Head Structures of Priacma Serrata Leconte (Coleptera, Archostemata

Total Page:16

File Type:pdf, Size:1020Kb

Head Structures of Priacma Serrata Leconte (Coleptera, Archostemata JOURNALOFMORPHOLOGY252:298–314(2002) HeadStructuresofPriacmaserrataLeconte(Coleptera, Archostemata)InferredFromX-rayTomography ThomasHo¨rnschemeyer,1*RolfG.Beutel,2 andFreekPasop3 1Institutfu¨rZoologie&Anthropologie,AbteilungMorphologie&Systematik, D-37073Go¨ttingen,Germany 2Institutfu¨rspezielleZoologieundEvolutionsbiologie,FSUJena,Jena,Germany 3ThermoScientificB.V.,Breda,TheNetherlands ABSTRACTInternalandexternalfeaturesofthehead shapedprotuberancesonthedorsalsideoftheheadis ofPriacmaserratawerestudiedwithX-raymicrotomog- consideredanautapomorphyofCupedidae.Thegalea raphyandwithhistologicalmethods.Thecomparisonof withanarrowstalkandaroundandpubescentdistal bothtechniquesshowsthatX-raytomographyisaprom- galeomereisanotherautapomorphyofthisfamily.Ithas isingnewtechniquefortheinvestigationofinsectanat- probablyevolvedasanadaptationtopollen-feeding.The omy.ThestillsomewhatcoarseresolutionoftheX-ray shapeofthemandibleofCupedidaeisplesiomorphiccom- dataiscompensatedforbyadvantageslikethenonde- paredtowhatisfoundinadultsofOmmatidae.Thever- structiveandartifact-freedataacquisition.TheheadofP. ticalarrangementofapicalteethisanautapomorphyof serrataandotheradultsofArchostemataischaracterized thelatterfamily.Thelateralinsertionoftheantennain bymanyderivedfeatures.MuscularfeaturesofPriacma, PriacmaisagroundplanfeatureofCupedidae.Thedorsal especiallymusclesofthelabiumandpharynx,differ shiftisasynapomorphyofallothercupedidgenera.A stronglyfromwhatisfoundinothergroupsofColeoptera. cladisticanalysisofcharactersoftheheadandadditional Severalcharacterstatesareconsideredasautapomor- dataresultedinthefollowingbranchingpattern:((Crow- phiesofArchostemata:scale-likesurfacestructures,con- soniellaϩ(OmmaϩTetraphalerus))ϩ(Micromalthusϩ strictedneck,stronglyreducedtentorium,andtheplate- (Priacmaϩ(Paracupesϩ(CupesϩTenomergaϩProlixo- like,enlargedprementum.Thescalesprovideaprotecting cupesϩRhipsideigmaϩDistocupesϩ(AdinolepisϩAs- surfacepatternandmayhaveevolvedwithamoreex- cioplaga)))))).J.Morphol.252:298–314,2002. posedlifestyle.Theenlargedprementumformsalid, ©2002Wiley-Liss,Inc. whichclosesthemouthandcoverstheligulawhenitis pulledbackbycontractionoftheunusuallystrong KEYWORDS:micro-CT;head;skeletomuscularsystem; submento-prementalmuscle.Thepresenceoffourcone- X-raytomography;Coleoptera;Archostemata;phylogeny PriacmaserratabelongstoCupedidae,oneoffouror KnowledgeofArchostemataisverylimited,de- fiveextantfamiliesoftheArchostemata.Theearliest spitetheobviousphylogeneticimportanceofthe fossilspeciesofCupedidaeareapproximately250mil- group.Availabledataoninternalmorphologyand lionyearsold(Permian:Sakmarian;Labandeira, biologyarerestrictedtoveryfewrepresentatives.As 1994).Cupedidaeistheoldestextantbeetlefamily farasadultmorphologyisconcerned,Priacmaser- accordingtothepresentlyavailablefossilrecordand rataisthebestinvestigatedspeciesbecausethe ArchostematatheoldestsuborderofColeoptera(Law- malescaneasilybecollectedinlargenumbers(Ed- rence,1999).TheextantArchostemataretainanum- wards,1951;Atkins,1957).Besidesthethoracic berofprimitivecharacters,themostobviousofwhich morphology(Baehr,1975),themalegenitaliawere isthereticulationoftheelytra.Thisfeaturewasal- examinedbyEdwards(1953a,b)andtheflightis readypresentintheoldestknownbeetlesfrom280- alsowelldocumented(Atkins,1958).Nevertheless, million-year-oldsedimentsofthelowerPermian (Ponomarenko,1969;Beutel,1997).Otherprobably ancestralcharactersincludethelargelyexposedpro- pleuraandprothoracictrochantin,therelativelylarge Contractgrantsponsor:DAAD;Contractgrantnumber:D/96/ mesothoraxwithatransversesutureontheventrite, 05967.