The Anterior and Medial Thalamic Nuclei and the Human
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microstructural White Matter Alterations and Hippocampal Volumes Are
6 178 S Fjalldal and others Diffusion tensor imaging in 178:6 577–587 Clinical Study craniopharyngioma Microstructural white matter alterations and hippocampal volumes are associated with cognitive deficits in craniopharyngioma S Fjalldal1, C Follin1, D Svärd2, L Rylander3, S Gabery4, Å Petersén4, D van Westen2, P C Sundgren2,5, I M Björkman-Burtscher2,5, J Lätt5, B Ekman6, A Johanson7 and E M Erfurth1 1Department of Endocrinology, Skåne University Hospital, Lund, Sweden, 2Department of Diagnostic Radiology, Clinical Sciences, 3Division of Occupational and Environmental Medicine, 4Translational Neuroendocrine Research Unit, Department 5 of Experimental Medical Science, Lund University, Lund, Sweden, Department of Medical Imaging and Physiology, Correspondence 6 Skåne University Hospital, Lund, Sweden, Department of Endocrinology and Medical and Health Sciences, should be addressed 7 Linköping University, Linköping, Sweden, and Department of Psychology and Psychiatry, Skåne University Hospital, to E M Erfurth Lund, Sweden Email [email protected] Abstract Context: Patients with craniopharyngioma (CP) and hypothalamic lesions (HL) have cognitive deficits. Which neural pathways are affected is unknown. Objective: To determine whether there is a relationship between microstructural white matter (WM) alterations detected with diffusion tensor imaging (DTI) and cognition in adults with childhood-onset CP. Design: A cross-sectional study with a median follow-up time of 22 (6–49) years after operation. Setting: The South Medical Region of Sweden (2.5 million inhabitants). Participants: Included were 41 patients (24 women, ≥17 years) surgically treated for childhood-onset CP between 1958–2010 and 32 controls with similar age and gender distributions. HL was found in 23 patients. Main outcome measures: Subjects performed cognitive tests and magnetic resonance imaging, and images were analyzed using DTI of uncinate fasciculus, fornix, cingulum, hippocampus and hypothalamus as well as hippocampal European Journal European of Endocrinology volumetry. -
NS201C Anatomy 1: Sensory and Motor Systems
NS201C Anatomy 1: Sensory and Motor Systems 25th January 2017 Peter Ohara Department of Anatomy [email protected] The Subdivisions and Components of the Central Nervous System Axes and Anatomical Planes of Sections of the Human and Rat Brain Development of the neural tube 1 Dorsal and ventral cell groups Dermatomes and myotomes Neural crest derivatives: 1 Neural crest derivatives: 2 Development of the neural tube 2 Timing of development of the neural tube and its derivatives Timing of development of the neural tube and its derivatives Gestational Crown-rump Structure(s) age (Weeks) length (mm) 3 3 cerebral vesicles 4 4 Optic cup, otic placode (future internal ear) 5 6 cerebral vesicles, cranial nerve nuclei 6 12 Cranial and cervical flexures, rhombic lips (future cerebellum) 7 17 Thalamus, hypothalamus, internal capsule, basal ganglia Hippocampus, fornix, olfactory bulb, longitudinal fissure that 8 30 separates the hemispheres 10 53 First callosal fibers cross the midline, early cerebellum 12 80 Major expansion of the cerebral cortex 16 134 Olfactory connections established 20 185 Gyral and sulcul patterns of the cerebral cortex established Clinical case A 68 year old woman with hypertension and diabetes develops abrupt onset numbness and tingling on the right half of the face and head and the entire right hemitrunk, right arm and right leg. She does not experience any weakness or incoordination. Physical Examination: Vitals: T 37.0° C; BP 168/87; P 86; RR 16 Cardiovascular, pulmonary, and abdominal exam are within normal limits. Neurological Examination: Mental Status: Alert and oriented x 3, 3/3 recall in 3 minutes, language fluent. -
10041.Full.Pdf
The Journal of Neuroscience, July 23, 2014 • 34(30):10041–10054 • 10041 Systems/Circuits Frontal Cortical and Subcortical Projections Provide a Basis for Segmenting the Cingulum Bundle: Implications for Neuroimaging and Psychiatric Disorders Sarah R. Heilbronner and Suzanne N. Haber Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642 The cingulum bundle (CB) is one of the brain’s major white matter pathways, linking regions associated with executive function, decision-making, and emotion. Neuroimaging has revealed that abnormalities in particular locations within the CB are associated with specific psychiatric disorders, including depression and bipolar disorder. However, the fibers using each portion of the CB remain unknown. In this study, we used anatomical tract-tracing in