Carla Cristina Bem Macroinvertebrados Bent
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chironominae 8.1
CHIRONOMINAE 8.1 SUBFAMILY CHIRONOMINAE 8 DIAGNOSIS: Antennae 4-8 segmented, rarely reduced. Labrum with S I simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. Mentum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa. NOTESTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). Most larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are free- living; some build transportable cases. Many larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions. With only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known. -
345D344e875a63b5be2a8cfa75
Knowledge and Management of Aquatic Ecosystems (2014) 414, 09 http://www.kmae-journal.org c ONEMA, 2014 DOI: 10.1051/kmae/2014021 Community structure and decadal changes in macrozoobenthic assemblages in Lake Poyang, the largest freshwater lake in China Y. J . C a i (1),(2),Y.J.Lu(2),Z.S.Wu(1),Y.W.Chen(1),L.Zhang(1),Y.Lu(2) Received February 19, 2014 Revised May 19, 2014 Accepted June 10, 2014 ABSTRACT Key-words: Lake Poyang is the largest freshwater lake in China and contains unique Yangtze River, and diverse biota within the Yangtze floodplain ecosystem. However, floodplain lake, knowledge of its macrozoobenthic assemblages remains inadequate. To macrozoobenthos, characterize the current community structure of these assemblages and community to portray their decadal changes, quarterly investigations were conducted structure, at 15 sites from February to November 2012. A total of 42 taxa were sand mining recorded, and Corbicula fluminea, Limnoperna fortunei, Gammaridae sp., Nephtys polybranchia, Polypedilum scalaenum and Branchiura sowerbyi were found to dominate the community in terms of abundance. The bivalves Corbicula fluminea, Lamprotula rochechouarti, Arconaia lance- olata and Lamprotula caveata dominated the community in biomass due to their large body size. The mean abundance of the total macro- zoobenthos varied from 48 to 920 ind·m−2, the mean biomass ranged from 28 to 428 g·m−2. The substrate type affected strongly the abun- dance, biomass, and diversity of the macrozoobenthos, with muddy sand substrates showing the highest values. Compared with historical data, remarkable changes were observed in the abundance of macrozooben- thos and the identity of the dominant species. -
Invertebrate Prey Selectivity of Channel Catfish (Ictalurus Punctatus) in Western South Dakota Prairie Streams Erin D
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2017 Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams Erin D. Peterson South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Aquaculture and Fisheries Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Peterson, Erin D., "Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams" (2017). Electronic Theses and Dissertations. 1677. https://openprairie.sdstate.edu/etd/1677 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. INVERTEBRATE PREY SELECTIVITY OF CHANNEL CATFISH (ICTALURUS PUNCTATUS) IN WESTERN SOUTH DAKOTA PRAIRIE STREAMS BY ERIN D. PETERSON A thesis submitted in partial fulfillment of the degree for the Master of Science Major in Wildlife and Fisheries Sciences South Dakota State University 2017 iii ACKNOWLEDGEMENTS South Dakota Game, Fish & Parks provided funding for this project. Oak Lake Field Station and the Department of Natural Resource Management at South Dakota State University provided lab space. My sincerest thanks to my advisor, Dr. Nels H. Troelstrup, Jr., for all of the guidance and support he has provided over the past three years and for taking a chance on me. -
Bibliograp Bibliography
BIBLIOGRAPHY 9.1 BIBLIOGRAPHY 9 Adam, J.I & O.A. Sæther. 1999. Revision of the records for the southern United States genus Nilothauma Kieffer, 1921 (Diptera: (Diptera: Chironomidae). J. Ga. Ent. Soc. Chironomidae). Ent. scand. Suppl. 56: 1- 15:69-73. 107. Beck, W.M., Jr. & E.C. Beck. 1966. Chironomidae Ali, A. 1991. Perspectives on management of pest- (Diptera) of Florida - I. Pentaneurini (Tany- iferous Chironomidae (Diptera), an emerg- podinae). Bull. Fla. St. Mus. Biol. Sci. ing global problem. J. Am. Mosq. Control 10:305-379. Assoc. 7: 260-281. Beck, W.M., Jr., & E.C. Beck. 1970. The immature Armitage, P., P.S. Cranston & L.C.V. Pinder (eds). stages of some Chironomini (Chiro- 1995. The Chironomidae. Biology and nomidae). Q.J. Fla. Acad. Sci. 33:29-42. ecology of non-biting midges. Chapman & Bilyj, B. 1984. Descriptions of two new species of Hall, London. 