* andthepresenceofseveralthoracicmusclesthatare absentfromallotherbeetles(Baehr,1975;Beuteland *Correspondenceto:ThomasHo¨rnschemeyer,Institutfu¨rZoologie Haas,2000).Nevertheless,therearealsoderivedchar- &Anthropologie,Abt.Morphologie&Systematik,BerlinerStr.28, acters,especiallyinthemorphologyofthelarvae(Beu- D-37073Go¨ttingen,Germany.E-mail:[email protected] tel,1997)andinthemalegenitalarmatures(Ed- PublishedonlinexxMonth2002in wards,1953a,b;Neboiss,1984),thatallowusto WileyInterScience(www.interscience.wiley.com) identifytheArchostemataasamonophyletictaxon. DOI:10.1002/jmor.1107 ©2002WILEY-LISS,INC. HEAD STRUCTURES OF PRIACMA SERRATA 299 even for this species, considerable information is tion of slices during the cutting process or the ne- wanting. Females of P. serrata are very rare and cessity to align the slices correctly. This makes it their genitalia are yet undescribed. Only the first- relatively easy to reconstruct the X-ray data into a instar larva is known (Ross and Pothecary, 1970). three-dimensional model of the structures of inter- From the publications of Edwards (1951, 1953a,b), est. Further development in the achievable spatial Atkins (1957, 1958), Roth and Pothecary (1970), and resolution now makes it possible to use X-ray tomog- from the personal experience of the authors one can raphy for the study of insect morphology, as is dem- summarize the knowledge of the biology of P. serrata onstrated in the following. as follows: The species has an activity period of approximately 4 weeks each year. This period usu- ally starts in spring or early summer with calm, MATERIALS AND METHODS sunny weather and temperatures above 15°C. Dur- Materials: Fixed Specimens ing these 4 weeks Priacma males are attracted to Priacma serrata LeConte, 1861, from Montana, solutions of sodium hypochlorite and sodium chlor- USA, collected by one of the authors (T.H.). ate and can be collected in large numbers. It is unknown whether these 4 weeks are the pairing season of the species and adult beetles are around Dried Specimens From Museum Collections for a longer time of the year or whether adult beetles Adinolepis youanga (Neboiss, 1960), from Australia, are only present during this period. There seems to Australian National Insect Collection, Austra- be an affinity of Priacma to conifers, because wher- lia. ever Priacma was collected there were conifers (of- Distocupes varians (Lea, 1902), from Australia, Aus- ten Douglas fir) in the vicinity. A direct proof of such tralian National Insect Collection, Australia. an association is still missing. There is no informa- Omma stanleyi (Newman, 1839), from Australia, tion available about the food sources of larvae and Australian National Insect Collection, Austra- adults. lia. Head morphology is also largely unknown, espe- Priacma serrata (LeConte, 1861), from USA, Mu- cially internal features. It was demonstrated in ear- seum of Comparative Zoology, Cambridge, MA, lier studies that head structures are not only of USA; Los Angeles County Natural History Mu- great importance in terms of coordination of the seum, USA; Field Museum of Natural History, central nervous system, sensory perception, and Chicago, IL, USA. food processing, but also provide much phylogenetic Prolixocupes latreillei (Solier, 1894), from Chile, information due to their complexity (e.g., Beutel, Staatliches Museum fu¨ r Tierkunde, Dresden, 1997). Therefore, the main goal of this contribution Germany. is to provide anatomical data on the head of Pri- Prolixocupes lobiceps (LeConte, 1874), from Los An- acma, to compare the findings with characters of geles County Natural History Museum, USA. other archostematan representatives, to offer func- Rhipsideigma cretacaeotincta (Kolbe, 1897), from tional interpretations, and to give a preliminary Tanzania, Africa, Field Museum of Natural His- phylogenetic interpretation. tory, Chicago, IL, USA. To investigate head structures of Priacma serrata, Rhipsideigma lugubris (Fairmaire, 1895), from an innovative