Candida Albicans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IMGT-ONTOLOGY and IMGT Databases, Tools and Web
Molecular Immunology 40 (2004) 647–660 Review IMGT-ONTOLOGY and IMGT databases, tools and Web resources for immunogenetics and immunoinformatics Marie-Paule Lefranc a,b,∗ a Laboratoire d’ImmunoGénétique Moléculaire, LIGM, Institut de Génétique Humaine IGH, Université Montpellier II, UPR CNRS 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France b Institut Universitaire de France, France Received 18 June 2003; received in revised form 2 September 2003; accepted 16 September 2003 Abstract The international ImMunoGeneTics information system® (IMGT; http://imgt.cines.fr), is a high quality integrated information system specialized in immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC), and related proteins of the immune system (RPI) of human and other vertebrates, created in 1989, by the Laboratoire d’ImmunoGénétique Moléculaire (LIGM; Université Montpellier II and CNRS) at Montpellier, France. IMGT provides a common access to standardized data which include nucleotide and protein sequences, oligonucleotide primers, gene maps, genetic polymorphisms, specificities, 2D and 3D structures. IMGT consists of several sequence databases (IMGT/LIGM-DB, IMGT/MHC-DB, IMGT/PRIMER-DB), one genome database (IMGT/GENE-DB) and one 3D structure database (IMGT/3Dstructure-DB), interactive tools for sequence analysis (IMGT/V-QUEST, IMGT/JunctionAnalysis, IMGT/PhyloGene, IMGT/Allele-Align), for genome analysis (IMGT/GeneSearch, IMGT/GeneView, IMGT/LocusView) and for 3D struc- ture analysis (IMGT/StructuralQuery), and -
Cidara-IFI-Infogr-12.Pdf
We often think of fungal infections as simply bothersome conditions such as athlete’s foot or toenail fungus. But certain types of fungal infections, known as “ ”( ), can be dangerous and fatal. IFIs are systemic and are typically caused when fungi invade the body in various ways such as through the bloodstream or by the inhalation of spores. IFIs can also spread to many other organs such as the liver and kidney. They are associated with ( ) > % • Invasive candidiasis ( ) is a common hospital-acquired infection in the U.S., % cases each year.v • Invasive aspergillosis () occurs most often in people with weakened immune systems or lung disease, and its prevalence is vi An increasing number of people in the U.S. have putting them at greater risk for IFIs.x High-risk groups include: hospitalized patients cancer or transplant patients patients undergoing surgery patients with chronic diseases Rates of invasive candidiasis are dicult ( )is an emerging drug-resistant to estimate and can vary based on time, fungus that spreads quickly and has caused serious region, and study type. and deadly infections in over a dozen countries. + Still, it is clear that overall The CDC estimates that remain high – especially in the U.S. with invasive ix among viii There is an increasingly urgent need to develop new therapies for IFIs, Currently available treatments for IFIs have signicant limitations such as: • toxicities/side eects • inconsistent achievement of target drug levels • interactions with other drugs • increasing microbial resistance As the urgency around IFIs rises, multiple biopharma companies and researchers are working to develop new therapies to treat and prevent them. -
Oral Candidiasis: a Review
International Journal of Pharmacy and Pharmaceutical Sciences ISSN- 0975-1491 Vol 2, Issue 4, 2010 Review Article ORAL CANDIDIASIS: A REVIEW YUVRAJ SINGH DANGI1, MURARI LAL SONI1, KAMTA PRASAD NAMDEO1 Institute of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur (C.G.) – 49500 Email: [email protected] Received: 13 Jun 2010, Revised and Accepted: 16 July 2010 ABSTRACT Candidiasis, a common opportunistic fungal infection of the oral cavity, may be a cause of discomfort in dental patients. The article reviews common clinical types of candidiasis, its diagnosis current treatment modalities with emphasis on the role of prevention of recurrence in the susceptible dental patient. The dental hygienist can play an important role in education of patients to prevent recurrence. The frequency of invasive fungal infections (IFIs) has increased over the