Coleoptera, Carabidae, Trechinae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
Abundance and Diversity of Ground-Dwelling Arthropods of Pest Management Importance in Commercial Bt and Non-Bt Cotton Fields
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2007 Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields J. B. Torres Universidade Federal Rural de Pernarnbuco, [email protected] J. R. Ruberson University of Georgia Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Torres, J. B. and Ruberson, J. R., "Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields" (2007). Faculty Publications: Department of Entomology. 762. https://digitalcommons.unl.edu/entomologyfacpub/762 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Annals of Applied Biology ISSN 0003-4746 RESEARCH ARTICLE Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields J.B. Torres1,2 & J.R. Ruberson2 1 Departmento de Agronomia – Entomologia, Universidade Federal Rural de Pernambuco, Dois Irma˜ os, Recife, Pernambuco, Brazil 2 Department of Entomology, University of Georgia, Tifton, GA, USA Keywords Abstract Carabidae; Cicindelinae; Falconia gracilis; genetically modified cotton; Labiduridae; The modified population dynamics of pests targeted by the Cry1Ac toxin in predatory heteropterans; Staphylinidae. -
A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics. -
Vespula Germanica ) on the Native Arthropod Community of North-West Patagonia, Argentina: an Experimental Study
Ecological Entomology (2008), 33, 213–224 DOI: 10.1111/j.1365-2311.2007.00952.x The impact of an exotic social wasp ( Vespula germanica ) on the native arthropod community of north-west Patagonia, Argentina: an experimental study PAULA SACKMANN 1 , ALEJANDRO FARJI-BRENER 1 a n d JUAN CORLEY 2 1 Laboratorio Ecotono, INIBIOMA, CRUB-Universidad Nacional del Comahue/CONICET, Pasaje Gutiérrez 1125, Bariloche, Río Negro, Argentina and 2 Laboratorio de Ecología de Insectos EEA INTA Bariloche, Río Negro, Argentina Abstract . 1. Biological invasions are usually thought to have a negative impact on native communities. However, data supporting this idea are often based on comparative studies between invaded and non-invaded areas, and are spatially and temporally limited. 2. The present study experimentally assessed the impact of an exotic wasp, Vespula germanica , on the native arthropod community of north-west Patagonia during 3 years in an area of 80 ha. Vespula germanica is an exotic social vespid that invaded north-west Patagonia 20 years ago. It has been suggested that its populations affect native arthropods because of its broad diet and also because Patagonia lacks natural enemies and potential competitors for these wasps. 3. Using wasp-specific toxic baits, V. germanica abundance was reduced in five sites of native woodlands during 3 consecutive years. The abundance, species richness, and composition of arthropods between non-poisoned (control) and poisoned sites was then compared, both before and after the wasps were poisoned. 4. Wasp abundance represented 6% of the total arthropod catches in non-poisoned sites and was reduced, on average, by 50% in the treated areas. -
Swarth, C. Et Al. the 2007 Jug Bay Bioblitz Reliort. 2008
2007 Jug Bay BioBlitz Report Christopher Swarth, Lindsay Hollister, Elaine Friebele, Karyn Molines and Susan Matthews Jug Bay Wetlands Sanctuary December 2008 Introduction A BioBlitz is a 24-hour field survey and inventory of organisms in a well-defined area such as a park or other natural area. The objective of this intensive survey is to generate a catalog or list of all species that are identified or collected during the brief survey period. The first BioBlitz in the United States was conducted in 1996 in Washington, DC. Today dozens of BioBlitzes are held annually in the United States (see Wikipedia Encyclopedia; http://en.wikipedia.org/wiki/BioBlitz. A BioBlitz increases local knowledge of biodiversity and involves local naturalists and the public in coordinated fieldwork and observation. The surveys raise the awareness among the general public about the natural world and the importance of biodiversity. The species distribution and occurrence information that is obtained from a BioBlitz also provides resource managers with a deeper understanding of the natural lands under their management, thus enabling improved habitat stewardship. The 2007 Jug Bay BioBlitz took place at the Jug Bay Wetlands Sanctuary over a 24-hour period, from 12:00 (noon) on 15 September to 12:00 on 16 September. We organized this event in order to take advantage of the growing interest in biodiversity by the public and to tap in to the community of active, highly skilled naturalists in the Washington DC/Baltimore area. For this first-time effort we concentrated the field surveys on groups of organisms for which local biogeographical information was poor or incomplete (for example, ants, ground bees, spiders and zooplankton), rather than on the groups for which our knowledge on distribution was relatively thorough such as birds and herps. -
The Evolution and Phylogeny of Beetles