nonhuman primates (Macaca nemestrina, Macaca fascicularis, Macaca mulatta)toexaminetheorganizationofspecificcingulate,noncingulatefrontal,andsubcorticalpathwaysthroughtheCB.Thegoalswere as follows: (1) to determine connections that use the CB, (2) to establish through which parts of the CB these fibers travel, and (3) to relate the CB fiber pathways to the portions of the CB identified in humans as neurosurgical targets for amelioration of psychiatric disorders. Results indicate that cingulate, noncingulate frontal, and subcortical fibers all travel through the CB to reach both cingulate and noncin- gulate targets. However, many brain regions send projections through only part, not all, of the CB. For example, amygdala fibers are not present in the caudal portion of the dorsal CB. These results allow segmentation of the CB into four unique zones. We identify the specific connections that are abnormal in psychiatric disorders and affected by neurosurgical interventions, such as deep brain stimulation and cingulotomy. -
FUS-Mediated Functional Neuromodulation for Neurophysiologic Assessment in a Large Animal Model Wonhye Lee1*, Hyungmin Kim2, Stephanie D
Lee et al. Journal of Therapeutic Ultrasound 2015, 3(Suppl 1):O23 http://www.jtultrasound.com/content/3/S1/O23 ORALPRESENTATION Open Access FUS-mediated functional neuromodulation for neurophysiologic assessment in a large animal model Wonhye Lee1*, Hyungmin Kim2, Stephanie D. Lee1, Michael Y. Park1, Seung-Schik Yoo1 From Current and Future Applications of Focused Ultrasound 2014. 4th International Symposium Washington, D.C, USA. 12-16 October 2014 Background/introduction element FUS transducer with radius-of-curvature of Focused ultrasound (FUS) is gaining momentum as a 7 cm) was transcranially delivered to the unilateral sen- new modality of non-invasive neuromodulation of regio- sorimotor cortex, the optic radiation (WM tract) as well as nal brain activity, with both stimulatory and suppressive the visual cortex. An acoustic intensity of 1.4–15.5 W/cm2 potentials. The utilization of the method has largely Isppa, tone-burst-duration of 1 ms, pulse-repetition fre- been demonstrated in small animals. Considering the quency of 500 Hz (i.e. duty cycle of 50%), sonication dura- small size of the acoustic focus, having a diameter of tion of 300 ms, were used for the stimulation. A batch of only a few millimeters, FUS insonification to a larger continuous sonication ranging from 50 to 150 ms in dura- animal’s brain is conducive to examining the region- tion were also given. Evoked electromyogram responses specific neuromodulatory effects on discrete anatomical from the hind legs and electroencephalogram from the Fz areas, including the white matter (WM) tracts. The and Oz-equivalent sites were measured. The histology of study involving large animals would also establish preli- the extracted brain tissue (within one week and 2 months minary safety data prior to its translational research in post-sonication) was obtained. -
Anatomy of the Temporal Lobe
Hindawi Publishing Corporation Epilepsy Research and Treatment Volume 2012, Article ID 176157, 12 pages doi:10.1155/2012/176157 Review Article AnatomyoftheTemporalLobe J. A. Kiernan Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1 Correspondence should be addressed to J. A. Kiernan, [email protected] Received 6 October 2011; Accepted 3 December 2011 Academic Editor: Seyed M. Mirsattari Copyright © 2012 J. A. Kiernan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation. -
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925). -
The Connexions of the Amygdala
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.28.2.137 on 1 April 1965. Downloaded from J. Neurol. Neurosurg. Psychiat., 1965, 28, 137 The connexions of the amygdala W. M. COWAN, G. RAISMAN, AND T. P. S. POWELL From the Department of Human Anatomy, University of Oxford The amygdaloid nuclei have been the subject of con- to what is known of the efferent connexions of the siderable interest in recent years and have been amygdala. studied with a variety of experimental techniques (cf. Gloor, 1960). From the anatomical point of view MATERIAL AND METHODS attention has been paid mainly to the efferent connexions of these nuclei (Adey and Meyer, 1952; The brains of 26 rats in which a variety of stereotactic or Lammers and Lohman, 1957; Hall, 1960; Nauta, surgical lesions had been placed in the diencephalon and and it is now that there basal forebrain areas were used in this study. Following 1961), generally accepted survival periods of five to seven days the animals were are two main efferent pathways from the amygdala, perfused with 10 % formol-saline and after further the well-known stria terminalis and a more diffuse fixation the brains were either embedded in paraffin wax ventral pathway, a component of the longitudinal or sectioned on a freezing microtome. All the brains were association bundle of the amygdala. It has not cut in the coronal plane, and from each a regularly spaced generally been recognized, however, that in studying series was stained, the paraffin sections according to the Protected by copyright. the efferent connexions of the amygdala it is essential original Nauta and Gygax (1951) technique and the frozen first to exclude a contribution to these pathways sections with the conventional Nauta (1957) method. -