last decade with the rise in at‐risk populations of patients. The morbidity and mortality of IFIs are high and management of these conditions is a great challenge. With the widespread adoption of antifungal prophylaxis, the epidemiology of invasive fungal pathogens has changed. Non‐albicans Candida, non‐fumigatus Aspergillus and moulds other than Aspergillus have become increasingly recognised causes of invasive diseases. These emerging fungi are characterised by resistance or lower susceptibility to standard antifungal agents. Oral candidiasis is a common fungal infection in patients with an impaired immune system, such as those undergoing chemotherapy for cancer and patients with AIDS. It has a high morbidity amongst the latter group with approximately 85% of patients being infected at some point during the course of their illness. A major predisposing factor in HIV‐infected patients is a decreased CD4 T‐cell count. -
Candida Auris
microorganisms Review Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities Suhail Ahmad * and Wadha Alfouzan Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; [email protected] * Correspondence: [email protected]; Tel.: +965-2463-6503 Abstract: Candida auris, a recently recognized, often multidrug-resistant yeast, has become a sig- nificant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently re- sulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of ‘dry’ biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris Citation: Ahmad, S.; Alfouzan, W. Candida auris: Epidemiology, infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new Diagnosis, Pathogenesis, Antifungal infections in healthcare facilities, including the screening of susceptible patients for colonization; the Susceptibility, and Infection Control cleaning and decontamination of the environment, equipment, and colonized patients; and successful Measures to Combat the Spread of approaches to identify and treat infected patients, particularly during outbreaks. -
Multiple Deleted Regions on the Long Arm of Chromosome 6 in Astrocytic
British Journal of Cancer (2000) 82(3), 543–549 © 2000 Cancer Research Campaign DOI: 10.1054/ bjoc.1999.0961, available online at http://www.idealibrary.com on Multiple deleted regions on the long arm of chromosome 6 in astrocytic tumours A Miyakawa1,2,3,4, K Ichimura1,2, EE Schmidt1,2, S Varmeh-Ziaie1,2 and VP Collins1,2 1Department of Pathology, Division of Molecular Histopathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK; 2Department of Tumour Pathology, Karolinska Institute, Stockholm 171 76, Sweden; 3Department of Urology, Faculty of Medicine, University of Ryukyus, Naha City, Okinawa 903-0804, Japan; 4Department of Urology, School of Medicine, Keio University, Tokyo, Japan Summary Chromosome 6 deletions are common in human neoplasms including gliomas. In order to study the frequency and identify commonly deleted regions of chromosome 6 in astrocytomas, 159 tumours (106 glioblastomas, 39 anaplastic astrocytomas and 14 astrocytomas malignancy grade II) were analysed using 31 microsatellite markers that span the chromosome. Ninety-five per cent of cases with allelic losses had losses affecting 6q. Allelic losses were infrequent in astrocytomas malignancy grade II (14%) but more usual in anaplastic astrocytomas (38%) and glioblastomas (37%). Evidence for clonal heterogeneity in the astrocytomas and anaplastic astrocytomas was frequently observed (i.e. co-existence of subpopulations with and without chromosome 6 deletions). Clonal heterogeneity was less common in glioblastomas. Five commonly deleted regions were identified on 6q. These observations suggest that a number of tumour suppressor genes are located on 6q and that these genes may be involved in the progression of astrocytic tumours. -
Determining Region
