononucleosomes Next-Generation Substrates for Deubiquitylation Enzyme (DUB) Assays Next-Generation DUB Assay Substrates are here. Get results that matter. • Enabling access to DUB targets that require nucleosome substrates in vitro • Proper substrates for DUB inhibitor development • Unmatched quality control for results you can trust Histone monoubiquitylation (ub1) acts as a critical signaling center that regulates cascades of downstream epigenetic enzymes to modify gene transcription. The physiological substrate for chromatin-targeting DUBs is the nucleosome (Nuc), the basic repeating unit of chromatin (comprised of histone proteins wrapped by DNA). Current high-throughput screening (HTS) DUB assays use unnatural modified or diubiquitin conjugates as substrates, which poorly mimic endogenous targets in vivo. In collaboration with Boston Biochem, EpiCypher is delivering ubiquitylated nucleosome substrates for drug screening and chromatin biology research. FIGURE 1 Ub Ub Schematic representation of mononucleosoms assembled from recombinant human histones Ub expressed in E. coli (two each of histones H2A, H2B, H3 and H4). H2A H2A Approximately 50% of the nucleosomes are monoubiquitylated on histone H2A lysine 118, while the other 50% are monoubiquitylated on both histone H2A lysine 118 and histone H2A lysine 119 (multi-mono- ubiquitylated). Next Generation Deubiquitylation Enzyme (DUB) Assay Substrates EpiCypher has developed recombinant mononucleosomes carrying monoubiquitylation on H2A. These ubiquitylated nucleosomes are generated enzymatically using the RING1B/BMI1 ubiquitin ligase complex. The resulting product is highly pure (>95% of nucleosomes are ubiquitylated) and consists of nucleosomes monoubiquitylated at H2A lysine 118/119 (Figure 1; the physiological target of RING1B/BMI1 in vivo). FIGURE 2 Deubiquitylation Assay Data: Mononucleosomes H2A Ubiquityl, Recombinant Human, Biotinylated (1 μg) were employed in a deubiquitylation (DUB) assay using no enzyme (Lane 1), USP5 (Lane 2) or USP16 (Lane 3) and run on an SDS PAGE gel. -
Building the Interphase Nucleus: a Study on the Kinetics of 3D Chromosome Formation, Temporal Relation to Active Transcription, and the Role of Nuclear Rnas
University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2020-07-28 Building the Interphase Nucleus: A study on the kinetics of 3D chromosome formation, temporal relation to active transcription, and the role of nuclear RNAs Kristin N. Abramo University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Bioinformatics Commons, Cell Biology Commons, Computational Biology Commons, Genomics Commons, Laboratory and Basic Science Research Commons, Molecular Biology Commons, Molecular Genetics Commons, and the Systems Biology Commons Repository Citation Abramo KN. (2020). Building the Interphase Nucleus: A study on the kinetics of 3D chromosome formation, temporal relation to active transcription, and the role of nuclear RNAs. GSBS Dissertations and Theses. https://doi.org/10.13028/a9gd-gw44. Retrieved from https://escholarship.umassmed.edu/ gsbs_diss/1099 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. BUILDING THE INTERPHASE NUCLEUS: A STUDY ON THE KINETICS OF 3D CHROMOSOME FORMATION, TEMPORAL RELATION TO ACTIVE TRANSCRIPTION, AND THE ROLE OF NUCLEAR RNAS A Dissertation Presented By KRISTIN N. ABRAMO Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPOPHY July 28, 2020 Program in Systems Biology, Interdisciplinary Graduate Program BUILDING THE INTERPHASE NUCLEUS: A STUDY ON THE KINETICS OF 3D CHROMOSOME FORMATION, TEMPORAL RELATION TO ACTIVE TRANSCRIPTION, AND THE ROLE OF NUCLEAR RNAS A Dissertation Presented By KRISTIN N. -
Deciphering Nuclear Mechanobiology in Laminopathy