Darwin, Beetles and Phylogenetics Rolf G. Beutel1 . Frank Friedrich1, 2 . Richard A. B. Leschen3 1) Entomology group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, FSU Jena, 07743 Jena; e-mail: [email protected]; 2) Biozentrum Grindel und Zoologisches Museum, Universität Hamburg, 20144 Hamburg; 3) New Zealand Arthropod Collection, Private Bag 92170, Auckland, NZ Whenever I hear of the capture of rare beetles, I feel like an old warhorse at the sound of a trumpet. Charles R. Darwin Abstract Here we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics and expressed, to his surprise, that the majority of species were small and inconspicuous. Despite his obvious interest in the group he did not get involved in beetle taxonomy and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late 19th and earlier 20th centuries was mainly characterised by the exploration of new character systems (e.g., larval features, wing venation). In the mid 20th century Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. -
The Head Morphology of Ascioplaga Mimeta (Coleoptera: Archostemata) and the Phylogeny of Archostemata
Eur. J. Entomol. 103: 409–423, 2006 ISSN 1210-5759 The head morphology of Ascioplaga mimeta (Coleoptera: Archostemata) and the phylogeny of Archostemata THOMAS HÖRNSCHEMEYER1, JÜRGEN GOEBBELS2, GERD WEIDEMANN2, CORNELIUS FABER3 and AXEL HAASE3 1Universität Göttingen, Institut für Zoologie & Anthropologie, Abteilung Morphologie & Systematik, D-37073 Göttingen, Germany; e-mail: [email protected] 2Bundesanstalt für Materialforschung (BAM), Berlin, Germany 3Physikalisches Institut, University of Würzburg, Germany Keywords. Archostemata, Cupedidae, phylogeny, NMR-imaging, skeletomuscular system, micro X-ray computertomography, head morphology Abstract. Internal and external features of the head of Ascioplaga mimeta (Coleoptera: Archostemata) were studied with micro X-ray computertomography (µCT) and nuclear magnetic resonance imaging (NMRI). These methods allowed the reconstruction of the entire internal anatomy from the only available fixed specimen. The mouthparts and their associated musculature are highly derived in many aspects. Their general configuration corresponds to that of Priacma serrata (the only other archostematan studied in comparable detail). However, the mandible-maxilla system of A. mimeta is built as a complex sorting apparatus and shows a distinct specialisation for a specific, but still unknown, food source. The phylogenetic analysis resulted in the identification of a new mono- phylum comprising the genera [Distocupes + (Adinolepis +Ascioplaga)]. The members of this taxon are restricted to the Australian zoogeographic region. The most prominent synapomorphies of these three genera are their derived mouthparts. INTRODUCTION 1831) (Snyder, 1913; Barber & Ellis, 1920), Tenomerga Ascioplaga mimeta Neboiss, 1984 occurs in New Cale- mucida (Chevrolat, 1829) (Fukuda, 1938, 1939), Disto- donia (a French island ca. 1400 km ENE of Brisbane, cupes varians (Lea, 1902) (Neboiss, 1968), P. -
Phylogeny of Endopterygote Insects, the Most Successful Lineage of Living Organisms*
REVIEW Eur. J. Entomol. 96: 237-253, 1999 ISSN 1210-5759 Phylogeny of endopterygote insects, the most successful lineage of living organisms* N iels P. KRISTENSEN Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark; e-mail: [email protected] Key words. Insecta, Endopterygota, Holometabola, phylogeny, diversification modes, Megaloptera, Raphidioptera, Neuroptera, Coleóptera, Strepsiptera, Díptera, Mecoptera, Siphonaptera, Trichoptera, Lepidoptera, Hymenoptera Abstract. The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an en dopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Co leóptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Díptera clade is differently interpreted by advo cates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (“orders”) are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of “key innovations” promoting evolution -
Modular, Scalable and Low-Cost LED Dome Illumination System
www.nature.com/scientificreports OPEN Illuminating nature’s beauty: modular, scalable and low‑cost LED dome illumination system using 3D‑printing technology Fabian Bäumler*, Alexander Koehnsen, Halvor T. Tramsen, Stanislav N. Gorb & Sebastian Büsse Presenting your research in the proper light can be exceptionally challenging. Meanwhile, dome illumination systems became a standard for micro‑ and macrophotography in taxonomy, morphology, systematics and especially important in natural history collections. However, proper illumination systems are either expensive and/or laborious to use. Nowadays, 3D‑printing technology revolutionizes lab‑life and will soon fnd its way into most people’s everyday life. Consequently, fused deposition modelling printers become more and more available, with online services ofering personalized printing options. Here, we present a 3D‑printed, scalable, low‑cost and modular LED illumination dome system for scientifc micro‑ and macrophotography. We provide stereolithography (’.stl’) fles and print settings, as well as a complete