Proc. Natl. Acad. Sci. USA Vol. 81, pp. 5194-5198, August 1984 Immunology Rearranged immunoglobulin heavy chain variable region (VH) pseudogene that deletes the second complementarity- determining region (molecular cloning/DNA sequence determination/human VH gene) NAOKI TAKAHASHIt, TAKAHUMI NOMA, AND TASUKU HONJO Department of Genetics, Osaka University Medical School, Osaka 530, Japan Communicate4l by Elvin A. Kabat, March 30, 1984 ABSTRACT We have cloned two rearranged heavy chain tween a human D segment and CDR2 of a human V1 seg- variable region (VH) genes from the IgG-producing human cell ment was also reported (9). Bernstein et al. (10) found a con- line CESS. The VH gene, which is linked to the ,A chain con- siderable homology between CDR2 of a rabbit VH and the stant region (C,) gene, has two deletions at residues 45-62 and human VH26 sequences. The homology region is precisely 82A-90, the former of which corresponds closely to the second the part of the human CDR2 in which Wu and Kabat (8) complementarity-determining region (CDR2). These results found a 14-nucleotide stretch of homology to the human D2 could indicate that translocation of CDR2 occurred and could minigene. These results are consistent with the proposal that give support to the argument that reassortment of the V mini- a minigene, like the D segment, may be involved in the gen- genes is involved in the generation of hypervariability during eration of the CDR diversity through mechanisms of either evolution. However, the rearranged pseudogene could have gene conversion, reassortment, or insertion of the minigene also arisen by fortuitous deletion. -
Oral Antifungals Month/Year of Review: July 2015 Date of Last
© Copyright 2012 Oregon State University. All Rights Reserved Drug Use Research & Management Program Oregon State University, 500 Summer Street NE, E35 Salem, Oregon 97301-1079 Phone 503-947-5220 | Fax 503-947-1119 Class Update with New Drug Evaluation: Oral Antifungals Month/Year of Review: July 2015 Date of Last Review: March 2013 New Drug: isavuconazole (a.k.a. isavunconazonium sulfate) Brand Name (Manufacturer): Cresemba™ (Astellas Pharma US, Inc.) Current Status of PDL Class: See Appendix 1. Dossier Received: Yes1 Research Questions: Is there any new evidence of effectiveness or safety for oral antifungals since the last review that would change current PDL or prior authorization recommendations? Is there evidence of superior clinical cure rates or morbidity rates for invasive aspergillosis and invasive mucormycosis for isavuconazole over currently available oral antifungals? Is there evidence of superior safety or tolerability of isavuconazole over currently available oral antifungals? • Is there evidence of superior effectiveness or safety of isavuconazole for invasive aspergillosis and invasive mucormycosis in specific subpopulations? Conclusions: There is low level evidence that griseofulvin has lower mycological cure rates and higher relapse rates than terbinafine and itraconazole for adult 1 onychomycosis.2 There is high level evidence that terbinafine has more complete cure rates than itraconazole (55% vs. 26%) for adult onychomycosis caused by dermatophyte with similar discontinuation rates for both drugs.2 There is low -
Fungal Infections – an Overview
REVIEW Fungal infections – An overview Natalie Schellack, BCur, BPharm, PhD(Pharmacy); Jade du Toit, BPharm; Tumelo Mokoena, BPharm; Elmien Bronkhorst, BPharm, MSc(Med) School of Pharmacy, Faculty of Health Sciences, Sefako Makgatho Health Sciences University Correspondence to: Prof Natalie Schellack, [email protected] Abstract Fungi normally originate from the environment that surrounds us, and appear to be harmless until inhaled or ingestion of spores occurs. A pathogenic fungus may lead to infection. People who are at risk of acquiring fungal infection are those living with human immunodeficiency virus (HIV), cancer, receiving immunosuppressant therapy, neonates and those of advanced age. The management of superficial fungal infections is mainly topical, with agents including terbinafine, miconazole and ketoconazole. Oral treatment includes griseofulvin and fluconazole. Invasive fungal infections are difficult to treat, and are managed with agents including the azoles, echinocandins and amphotericin B. This paper provides a general overview of the management of fungus infections. © Medpharm S Afr Pharm J 2019;86(1):33-40 Introduction more advanced biochemical or molecular testing.4 Fungi normally originate from the environment that surrounds Superficial fungal infections us, and appear to be harmless until inhaled or ingestion of spores Either yeasts or fungi can cause dermatomycosis, or superficial occurs. Infection with fungi is also more likely when the body’s fungal infections.7 Fungi that infect the hair, skin, nails and mucosa immune system becomes weakened. A pathogenic fungus may lead to infection. The number of fungus species ranges in the can cause a superficial fungal infection. Dermatophytes are found millions and only a few species seem to be harmful to humans; the naturally in soil, human skin and keratin-containing structures, 3 ones found mostly on the mucous membrane and the skin have which provide them with a source of nutrition. -