technology—X-ray tomography—was Madagascar, Field Museum of Natural History, applied for the first time in insect morphology and Chicago, IL, USA. compared with other techniques. X-ray tomography, Rhipsideigma raffrayi (Faimaire, 1884), from Mada- besides its application for medical purposes, has so gascar, Zoologisches Forschungsinstitut und far mainly been used to investigate bone and tooth Museum Alexander Koenig, Bonn, Germany. structures in vertebrates (Ru¨ egsegger et al., 1996; Tetraphalerus bruchi (Heller, 1913), from Argentina, Bjørndal et al., 1999; Barou et al., 1999). The rea- holotype, Staatliches Museum fu¨r Tierkunde, sons for these restrictions are that mineralized tis- Dresden, Germany. sues give distinctly better X-ray images than soft tissues and that the spatial resolution of the avail- Some of the dry specimens were dissected (Omma able X-ray equipment did not allow the investigation stanleyi, Distocupes varians). Others were used to of smaller organisms. Due to the usage of phase compare the external morphology of head capsule contrast and improvements in the spatial resolution and its appendages. this method could also be used for studies of soft tissues (Beckmann et al., 1999) and very small Methods structures like the inner ear of the mouse (Van Spaendonck et al., 2000). Important advantages of All specimens of Priacma serrata were collected X-ray tomography over other methods are the pos- directly into alcoholic Bouin’s solution (ϭDuboscq- sibility of a nondestructive investigation of internal Brasil) (Romeis, 1989: 97). After 2 days they were structures and the avoidance of preparation arti- transferred to 80% ethanol. The specimens for sec- facts. There are no such problems as the deforma- tioning were softened in Diaphanol (Romeis, 1968: 300 T. HO¨ RNSCHEMEYER ET AL. source and the CCD detector. As the source produces a cone beam of X-rays, magnification is achieved by moving the object towards the X-ray source (Fig. 1). After
Recommended publications
  • A New Genus and Species of Asiocoleidae (Coleoptera) From
    ISRAEL JOURNAL OF ENTOMOLOGY, Vol. 50 (2), pp. 1–9 (21 July 2020) This contribution is published to honor Prof. Vladimir Chikatunov, a scientist, a colleague and a friend, on the occasion of his 80th birthday. The first finding of an asiocoleid beetle (Coleoptera: Asiocoleidae) in the Upper Permian Belmont Insect Beds, Australia, with descriptions of a new genus and species Aleksandr G. Ponomarenko1, Evgeny V. Yan1, Olesya D. Strelnikova1 & Robert G. Beattie2 1A.A. Borissiak Palaeontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia. E-mail: [email protected], [email protected], [email protected] 2The Australian Museum, 1 William Street, Sydney, New South Wales, 2010 Australia. E-mail: [email protected], [email protected] ABSTRACT A new genus and species of Archostematan beetles, Gondvanocoleus chikatunovi n. gen. & sp., is described from an isolated elytron from the Upper Permian Belmont locality in Australia. Gondvanocoleus n. gen. differs from other members of the family Asiocoleidae in having only one row of cells in the middle part of the elytral field 3 and in having unorganized cells not forming rows near the elytral apex. Further relationships of the new genus with other asiocoleids are discussed. The fossil record of the Asiocoleidae is briefly overviewed. KEYWORDS: Coleoptera, Archostemata, Asiocoleidae, beetles, new genus, new species, Permian, Lopingian, Australia, Gondwana, fossil record. РЕЗЮМЕ Новый род и вид жуков-архостемат, Gondvanocoleus chikatunovi n. gen. & sp., описаны по изолированному надкрылью из верхнепермского мес то­ нахождения Бельмонт в Австралии. Gondvanocoleus n. gen. отличается от остальных родов семейства Asiocoleidae присутствием только одного ряда ячей в средней части предшовного поля и не организованных в ряды ячей в апикальной части надкрылья.