cells Review Deciphering Nuclear Mechanobiology in Laminopathy Jungwon Hah and Dong-Hwee Kim * KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3290-4615 Received: 29 January 2019; Accepted: 5 March 2019; Published: 11 March 2019 Abstract: Extracellular mechanical stimuli are translated into biochemical signals inside the cell via mechanotransduction. The nucleus plays a critical role in mechanoregulation, which encompasses mechanosensing and mechanotransduction. The nuclear lamina underlying the inner nuclear membrane not only maintains the structural integrity, but also connects the cytoskeleton to the nuclear envelope. Lamin mutations, therefore, dysregulate the nuclear response, resulting in abnormal mechanoregulations, and ultimately, disease progression. Impaired mechanoregulations even induce malfunction in nuclear positioning, cell migration, mechanosensation, as well as differentiation. To know how to overcome laminopathies, we need to understand the mechanisms of laminopathies in a mechanobiological way. Recently, emerging studies have demonstrated the varying defects from lamin mutation in cellular homeostasis within mechanical surroundings. Therefore, this review summarizes recent findings highlighting the role of lamins, the architecture of nuclear lamina, and their disease relevance in the context of nuclear mechanobiology. We will also provide an overview of the differentiation of cellular mechanics in laminopathy. Keywords: lamin; laminopathy; cytoskeleton; nucleus 1. Introduction Mechanical stimuli are the key to controlling numerous biological processes, including proliferation, differentiation, and migration [1–3]. Integrin mediates the transduction of forces from the external microenvironment to the intracellular cytoskeleton, and the nucleo-cytoskeletal molecular connections transmit the forces to the intranuclear chromosomal organizations [4,5]. -
Re-Coding the ‘Corrupt’ Code: CRISPR-Cas9 Interventions in Human Germ Line Editing
Re-coding the ‘corrupt’ code: CRISPR-Cas9 interventions in human germ line editing CRISPR-Cas9, Germline Intervention, Human Cognition, Human Rights, International Regulation Master Thesis Tilburg University- Law and Technology 2018-19 Tilburg Institute for Law, Technology, and Society (TILT) October 2019 Student: Srishti Tripathy Supervisors: Prof. Dr. Robin Pierce SRN: 2012391 Dr. Emre Bayamlioglu ANR: 659785 Re-coding the ‘corrupt’ code CRISPR-Cas9, Germline Intervention, Human Cognition, Human Rights, International Regulation This page is intentionally left blank 2 Re-coding the ‘corrupt’ code CRISPR-Cas9, Germline Intervention, Human Cognition, Human Rights, International Regulation 3 Re-coding the ‘corrupt’ code CRISPR-Cas9, Germline Intervention, Human Cognition, Human Rights, International Regulation Table of Contents CHAPTER 1: Introduction .............................................................................................................. 6 1.1 Introduction and Review - “I think I’m crazy enough to do it” ......................................................................... 6 1.2 Research Question and Sub Questions .......................................................................................................................... 9 1.4 Methodology ............................................................................................................................................................................. 9 1.4 Thesis structure: ................................................................................................................................................................. -
The Basic Karyotype of Rye Giemsa and Fluorescence
Heredity (1974) 33 (3), 403-408 THEBASIC KARYOTYPE OF RYE (SECALE CEREALE) ANALYSED WITH GIEMSA AND FLUORESCENCE METHODS CANIO G. VOSA Botany School, Oxford Received26.iii.74 SUMMARY The basic karyotype of Rye (Secale cereale L.) has been analysed with several fluorochromes and with a Giemsa staining technique. Only the fluoro- chrome Hoechst 33258 and the Giemsa technique were successful in differenti- ating the heterochromatic segments. Five cultivated varieties were studied. In the haploid set there are 11 large and two small terminally located bands, four small intercalary bands and a variable band adjacent to the nucleolar constriction on chromosome VII which are constant for all varieties. Five more very small intercalary bands occur sporadically in all the varieties. All the chromosomes possess thin centromeric bands. 1. INTRODUCTION RYE is the hardiest of the cereals and its cultivation reaches beyond the Arctic Circle. It is of considerable importance in Russia, Sweden, Poland, the Netherlands and Belgium. In Britain, Rye has ceased to be of any great importance since the change to wheaten bread in the eighteenth century. Compared with other cereals, Rye has fewer varieties and these are not very uniform because of cross-pollination which is the rule in Rye but the exception in other cereal crops. It probably occurred as a weed in fields before being accepted as a crop rather later in the history of civilisation.Its oldest archaeological records date from the first Iron Age (Halstatt period, c. 900-700 B.C.). Thefirst chromosome counts are those of Nemec (1910) as cited by Emme (1928), giving 18 chromosomes for endosperm cells. -