572 pp. Tanypodinae (Diptera: Chironomidae) from Ashe, P. 1983. A catalogue of chironomid genera Southern Indian Lake, Canada. Can. J. Fish. and subgenera of the world including syn- Aquat. Sci. 41: 659-671. onyms (Diptera: Chironomidae). Ent. Bilyj, B. 1985. New placement of Tanypus pallens scand. Suppl. 17: 1-68. Coquillett, 1902 nec Larsia pallens (Coq.) Barton, D.R., D.R. Oliver & M.E. Dillon. 1993. sensu Roback 1971 (Diptera: Chironomi- The first Nearctic record of Stackelbergina dae) and redescription of the holotype. Can. Shilova and Zelentsov (Diptera: Chironomi- Ent. 117: 39-42. dae): Taxonomic and ecological observations. Bilyj, B. 1988. A taxonomic review of Guttipelopia Aquatic Insects 15: 57-63. (Diptera: Chironomidae). -
DNA Barcoding
Full-time PhD studies of Ecology and Environmental Protection Piotr Gadawski Species diversity and origin of non-biting midges (Chironomidae) from a geologically young lake PhD Thesis and its old spring system Performed in Department of Invertebrate Zoology and Hydrobiology in Institute of Ecology and Environmental Protection Różnorodność gatunkowa i pochodzenie fauny Supervisor: ochotkowatych (Chironomidae) z geologicznie Prof. dr hab. Michał Grabowski młodego jeziora i starego systemu źródlisk Auxiliary supervisor: Dr. Matteo Montagna, Assoc. Prof. Łódź, 2020 Łódź, 2020 Table of contents Acknowledgements ..........................................................................................................3 Summary ...........................................................................................................................4 General introduction .........................................................................................................6 Skadar Lake ...................................................................................................................7 Chironomidae ..............................................................................................................10 Species concept and integrative taxonomy .................................................................12 DNA barcoding ...........................................................................................................14 Chapter I. First insight into the diversity and ecology of non-biting midges (Diptera: Chironomidae) -
Abstracts Submitted for Presentation During The
Abstracts submitted for presentation during the Compiled By Leonard C. Ferrington Jr. 17 July 2003 ABSTRACT FOR THE THIENEMANN HONORARY LECTURE THE ROLE OF CHROMOSOMES IN CHIRONOMID SYSTEMATICS, ECOLOGY AND PHYLOGENY WOLFGANG F. WUELKER* Chironomids have giant chromosomes with useful characters: different chromosome number, different combination of chromosome arms, number and position of nucleolar organizers, amount of heterochromatin, presence of puffs and Balbiani rings, banding pattern. For comparison of species, it is important that the bands or groups of bands can be homologized. Chromosomes are nearly independent of environmental factors, however they show variability in form of structural modifications and inversion polymorphism. Systematic aspects: New species of chironomids have sometimes been found on the basis of chromosomes, e.g. morphologically well defined "species" turned out to contain two or more karyotypes. Chromosome preparations were also sometimes declared as species holotypes. Moreover, chromosomes were helpful to find errors in previous investigations or to rearrange groups.- Nevertheless, where morphology and chromosomal data are not sufficient for species identification, additional results of electrophoresis of enzymes or hemoglobins as well as molecular-biological data were often helpful and necessary . Ecological, parasitological and zoogeographical aspects: An example of niche formation are the endemic Sergentia-species of the 1500 m deep Laike Baikal in Siberia. Some species are stenobathic and restricted to certain depth regions. The genetic sex of nematode-infested Chironomus was unresolved for a long time. External morphological characters were misleading, because parasitized midges have predominantly female characters. However, transfer of the parasites to species with sex-linked chromosomal characters (strains of Camptochironomus) could show that half of the parasitized midges are genetic males. -
Diptera), an Emerging Global Problem Arshadali