Fungal Sepsis: Optimizing Antifungal Therapy in the Critical Care Setting
Fungal Sepsis: Optimizing Antifungal Therapy in the Critical Care Setting a b,c, Alexander Lepak, MD , David Andes, MD * KEYWORDS Invasive candidiasis Pharmacokinetics-pharmacodynamics Therapy Source control Invasive fungal infections (IFI) and fungal sepsis in the intensive care unit (ICU) are increasing and are associated with considerable morbidity and mortality. In this setting, IFI are predominantly caused by Candida species. Currently, candidemia represents the fourth most common health care–associated blood stream infection.1–3 With increasingly immunocompromised patient populations, other fungal species such as Aspergillus species, Pneumocystis jiroveci, Cryptococcus, Zygomycetes, Fusarium species, and Scedosporium species have emerged.4–9 However, this review focuses on invasive candidiasis (IC). Multiple retrospective studies have examined the crude mortality in patients with candidemia and identified rates ranging from 46% to 75%.3 In many instances, this is partly caused by severe underlying comorbidities. Carefully matched, retrospective cohort studies have been undertaken to estimate mortality attributable to candidemia and report rates ranging from 10% to 49%.10–15 Resource use associated with this infection is also significant. Estimates from numerous studies suggest the added hospital cost is as much as $40,000 per case.10–12,16–20 Overall attributable costs are difficult to calculate with precision, but have been estimated to be close to 1 billion dollars in the United States annually.21 a University of Wisconsin, MFCB, Room 5218, 1685 Highland Avenue, Madison, WI 53705-2281, USA b Department of Medicine, University of Wisconsin, MFCB, Room 5211, 1685 Highland Avenue, Madison, WI 53705-2281, USA c Department of Microbiology and Immunology, University of Wisconsin, MFCB, Room 5211, 1685 Highland Avenue, Madison, WI 53705-2281, USA * Corresponding author. -
Up to Date Epidemiology, Diagnosis and Management of Invasive Fungal Infections
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector EDITORIAL 10.1111/1469-0691.12642 Up to date epidemiology, diagnosis and management of invasive fungal infections I. Oren and M. Paul Infectious Diseases Institute, Rambam Health Care Campus, Bruce Rappaport Faculty of Medicine, Technion – Israely Institute of Technology, Haifa, Israel E-mail: [email protected] This issue of Clinical Microbiology and Infection is dedicated to and the presence of GVHD. However, the incidence of invasive fungal infections (IFI) based on the ESCMID confer- invasive aspergillosis is very much dependent on local epide- ence held in Rome on January 2013. The reviews summarize miology and the quality of air control in hemato-oncological the progress achieved in the fields of epidemiology, diagnosis units. Thus, in some settings, invasive aspergillosis is more and management of Candida, Aspergillus and Mucor invasive frequent than invasive candidiasis [2]. infections. Mucormycosis is the second most common invasive mould infection and its incidence increased from 0.7 per million in 1997 to 1.2 per million in 2006 [3]. In addition to immune- Epidemiology suppression, there are some unique host risk factors for mucormycosis such as diabetes keto-acidosis, burns, iron Candida spp. have become important causes of sepsis in overload and, on the other hand, deferoxamine therapy. The hospitals with incidence constantly growing over the last specific clinical syndrome of mucormycosis is associated with 20 years. Candida spp. is now the 4th most common isolate of host risk factors; thus, pulmonary mucormycosis is more bloodstream infections in many countries (and the most common in patients with hematological malignancies, while common IFI), mainly due to the increasing complexity of rhino-cerebral mucormycosis is more common in diabetic medical care [1]. -