    [Show full text]
  • Reticulated Beetles, Family Cupedidae
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. FAMILY CUPEDIDAE RETICULATED BEETLES, FAMILY CUPEDIDAE (CUE-PEH-DIH-DEE) Cupedids are a small and unusual family of primitive beetles with more than 30 species worldwide, two of which are found in eastern North America. Adults and larvae bore into fungus-infested wood beneath the bark of limbs and logs. FAMILY DIAGNOSIS Adult cupedids are slender, parallel- SIMILAR FAMILIES sided, strongly flattened, roughly sculpted, and clothed ■ net-winged beetles (Lycidae) – head not visible in broad, scalelike setae. Head and pronotum narrower from above (p.229) than elytra. Antennae thick, filiform with 11 antennomeres. ■ hispine leaf beetles (Chrysomelidae: Cassidinae) Prothorax distinctly margined or keeled on sides, underside – antennae short, clavate; head narrower than with grooves to receive legs. Elytra broader than prothorax, pronotum (p.429) strongly ridged with square punctures between. Tarsal formula 5-5-5; claws simple. Abdomen with five overlapping COLLECTING NOTES Adult cupedids are found in late ventrites. spring and summer by chopping into old decaying logs and stumps, netted in flight near infested wood, and beaten from dead branches. They are sometimes common at light. FAUNA FOUR SPECIES IN FOUR GENERA (NA); TWO SPECIES IN TWO GENERA (ENA) Cupes capitatus Fabricius (7.0–11.0 mm) is elongate, narrow, bicolored with reddish or golden head and remainder of body grayish black. Adults active late spring and summer, 60 found under bark and on bare trunks of standing dead oaks (Quercus); attracted to light.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Current Classification of the Families of Coleoptera
    The Great Lakes Entomologist Volume 8 Number 3 - Fall 1975 Number 3 - Fall 1975 Article 4 October 1975 Current Classification of the amiliesF of Coleoptera M G. de Viedma University of Madrid M L. Nelson Wayne State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation de Viedma, M G. and Nelson, M L. 1975. "Current Classification of the amiliesF of Coleoptera," The Great Lakes Entomologist, vol 8 (3) Available at: https://scholar.valpo.edu/tgle/vol8/iss3/4 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. de Viedma and Nelson: Current Classification of the Families of Coleoptera THE GREAT LAKES ENTOMOLOGIST CURRENT CLASSIFICATION OF THE FAMILIES OF COLEOPTERA M. G. de viedmal and M. L. els son' Several works on the order Coleoptera have appeared in recent years, some of them creating new superfamilies, others modifying the constitution of these or creating new families, finally others are genera1 revisions of the order. The authors believe that the current classification of this order, incorporating these changes would prove useful. The following outline is based mainly on Crowson (1960, 1964, 1966, 1967, 1971, 1972, 1973) and Crowson and Viedma (1964). For characters used on classification see Viedma (1972) and for family synonyms Abdullah (1969). Major features of this conspectus are the rejection of the two sections of Adephaga (Geadephaga and Hydradephaga), based on Bell (1966) and the new sequence of Heteromera, based mainly on Crowson (1966), with adaptations.
    [Show full text]
  • The Evolutionary History of the Coleoptera
    geosciences Editorial The Evolutionary History of the Coleoptera Alexander G. Kirejtshuk Zoological Institute, Russian Academy of Sciences, Universitetskaya emb. 1, St. Petersburg 199034, Russia; [email protected] or [email protected] Received: 29 January 2020; Accepted: 5 March 2020; Published: 12 March 2020 Abstract: In this Editorial, different aspects of palaeocoleopterological studies and contributions of the issue “The Evolutionary History of the Coleoptera” are discussed. Keywords: classification; problems of taxonomic interpretation of fossils; contributions for studies of palaeoenvironment and faunogenesis “Beetles, like other insects, spread quickly and practically simultaneously (in the geological sense), appearing in different parts of the Earth. The differences in dispersal result not from the difficulty to reach a particular location of the Earth, but because of the difficulty to enter an ecosystem already formed. Thus, the evolutionary potential of beetles is quite high, and the study of their ancient representatives is interesting from many points of view; however, it requires much effort and expertise. Unfortunately, a study of the palaeontology of beetles is a much more complicated task than that of Hymenoptera or Diptera. By the structure of the wing of the latter it is nearly always possible to determine to what large taxon it belongs. For the majority of discoveries of isolated elytra of beetles at the present state of knowledge it is impossible to identify the group to which the beetle with these elytra belongs. However there was a period—the Permian except its very end—when the evolution of elytra was the main evolutionary process in beetles.” Ponomarenko, A.G. Paleontological discoveries of beetles.