260 JouRul oF THEArrlpnrclN Mosquno CoNrRor,AssocrarroN Vor..7, No.2 PERSPECTIVESON MANAGEMENT OF PESTIFEROUS CHIRONOMIDAE (DIPTERA), AN EMERGING GLOBAL PROBLEM ARSHADALI Uniuersity of Florida, IFAS, Central Florida Researchand Education Center,2700 East CeleryAuenue. Sanford,FL 32771-9608 ABSTRACT. In recent years, adult Chironomidae emerging from some urban natural or man-made habllats have increasingly posed a variety of nuisance and economic problems, and in some situations medical problems to humans in different parts of the world. Although there are an estimated 4,000 or more speciesof chironomid midgesworldwide, lessthan 100species have been reported to be pesti'ferous. Among midge control methods, numerous laboratory and field studies have been conducted on the use of o^rqanochlorines,organophosphates (OPs), pyrethroids and insect growth regulators (IGRs). Field use of OP insecticides such as chlorpyrifos, temephos and others in the USA ind Japan hai generally resulted in larval control for 2-5 wk or longeiwith application rates below 0.56 kg AI/ha (U=S.q)ani 51-5 ppln (Japan).Frequent use of some OP insecticidesin the USA and Japan has caused.their increasedtolerance in severalmidge species.The IGRs, diflubenzuron and methoprene,provide alternate means for midge control. These IGRs in some situations suppressedadult midge eme.ge.tceby >g\Vo at rates (0.3 t<gll/_hqr A number ofparasites and pathogenshave been reported from mldgesin different parts of the woid'. Bacillus thuringiensis serovar. israelensisis effective igainst some mid-gespecies, but at rates at least 10x or higher established for mosquito larvicidal aciiuity. The flatriorm, Dugesia doro.tocephala,and some fish speciesoffer a goodpotential for midge control in somesituations. -
Indicadores Físico-Químicos: Daniel Andrés Dos Santos Y María Celina Reynaga ¿Qué, Cómo Y Cuánto Reflejan La Calidad Del Agua? Alicia Fernández Cirelli Y Alejandra V
La bioindicación en el monitoreo y evaluación de los sistemas fluviales de la Argentina Bases para el análisis de la integridad ecológica Eduardo Domínguez Adonis Giorgi Nora Gómez Compiladores La bioindicación en el monitoreo y evaluación de los sistemas fluviales de la Argentina: bases para el análisis de la integridad ecológica / Eduardo Domínguez... [et al.] ; compilado por Eduardo Domínguez ; Adonis Giorgi ; Nora Gómez.- 1a ed . - Ciudad Autónoma de Buenos Aires : Eudeba, 2020. Libro digital, PDF Archivo Digital: descarga ISBN 978-950-23-3006-8 1. Sistemas Fluviales. 2. Bioindicación. 3. Biomonitoreo. I. Domínguez, Eduardo, comp. II. Giorgi, Adonis, comp. III. Gómez, Nora, comp. CDD 577.64 ISBN formato impreso: 978-950-23-3005-1 Eudeba - Universidad de Buenos Aires © 2020 Editorial Universitaria de Buenos Aires Sociedad de Economía Mixta Av. Rivadavia 1571/73 (1033) Ciudad de Buenos Aires Tel: (54 11) 4383-8025 / (54 11) 4383-2202 www.eudeba.com.ar © 2020 Eduardo Domínguez © 2020 Adonis Giorgi © 2020 Nora Gómez Idea y dirección general del proyecto: Eduardo Domínguez Adonis Giorgi Nora Gómez Diseño y producción editorial: Silvina Simondet Foto de tapa Eduardo Domínguez Río Coleguai, Parque Nacional Los Alerces, Chubut, Argentina. 2017. No se permite la reproducción total o parcial de este libro, ni su almacenamiento en un sistema informático, ni su trans- misión cualquier forma o por cualquier medio, electrónico, mecánico, fotocopia u otros métodos, sin el permiso previo del editor. Su infracción está penada por las leyes 11.723 y 25.446. Se permiten citar en artículos críticos o reseñas, sin fines comerciales de la siguiente manera: Eduardo Domínguez, Adonis Giorgi y Nora Gómez (Comps.) 2020. -
PROCEEDINGS of the OKLAHOMA ACADEMY of SCIENCE Volume 98 2018
PROCEEDINGS of the OKLAHOMA ACADEMY OF SCIENCE Volume 98 2018 EDITOR: Mostafa Elshahed Production Editor: Tammy Austin Business Manager: T. David Bass The Official Organ of the OKLAHOMA ACADEMY OF SCIENCE Which was established in 1909 for the purpose of stimulating scientific research; to promote fraternal relationships among those engaged in scientific work in Oklahoma; to diffuse among the citizens of the State a knowledge of the various departments of science; and to investigate and make known the material, educational, and other resources of the State. Affiliated with the American Association for the Advancement of Science. Publication Date: January 2019 ii POLICIES OF THE PROCEEDINGS The Proceedings of the Oklahoma Academy of Science contains papers on topics of interest to scientists. The goal is to publish clear communications of scientific findings and of matters of general concern for scientists