Extra Euchromatic Band in the Qh Region of Chromosome 9
J Med Genet: first published as 10.1136/jmg.22.2.156 on 1 April 1985. Downloaded from 156 Short reports two centromeres indicated by two distinct C bands but only I HANCKE AND K MILLER one primary constriction at the proximal C band. The two Department of Human Genetics, C bands were separated by chromosomal material staining Medizinische Hochschule Hannover, pale in G banding and intensely dark in R banding (fig 1). Hannover, Both NORs could be observed in satellite associations (fig Federal Republic of Germany. 2). The chromosome was therefore defined as pseudo- dicentric chromosome 21 (pseudic 21). The same chromo- References some was found in the proband's father and paternal Balicek P, Zizka, J. Intercalar satellites of human acrocentric grandmother. chromosomes as a cytological manifestation of polymorphisms Acrocentric chromosomes with a short arm morphology in GC-rich material? Hum Genet 1980;54:343-7. similar to that presented here have been reported by 2 Ing PS, Smith SD. Cytogenetic studies of a patient with Balicek and Zizka.' These authors paid no attention to the mosaicism of isochromosome 13q and a dicentric (Y;13) activity of the centromeres. The suppression of additional translocation showing differential centromeric activity. Clin centromeres is indicated by the presence of only one Genet 1983;24:194-9. primary constriction as shown by Ing and Smith2 in a 3 Passarge E. Analysis of chromosomes in mitosis and evaluation dicentric (Y;13) transtocation. Variants of acrocentric of cytogenetic data. 5. Variability of the karyotype. In: Schwarzacher HG, Wolf U, eds. Methods in human cytogene- chromosomes are often observed in patients with congen- tics. -
Introduction to the Cell Cell History Cell Structures and Functions
Introduction to the cell cell history cell structures and functions CK-12 Foundation December 16, 2009 CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright ©2009 CK-12 Foundation This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Contents 1 Cell structure and function dec 16 5 1.1 Lesson 3.1: Introduction to Cells .................................. 5 3 www.ck12.org www.ck12.org 4 Chapter 1 Cell structure and function dec 16 1.1 Lesson 3.1: Introduction to Cells Lesson Objectives • Identify the scientists that first observed cells. • Outline the importance of microscopes in the discovery of cells. • Summarize what the cell theory proposes. • Identify the limitations on cell size. • Identify the four parts common to all cells. • Compare prokaryotic and eukaryotic cells. Introduction Knowing the make up of cells and how cells work is necessary to all of the biological sciences. Learning about the similarities and differences between cell types is particularly important to the fields of cell biology and molecular biology. -
SMC Complexes Orchestrate the Mitotic Chromatin Interaction Landscape
Curr Genet DOI 10.1007/s00294-017-0755-y REVIEW SMC complexes orchestrate the mitotic chromatin interaction landscape Yasutaka Kakui1 · Frank Uhlmann1 Received: 13 September 2017 / Revised: 14 September 2017 / Accepted: 16 September 2017 © The Author(s) 2017. This article is an open access publication Abstract Chromatin is a very long DNA–protein complex Keywords Chromosome condensation · SMC complex · that controls the expression and inheritance of the genetic Chromatin · Cell cycle · Hi-C information. Chromatin is stored within the nucleus in interphase and further compacted into chromosomes dur- ing mitosis. This process, known as chromosome condensa- Introduction tion, is essential for faithful segregation of genomic DNA into daughter cells. Condensin and cohesin, members of How chromatin is spatially organized within the cell nucleus the structural maintenance of chromosomes (SMC) fam- and within chromosomes is a fundamental question in cell ily, are fundamental for chromosome architecture, both biology. Centimeter-long