    [Show full text]
  • The Evolution and Phylogeny of Beetles
    Darwin, Beetles and Phylogenetics Rolf G. Beutel1 . Frank Friedrich1, 2 . Richard A. B. Leschen3 1) Entomology group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, FSU Jena, 07743 Jena; e-mail: [email protected]; 2) Biozentrum Grindel und Zoologisches Museum, Universität Hamburg, 20144 Hamburg; 3) New Zealand Arthropod Collection, Private Bag 92170, Auckland, NZ Whenever I hear of the capture of rare beetles, I feel like an old warhorse at the sound of a trumpet. Charles R. Darwin Abstract Here we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics and expressed, to his surprise, that the majority of species were small and inconspicuous. Despite his obvious interest in the group he did not get involved in beetle taxonomy and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late 19th and earlier 20th centuries was mainly characterised by the exploration of new character systems (e.g., larval features, wing venation). In the mid 20th century Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution.
    [Show full text]
  • The Head Morphology of Ascioplaga Mimeta (Coleoptera: Archostemata) and the Phylogeny of Archostemata
    Eur. J. Entomol. 103: 409–423, 2006 ISSN 1210-5759 The head morphology of Ascioplaga mimeta (Coleoptera: Archostemata) and the phylogeny of Archostemata THOMAS HÖRNSCHEMEYER1, JÜRGEN GOEBBELS2, GERD WEIDEMANN2, CORNELIUS FABER3 and AXEL HAASE3 1Universität Göttingen, Institut für Zoologie & Anthropologie, Abteilung Morphologie & Systematik, D-37073 Göttingen, Germany; e-mail: [email protected] 2Bundesanstalt für Materialforschung (BAM), Berlin, Germany 3Physikalisches Institut, University of Würzburg, Germany Keywords. Archostemata, Cupedidae, phylogeny, NMR-imaging, skeletomuscular system, micro X-ray computertomography, head morphology Abstract. Internal and external features of the head of Ascioplaga mimeta (Coleoptera: Archostemata) were studied with micro X-ray computertomography (µCT) and nuclear magnetic resonance imaging (NMRI). These methods allowed the reconstruction of the entire internal anatomy from the only available fixed specimen. The mouthparts and their associated musculature are highly derived in many aspects. Their general configuration corresponds to that of Priacma serrata (the only other archostematan studied in comparable detail). However, the mandible-maxilla system of A. mimeta is built as a complex sorting apparatus and shows a distinct specialisation for a specific, but still unknown, food source. The phylogenetic analysis resulted in the identification of a new mono- phylum comprising the genera [Distocupes + (Adinolepis +Ascioplaga)]. The members of this taxon are restricted to the Australian zoogeographic region. The most prominent synapomorphies of these three genera are their derived mouthparts. INTRODUCTION 1831) (Snyder, 1913; Barber & Ellis, 1920), Tenomerga Ascioplaga mimeta Neboiss, 1984 occurs in New Cale- mucida (Chevrolat, 1829) (Fukuda, 1938, 1939), Disto- donia (a French island ca. 1400 km ENE of Brisbane, cupes varians (Lea, 1902) (Neboiss, 1968), P.