list of necessary components required for the construction of three diferently sized domes. Additionally, we included an optional iris diaphragm and a sliding table, to arrange the object of desire inside the dome. The dome can be easily scaled and modifed by adding customized parts, allowing you to always present your research object in the best light. Depicting the complexity and diversity of biological objects is still an important, but non-trivial task. Despite modern technology, like confocal laser scanning microscopy (CLSM; cf.1–4) or micro computed tomography (µCT; cf.5–8), have enabled a renaissance of morphology 9—photography is still indispensable in many cases. Particularly taxonomy, morphology and systematics studies (cf.10–16) strongly rely on and beneft from expres- sive images of the species in focus. -
Conserving Beneficial Arthropods in Residential Landscapes Conserving Beneficial Arthropods in Residential Landscapes
ConservingConserving BeneficialBeneficial ArthropodsArthropods inin ResidentialResidential LandscapesLandscapes E-1023 Oklahoma Cooperative Extension Service Division of Agricultural Sciences and Natural Resources Oklahoma State University Conserving Beneficial Arthropods in Residential Landscapes Table of Contents Natural Enemies ......................................................................................................2 Predators ..............................................................................................................2 Beetles ..............................................................................................................2 Lady Beetles ...............................................................................................2 Ground Beetles ...........................................................................................3 True Bugs ..........................................................................................................3 Minute Pirate Bugs......................................................................................3 Damsel Bugs ..............................................................................................4 Assassin Bugs ............................................................................................4 Big-Eyed Bugs ............................................................................................5 Lacewings .........................................................................................................6 -
Wildlife Monographs (Issn:0084-0173)
WILDLIFE MONOGRAPHS (ISSN:0084-0173) A Publication of The Wildlife Society H E D F E SOCIETY DISTRIBUTION AND BIOLOGY OF THE SPOTTED OWL IN OREGON by ERIC D. FORSMAN, E. CHARLES MESLOW, AND HOWARD M. WIGHT APRIL 1984 NO. 87 DISTRIBUTION AND BIOLOGY OF THE SPOTTED OWL IN OREGON ERIC D. FORSMAN Cooperative Wildlife Research Unit, Oregon State University, Corvallis, OR 97331 E. CHARLES MESLOW Cooperative Wildlife Research Unit, Oregon State University, Corvallis, OR 97331 HOWARD M. WIGHT Cooperative Wildlife Research Unit, Oregon State University, Corvallis, OR 97331 Abstract: We studied the distribution, habitat, home range characteristics, reproductive biology, diet, vocal- izations. activity patterns, and social behavior of the spotted owl (Sift occidentalis) in Oregon from 1969 through 1980. Spotted owls were located at 636 sites, including 591 (93%) on federal lands. The range included western Oregon and the east slope of the Cascade Range. Most pairs (97.6%) were found in unlogged old-growth forests or in mixed forests of old-growth and mature timber. No owls were found in forests younger than 36 years old. Paired individuals tended to occupy the same areas year after year and use the same nests more than once. Mean nearest neighbor distances were 2.6 km west of the crest of the Cascade Mountains and 3.3 km on the east slope of the Cascades. From 1969 to 1978, the population declined at an average annual rate of 0.8%. The principal cause of site abandonment was timber harvest. Home range areas ranged from 549 to 3,380 ha. Seasonal home ranges averaged largest during fall and winter. -
Studies on Neotropical Fauna and Environment Study on The
This article was downloaded by: [Russian Academy of Sciences] On: 07 March 2014, At: 00:24 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Studies on Neotropical Fauna and Environment Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/nnfe20 Study on the systematic position of Systolosoma breve Solier (Adephaga: Trachypachidae) Based on characters of the thorax Rolf G. Beutel a a Institut für Spezielle Zoologie und Evolutionsbiologie , FSU Jena , Erbertstraße 1, 07743, Jena, Germany Published online: 19 Nov 2008. To cite this article: Rolf G. Beutel (1994) Study on the systematic position of Systolosoma breve Solier (Adephaga: Trachypachidae) Based on characters of the thorax, Studies on Neotropical Fauna and Environment, 29:3, 161-167, DOI: 10.1080/01650529409360928 To link to this article: http://dx.doi.org/10.1080/01650529409360928 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.