DNA molecules change their spa- for establishment of chromatin structure in the interphase tial chromatin organization within micrometer-sized cells nucleus and for the formation of condensed chromosomes during cell cycle progression. In interphase, chromatin is in mitosis. These ring-shaped SMC complexes are thought distributed throughout the nucleus to express the genetic to regulate the interactions between DNA strands by topo- information. When cells enter mitosis, chromatin becomes logically entrapping DNA. How this activity shapes chro- compacted to form mitotic chromosomes. Chromosome mosomes is not yet understood. Recent high throughput condensation, the gross morphological change of spatial chromosome conformation capture studies revealed how chromatin organization in mitosis, is indispensable for chromatin is reorganized during the cell cycle and have the faithful inheritance of genetic information. -
FACT Is Recruited to the +1 Nucleosome of Transcribed Genes and Spreads in a Chd1-Dependent Manner
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.20.259960; this version posted August 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. FACT is recruited to the +1 nucleosome of transcribed genes and spreads in a Chd1-dependent manner Célia Jeronimo1, Andrew Angel2, Christian Poitras1, Pierre Collin1, Jane Mellor2 and François Robert1,3,4* 1 Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada. 2Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK. 3 Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard- Montpetit, Montréal, QC H3T 1J4, Canada. 4 Lead Contact *Correspondence: [email protected] The histone chaperone FACT occupies transcribed regions where it plays prominent roles in maintaining chromatin integrity and preserving epigenetic information. How it is targeted to transcribed regions, however, remains unclear. Proposed models for how FACT finds its way to transcriptionally active chromatin include docking on the RNA polymerase II (RNAPII) C-terminal domain (CTD), recruitment by elongation factors, recognition of modified histone tails and binding partially disassembled nucleosomes. Here, we systematically tested these and other scenarios in Saccharomyces cerevisiae and found that FACT binds transcribed chromatin, not RNAPII. Through a combination of experimental and mathematical modeling evidence, we propose that FACT recognizes the +1 nucleosome, as it is partially unwrapped by the engaging RNAPII, and spreads to downstream nucleosomes aided by the chromatin remodeler Chd1. -
Theory of DNA Condensation: Collapse Versus Aggregation
Theory of DNA Condensation: Collapse Versus Aggregation CAROL BETH POST* and BRUNO H. ZIMM, Department of Chemistry, B-017, University of California at San Diego, La Jolla, California 92093 Synopsis In an unfavorable solvent environment, DNA (and other polymers) undergo a conforma- tional transition to a collapsed form, accompanied by a dramatic reduction in the effective volume of the molecule. Solvent conditions leading to the collapse are the same as those that cause aggregation. We give here a thermodynamic description of the collapse and its relations to aggregation (or precipitation). This is formulated in terms of the Flory-Huggins theory of the thermodynamics of polymer solutions. The results show that it is possible for three different states of DNA to be stable under different conditions: (1) the extended random coil, (2) the collapsed coil, and (3) a concentrated phase of aggregated random coils. The collapsed coil is predicted to he stable against aggregation only at high dilutions, of the order of parts per million. For DNA the transition between the extended coil and the collapsed coil is predicted to he discontinuous, in the sense that intermediate states are not present, because of the relatively high stiffness of the chain. The transition should appear diffuse because of the small size of the single molecule in comparison to macroscopic systems. INTRODUCTION In an unfavorable solvent environment there is a tendency for the seg- ments of a polymer chain to associate with other polymer segments, re- ducing their interaction with the solvent. These associations can be either intramolecular, leading to a collapsed structure of a single polymer chain, or intermolecular, leading to an aggregated polymer phase.