    [Show full text]
  • Phylogeny of Endopterygote Insects, the Most Successful Lineage of Living Organisms*
    REVIEW Eur. J. Entomol. 96: 237-253, 1999 ISSN 1210-5759 Phylogeny of endopterygote insects, the most successful lineage of living organisms* N iels P. KRISTENSEN Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark; e-mail: [email protected] Key words. Insecta, Endopterygota, Holometabola, phylogeny, diversification modes, Megaloptera, Raphidioptera, Neuroptera, Coleóptera, Strepsiptera, Díptera, Mecoptera, Siphonaptera, Trichoptera, Lepidoptera, Hymenoptera Abstract. The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an en­ dopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Co­ leóptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Díptera clade is differently interpreted by advo­ cates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (“orders”) are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of “key innovations” promoting evolution­
    [Show full text]
  • Modular, Scalable and Low-Cost LED Dome Illumination System
    www.nature.com/scientificreports OPEN Illuminating nature’s beauty: modular, scalable and low‑cost LED dome illumination system using 3D‑printing technology Fabian Bäumler*, Alexander Koehnsen, Halvor T. Tramsen, Stanislav N. Gorb & Sebastian Büsse Presenting your research in the proper light can be exceptionally challenging. Meanwhile, dome illumination systems became a standard for micro‑ and macrophotography in taxonomy, morphology, systematics and especially important in natural history collections. However, proper illumination systems are either expensive and/or laborious to use. Nowadays, 3D‑printing technology revolutionizes lab‑life and will soon fnd its way into most people’s everyday life. Consequently, fused deposition modelling printers become more and more available, with online services ofering personalized printing options. Here, we present a 3D‑printed, scalable, low‑cost and modular LED illumination dome system for scientifc micro‑ and macrophotography. We provide stereolithography (’.stl’) fles and print settings, as well as a complete list of necessary components required for the construction of three diferently sized domes. Additionally, we included an optional iris diaphragm and a sliding table, to arrange the object of desire inside the dome. The dome can be easily scaled and modifed by adding customized parts, allowing you to always present your research object in the best light. Depicting the complexity and diversity of biological objects is still an important, but non-trivial task. Despite modern technology, like confocal laser scanning microscopy (CLSM; cf.1–4) or micro computed tomography (µCT; cf.5–8), have enabled a renaissance of morphology 9—photography is still indispensable in many cases. Particularly taxonomy, morphology and systematics studies (cf.10–16) strongly rely on and beneft from expres- sive images of the species in focus.
    [Show full text]
  • Wildlife Monographs (Issn:0084-0173)
    WILDLIFE MONOGRAPHS (ISSN:0084-0173) A Publication of The Wildlife Society H E D F E SOCIETY DISTRIBUTION AND BIOLOGY OF THE SPOTTED OWL IN OREGON by ERIC D. FORSMAN, E. CHARLES MESLOW, AND HOWARD M. WIGHT APRIL 1984 NO. 87 DISTRIBUTION AND BIOLOGY OF THE SPOTTED OWL IN OREGON ERIC D. FORSMAN Cooperative Wildlife Research Unit, Oregon State University, Corvallis, OR 97331 E. CHARLES MESLOW Cooperative Wildlife Research Unit, Oregon State University, Corvallis, OR 97331 HOWARD M. WIGHT Cooperative Wildlife Research Unit, Oregon State University, Corvallis, OR 97331 Abstract: We studied the distribution, habitat, home range characteristics, reproductive biology, diet, vocal- izations. activity patterns, and social behavior of the spotted owl (Sift occidentalis) in Oregon from 1969 through 1980. Spotted owls were located at 636 sites, including 591 (93%) on federal lands. The range included western Oregon and the east slope of the Cascade Range. Most pairs (97.6%) were found in unlogged old-growth forests or in mixed forests of old-growth and mature timber. No owls were found in forests younger than 36 years old. Paired individuals tended to occupy the same areas year after year and use the same nests more than once. Mean nearest neighbor distances were 2.6 km west of the crest of the Cascade Mountains and 3.3 km on the east slope of the Cascades. From 1969 to 1978, the population declined at an average annual rate of 0.8%. The principal cause of site abandonment was timber harvest. Home range areas ranged from 549 to 3,380 ha. Seasonal home ranges averaged largest during fall and winter.