B Inhibition in a Mouse Model of Chronic Colitis1
The Journal of Immunology Differential Expression of Inflammatory and Fibrogenic Genes and Their Regulation by NF-B Inhibition in a Mouse Model of Chronic Colitis1 Feng Wu and Shukti Chakravarti2 Fibrosis is a major complication of chronic inflammation, as seen in Crohn’s disease and ulcerative colitis, two forms of inflam- matory bowel diseases. To elucidate inflammatory signals that regulate fibrosis, we investigated gene expression changes under- lying chronic inflammation and fibrosis in trinitrobenzene sulfonic acid-induced murine colitis. Six weekly 2,4,6-trinitrobenzene sulfonic acid enemas were given to establish colitis and temporal gene expression patterns were obtained at 6-, 8-, 10-, and 12-wk time points. The 6-wk point, TNBS-w6, was the active, chronic inflammatory stage of the model marked by macrophage, neu- trophil, and CD3؉ and CD4؉ T cell infiltrates in the colon, consistent with the idea that this model is T cell immune response driven. Proinflammatory genes Cxcl1, Ccl2, Il1b, Lcn2, Pla2g2a, Saa3, S100a9, Nos2, Reg2, and Reg3g, and profibrogenic extra- cellular matrix genes Col1a1, Col1a2, Col3a1, and Lum (lumican), encoding a collagen-associated proteoglycan, were up-regulated at the active/chronic inflammatory stages. Rectal administration of the NF-B p65 antisense oligonucleotide reduced but did not abrogate inflammation and fibrosis completely. The antisense oligonucleotide treatment reduced total NF-B by 60% and down- regulated most proinflammatory genes. However, Ccl2, a proinflammatory chemokine known to promote fibrosis, was not down- regulated. Among extracellular matrix gene expressions Lum was suppressed while Col1a1 and Col3a1 were not. Thus, effective treatment of fibrosis in inflammatory bowel disease may require early and complete blockade of NF-B with particular attention to specific proinflammatory and profibrogenic genes that remain active at low levels of NF-B. -
Supplementary Data
Supplemental figures Supplemental figure 1: Tumor sample selection. A total of 98 thymic tumor specimens were stored in Memorial Sloan-Kettering Cancer Center tumor banks during the study period. 64 cases corresponded to previously untreated tumors, which were resected upfront after diagnosis. Adjuvant treatment was delivered in 7 patients (radiotherapy in 4 cases, cyclophosphamide- doxorubicin-vincristine (CAV) chemotherapy in 3 cases). 34 tumors were resected after induction treatment, consisting of chemotherapy in 16 patients (cyclophosphamide-doxorubicin- cisplatin (CAP) in 11 cases, cisplatin-etoposide (PE) in 3 cases, cisplatin-etoposide-ifosfamide (VIP) in 1 case, and cisplatin-docetaxel in 1 case), in radiotherapy (45 Gy) in 1 patient, and in sequential chemoradiation (CAP followed by a 45 Gy-radiotherapy) in 1 patient. Among these 34 patients, 6 received adjuvant radiotherapy. 1 Supplemental Figure 2: Amino acid alignments of KIT H697 in the human protein and related orthologs, using (A) the Homologene database (exons 14 and 15), and (B) the UCSC Genome Browser database (exon 14). Residue H697 is highlighted with red boxes. Both alignments indicate that residue H697 is highly conserved. 2 Supplemental Figure 3: Direct comparison of the genomic profiles of thymic squamous cell carcinomas (n=7) and lung primary squamous cell carcinomas (n=6). (A) Unsupervised clustering analysis. Gains are indicated in red, and losses in green, by genomic position along the 22 chromosomes. (B) Genomic profiles and recurrent copy number alterations in thymic carcinomas and lung squamous cell carcinomas. Gains are indicated in red, and losses in blue. 3 Supplemental Methods Mutational profiling The exonic regions of interest (NCBI Human Genome Build 36.1) were broken into amplicons of 500 bp or less, and specific primers were designed using Primer 3 (on the World Wide Web for general users and for biologist programmers (see Supplemental Table 2) [1].