Interruption of the Connections of the Mammillary Bodies Protects Against Generalized Pentylenetetrazol Seizures in Guinea Pigs
The Journal of Neuroscience, March 1987, 7(3): 662-670 Interruption of the Connections of the Mammillary Bodies Protects Against Generalized Pentylenetetrazol Seizures in Guinea Pigs Marek A. Mirski and James A. Ferrendelli Division of Clinical Neuropharmacology, Department of Pharmacology and Department of Neurology and Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri 63110 Electrolytic lesions in the anterior and mid-diencephalon and Morin, 1953; Gellhorn et al., 1959) fields of Fore1(Jinnai, 1966; ventral midbrain in guinea pigs were produced to examine Jinnai et al., 1969; Jinnai and Mukawa, 1970), substantianigra the effects of interruption of the fornix (FX), mammillothal- (Iadarola and Gale, 1982; Garant and Gale, 1983; Gonzalez and amic tracts (MT), and mammillary peduncles (MP), respec- Hettinger, 1984; McNamara et al., 1983, 1984), and several tively, on the expression of pentylenetetrazol (PTZ) sei- thalamic nuclei (Mullen et al., 1967; Jinnai et al., 1969; Feeney zures. As a group, all mid-diencephalic lesioned animals and Gullotta, 1972; Kusske et al., 1972; Van Straaten, 1975; had some degree of protection from the electroencephalo- Quesney et al., 1977). graphic and behavioral convulsant and lethal effects of the Recently we observed the selective metabolic activation of drug. Through a composite volume analysis of protected the mammillary bodies (MB) and their immediate connections versus unprotected animals, as well as a retrospective com- during a threshold convulsive stimulus induced by the co-in- parison between MT and non-MT lesioned animals, it was fusion of pentylenetetrazol (PTZ) and ethosuximide (ESM) demonstrated that small mid-diencephalic lesions incorpo- (Mirski and Ferrendelli, 1983). -
White Matter Abnormalities in Adults with Bipolar Disorder Type-II
www.nature.com/scientificreports OPEN White matter abnormalities in adults with bipolar disorder type‑II and unipolar depression Anna Manelis1*, Adriane Soehner1, Yaroslav O. Halchenko2, Skye Satz1, Rachel Ragozzino1, Mora Lucero1, Holly A. Swartz1, Mary L. Phillips1 & Amelia Versace1 Discerning distinct neurobiological characteristics of related mood disorders such as bipolar disorder type‑II (BD‑II) and unipolar depression (UD) is challenging due to overlapping symptoms and patterns of disruption in brain regions. More than 60% of individuals with UD experience subthreshold hypomanic symptoms such as elevated mood, irritability, and increased activity. Previous studies linked bipolar disorder to widespread white matter abnormalities. However, no published work has compared white matter microstructure in individuals with BD‑II vs. UD vs. healthy controls (HC), or examined the relationship between spectrum (dimensional) measures of hypomania and white matter microstructure across those individuals. This study aimed to examine fractional anisotropy (FA), radial difusivity (RD), axial difusivity (AD), and mean difusivity (MD) across BD‑II, UD, and HC groups in the white matter tracts identifed by the XTRACT tool in FSL. Individuals with BD‑II (n = 18), UD (n = 23), and HC (n = 24) underwent Difusion Weighted Imaging. The categorical approach revealed decreased FA and increased RD in BD‑II and UD vs. HC across multiple tracts. While BD‑II had signifcantly lower FA and higher RD values than UD in the anterior part of the left arcuate fasciculus, UD had signifcantly lower FA and higher RD values than BD‑II in the area of intersections between the right arcuate, inferior fronto‑occipital and uncinate fasciculi and forceps minor. -
Anatomical Specificity of Septal Projections in Active and Passive Avoidance Behavior in Rats