    [Show full text]
  • Integrating Natural History Collections and Comparative Genomics to Study Royalsocietypublishing.Org/Journal/Rstb the Genetic Architecture of Convergent Evolution
    Integrating natural history collections and comparative genomics to study royalsocietypublishing.org/journal/rstb the genetic architecture of convergent evolution Review Sangeet Lamichhaney1,2, Daren C. Card1,2,4, Phil Grayson1,2, Joa˜o F. R. Tonini1,2, Gustavo A. Bravo1,2, Kathrin Na¨pflin1,2, Cite this article: Lamichhaney S et al. 2019 1,2 5,6 7 Integrating natural history collections Flavia Termignoni-Garcia , Christopher Torres , Frank Burbrink , and comparative genomics to study Julia A. Clarke5,6, Timothy B. Sackton3 and Scott V. Edwards1,2 the genetic architecture of convergent 1Department of Organismic and Evolutionary Biology, 2Museum of Comparative Zoology, and 3Informatics evolution. Phil. Trans. R. Soc. B 374: 20180248. Group, Harvard University, Cambridge, MA 02138, USA http://dx.doi.org/10.1098/rstb.2018.0248 4Department of Biology, University of Texas Arlington, Arlington, TX 76019, USA 5Department of Biology, and 6Department of Geological Sciences, The University of Texas at Austin, Accepted: 25 February 2019 Austin, MA 78712, USA 7Department of Herpetology, The American Museum of Natural History, New York, NY 10024, USA SL, 0000-0003-4826-0349; DCC, 0000-0002-1629-5726; PG, 0000-0002-3680-2238; One contribution of 16 to a theme issue JFRT, 0000-0002-4730-3805; GAB, 0000-0001-5889-2767; KN, 0000-0002-1088-5282; ‘Convergent evolution in the genomics era: FT-G, 0000-0002-7449-2023; CT, 0000-0002-7013-0762; FB, 0000-0001-6687-8332; new insights and directions’. JAC, 0000-0003-2218-2637; TBS, 0000-0003-1673-9216; SVE, 0000-0003-2535-6217 Evolutionary convergence has been long considered primary evidence of Subject Areas: adaptation driven by natural selection and provides opportunities to explore developmental biology, genomics, evolutionary repeatability and predictability.
    [Show full text]
  • FAMILY: DERODONTIDAE ': J L ^ %
    f A CATALOG OF THE COLEÓPTERA OF AMERICA NORTH OF MEXICO . FAMILY: DERODONTIDAE ': j L ^ % iliiiÉMilliiNAL Digitizing Project ah52965 .^à\ UNITED STATES AGRICULTURE PREPARED BY ((Uyj) DEPARTMENT OF HANDBOOK AGRICULTURAL ^^^f^ AGRICULTURE NUMBER 529-65 RESEARCH SERVICE FAMILIES OF COLEóPTERA IN AMERICA NORTH OF MEXICO Fascicle ' Family Year issued Fascicle ' Family Year issued Fascicle ' Family Year issued I Cupedidae 1979 45 Cheionariidae 98 Endomychidae 1986 2 Micromalthidae 1982 46 Callirhipidae 100 Lathridiidae 3 Carabidae 47 Hetcroceridae 1978 102 Biphyllidae 4 Rhysodidae 1985 48 Limnichidae 1986 103-_j_Byturidae 5 Amphizoidae 1984 49 Dryopidae 1983 104 Mycetophagidae 6 Haliplidae 50 Elmidae 1983 105 Ciidae 1982 8 Noteridae 51 Buprestidae 107 Prostomidae 9 Dytiscidae ^___-^. 52---_Cebnonidae 10 Gyrinidae 53 ^Elateridae 109 Colydiidae 13 Sphaeriidae 54 Throscidae 110 Monomxnatidae 14 Hydroscaphidae 55 Cerophytidae 111 Cephaloidae 15 Hydraenidae 56 Perothopidae 112 Zopheridae 16 Hydrophilidae 57—-Eucnemidae 115 Tenebrionidae 17 Georyssidae 58 Telegeusidae 116 Alleculidae 18 Sphaeritidae - _ _ _ _ 61_^--Phengodidae 117 Lagriidae 20 Histeridae . 62-_--Lampyridae 118 Salpingidae 21 Ptiliidae -_,. 63-—Cantharidae 119 Mycteridae 22 Limulodidae 64 Lycidae 120 Pyrochroidae 1983 23 l>asycendae ..^ 65 Derodontidae 1989 121 Othniidae 24 Micropeplidae 1984 66 Nosodendndae 122 Inopeplidae 25 ---Leptinidae 67 Dermestidae 123 Oedemeridae 26 Leiodidae 69 Ptinidae 124 Melandryidae 27 Scydmaenidae 70 Anobiidae 1982 125 Mordellidae 1986 28 Silphidae 71
    [Show full text]