in Oklahoma, and to serve as a creative outlet for other scientific contributions by scientists. ©2018 Oklahoma Academy of Science The Proceedings of the Oklahoma Academy Base and/or other appropriate repository. of Science contains reports that describe the Information necessary for retrieval of the results of original scientific investigation data from the repository will be specified in (including social science). Papers are received a reference in the paper. with the understanding that they have not been published previously or submitted for 4. Manuscripts that report research involving publication elsewhere. The papers should be human subjects or the use of materials of significant scientific quality, intelligible to a from human organs must be supported by broad scientific audience, and should represent a copy of the document authorizing the research conducted in accordance with accepted research and signed by the appropriate procedures and scientific ethics (proper subject official(s) of the institution where the work treatment and honesty). -
The Role of Chironomidae in Separating Naturally Poor from Disturbed Communities
From taxonomy to multiple-trait bioassessment: the role of Chironomidae in separating naturally poor from disturbed communities Da taxonomia à abordagem baseada nos multiatributos dos taxa: função dos Chironomidae na separação de comunidades naturalmente pobres das antropogenicamente perturbadas Sónia Raquel Quinás Serra Tese de doutoramento em Biociências, ramo de especialização Ecologia de Bacias Hidrográficas, orientada pela Doutora Maria João Feio, pelo Doutor Manuel Augusto Simões Graça e pelo Doutor Sylvain Dolédec e apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra. Agosto de 2016 This thesis was made under the Agreement for joint supervision of doctoral studies leading to the award of a dual doctoral degree. This agreement was celebrated between partner institutions from two countries (Portugal and France) and the Ph.D. student. The two Universities involved were: And This thesis was supported by: Portuguese Foundation for Science and Technology (FCT), financing program: ‘Programa Operacional Potencial Humano/Fundo Social Europeu’ (POPH/FSE): through an individual scholarship for the PhD student with reference: SFRH/BD/80188/2011 And MARE-UC – Marine and Environmental Sciences Centre. University of Coimbra, Portugal: CNRS, UMR 5023 - LEHNA, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, University Lyon1, France: Aos meus amados pais, sempre os melhores e mais dedicados amigos Table of contents: ABSTRACT ..................................................................................................................... -
« Ecosystems, Biodiversity and Eco-Development »
University of Sciences & Technology Houari Boumediene, Algiers- Algeria Faculty of Biological Sciences Laboratory of Dynamic & Biodiversity « Ecosystems, Biodiversity and Eco-development » 03-05 NOVEMBER, 2017 - TAMANRASSET - ALGERIA Publisher : Publications Direction. Chlef University (Algeria) ii COPYRIGHT NOTICE Copyright © 2020 by the Laboratory of Dynamic & Biodiversity (USTHB, Algiers, Algeria). Permission to make digital or hard copies of part or all of this work use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than Laboratory of Dynamic & Biodiversity must be honored. Patrons University of Sciences and Technologies Faculty of Biological Sciences Houari Boumedienne of Algiers, Algeria Sponsors Supporting Publisher Edition Hassiba Benbouali University of Chlef (Algeria) “Revue Nature et Technologie” NATEC iii COMMITTEES Organizing committee: ❖ President: Pr. Abdeslem ARAB (Houari Boumedienne University of Sciences and Tehnology USTHB, Algiers ❖ Honorary president: Pr. Mohamed SAIDI (Rector of USTHB) Advisors: ❖ Badis BAKOUCHE (USTHB, Algiers- Algeria) ❖ Amine CHAFAI (USTHB, Algiers- Algeria) ❖ Amina BELAIFA BOUAMRA (USTHB, Algiers- Algeria) ❖ Ilham Yasmine ARAB (USTHB, Algiers- Algeria) ❖ Ahlem RAYANE (USTHB, Algiers- Algeria) ❖ Ghiles SMAOUNE (USTHB, Algiers- Algeria) ❖ Hanane BOUMERDASSI (USTHB, Algiers- Algeria) Scientific advisory committee ❖ Pr. ABI AYAD S.M.A. (Univ. Oran- Algeria) ❖ Pr. ABI SAID M. (Univ. Beirut- Lebanon) ❖ Pr. ADIB S. (Univ. Lattakia- Syria) ❖ Pr. CHAKALI G. (ENSSA, Algiers- Algeria) ❖ Pr. CHOUIKHI A. (INOC, Izmir- Turkey) ❖ Pr. HACENE H. (USTHB, Algiers- Algeria) ❖ Pr. HEDAYATI S.A. (Univ. Gorgan- Iran) ❖ Pr. KARA M.H. (Univ. Annaba- Algeria) ❖ Pr. -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).