MATOMICAL SPECIFICITY OF SEPTAL PROJECTIONS IN ACTIVE AND PASSIVE AVOIDANCE BEHAVIOR IN RATS by GARY W. VAN HOESEN B. A., Humboldt State College 1965 A MASTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Psychology KANSAS STATE UNIVERSITY Manhattan, Kansas 1968 Approved by: Ma/or Professor 7'/ 'VS^^^ 1'^^^ 0^ CONTENTS ACKNOWLEDGEMENTS iii INTRODUCTION 1 METHOD 2 Subjects 2 Apparatus 2 Surgery and Histology 3 Procedure Passive Avoidance I4 Active Avoidance 5 Retention 5 Massed Extinction 5 RESULTS 5 Histology 5 Passive Avoidance 20 Active Avoidance Retention Massed Extinction 28 DISCUSSION 21 BIBLIOGRAPHY 28 Ill ACraOVJLEDGEMNTS This research was conducted while the author was a National Aeronautics and Space Administration Pre-Doctorate Trainee. Additional support was pro- vided by an NIGMS Training Grant, GM I362 awarded to the Kansas State Univer- sity Departments of Psychology, Zoology, and Physiology. I thank Dr. James C. Mitchell for his generous contributions of his time and guidance in the preparation of this work, and Dr. Charles P. Thompson and Dr. Robert C. Haygood for their interest and helpful criticisms. Additionally I would like to thank Mr. Jim MacDougall for his aid in the execution and prepara- tion of this research. The beha.vicral effects of septal lesions have been intensely investigated in recent years. Experiments encompassing wide ranges of test conditions and laboratory species have implicated the septum in a broad spectrum of psycho- logical and physiological phenomena. The lesion induced effects, as reviewed by KcCleary (1966), incl.ude hyperirritabllity or hypersensitivity, enhanced performance on active avoidance, and decrements on passive avoidance, timdng, alternation, and position reversal. -
Thalamus and Hypothalamus
DIENCEPHALON: THALAMUS AND HYPOTHALAMUS M. O. BUKHARI 1 DIENCEPHALON: General Introduction • Relay & integrative centers between the brainstem & cerebral cortex • Dorsal-posterior structures • Epithalamus • Anterior & posterior paraventricular nuclei • Habenular nuclei – integrate smell & emotions • Pineal gland – monitors diurnal / nocturnal rhythm • Habenular Commissure • Post. Commissure • Stria Medullaris Thalami • Thalamus(Dorsal thalamus) • Metathalamus • Medial geniculate body – auditory relay • Lateral geniculate body – visual relay Hypothalamic sulcus • Ventral-anterior structure • Sub-thalums (Ventral Thalamus) • Sub-thalamic Nucleus • Zona Inserta • Fields of Forel • Hypothalamus M. O. BUKHARI 2 Introduction THE THALAMUS Location Function External features Size Interthalamic 3 cms length x 1.5 cms breadth adhesion Two ends Anterior end– Tubercle of Thalamus Posterior end– Pulvinar – Overhangs Med & Lat.Gen.Bodies, Sup.Colliculi & their brachia Surfaces Sup. Surface – Lat. Part forms central part of lat. Vent. Med. Part is covered by tela choroidea of 3rd vent. Inf. Surface - Ant. part fused with subthalamus - Post. part free – inf. part of Pulvinar Med. Surface – Greater part of Lat. wall of 3rd ventricle Lat. Surface - Med.boundary of Post. Limb of internal capsule M. O. BUKHARI 3 Function of the Thalamus • Sensory relay • ALL sensory information (except smell) • Motor integration • Input from cortex, cerebellum and basal ganglia • Arousal • Part of reticular activating system • Pain modulation • All nociceptive information • Memory & behavior • Lesions are disruptive M. O. BUKHARI 4 SUBDIVISION OF THALAMUS M. O. BUKHARI 5 SUBDIVISION OF THALAMUS: WHITE MATTER OF THE THALAMUS Internal Medullary Stratum Zonale Lamina External Medullary Lamina M. O. BUKHARI 6 LATERAL MEDIAL Nuclei of Thalamus Stratum Zonale Anterior Nucleus Medial Dorsal Lateral Dorsal (Large) EXT.Med.Lam ILN Ret.N CMN VPL MGB VPM PVN Lateral Ventral Medial Ventral LGB (Small) LD, LP, Pulvinar – Dorsal Tier nuclei Hypothalamus VA, VL, VPL, VPM – Ventral Tier nuclei M. -
Tonic Activity in Lateral Habenula Neurons Promotes Disengagement from Reward-Seeking Behavior
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426914; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Tonic activity in lateral habenula neurons promotes disengagement from reward-seeking behavior 5 Brianna J. Sleezer1,3, Ryan J. Post1,2,3, David A. Bulkin1,2,3, R. Becket Ebitz4, Vladlena Lee1, Kasey Han1, Melissa R. Warden1,2,5,* 1Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA 2Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA 10 3These authors contributed equally 4Department oF Neuroscience, Université de Montréal, Montréal, QC H3T 1J4, Canada 5Lead Contact *Correspondence: [email protected] 15 Sleezer*, Post*, Bulkin* et al. 1 of 38 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426914; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SUMMARY Survival requires both the ability to persistently pursue goals and the ability to determine when it is time to stop, an adaptive balance of perseverance and disengagement. Neural activity in the 5 lateral habenula (LHb) has been linked to aversion and negative valence, but its role in regulating the balance between reward-seeking and disengaged behavioral states remains unclear.