Erwin and Sims 1984 Qev20n4 351 466 CC Released.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Erwin and Sims 1984 Qev20n4 351 466 CC Released.Pdf This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. I • .fT »5 3 ,:s CARABID BEETLES OF THE WEST INDIES (INSECTS: COLEOPTERA): A SYNOPSIS OF THE GENERA AND CHECKLISTS OF TRIBES OF CARABOIDEA, AND OF THE WEST INDIAN SPECIES Terry L. Erwin and Linda L. Sims Department of Entomology Smithsonian Institution Washington, D.C. 20560 U. S. A. Quaestiones Entomologicae 20:351-466 1984 ABSTRACT The fauna of the Greater Antilles was extensively sampled and studied by P.J. Darlington, Jr., beginning with his early field trips there in 1934 and ending with his paper on tropical island carabids in 1970. The Lesser Antilles and Bahamas have had far less attention; most islands have not yet been sampled. The following tribes are recorded within the geographic area covered by the present study, which includes the Greater and Lesser Antilles, Bahamas, and most smaller islands not on the continental shelf: Carabini; Megacephalini; "Cicindelini; Enceladini; Pseudomorphini; Scaritini; "Clivinini; Ozaenini; Brachinini; 'Rhysodini; Trechini; Pogonini; "Bembidiini; Morionini; *Pterostichini; Panagaeini; Callistini; Oodini; Licinini; 'Harpalini; Ctenodactylini; Perigonini; Lachnophorini; Cyclosomini; Masoreini; Pentagonicini; Odacanthini; 'Lebiini; *Zuphiini; Galeritini. The tribes whose names are marked with an asterisk each have more than a dozen species thus far recorded from the West Indies. The tribes which occur in this area are also extensively distributed in the world, and are well represented in the Neotropical Region. In addition, a few African taxa or taxa whose ancestors came from Africa already have been discovered and possibly more will be found. Absence of arboreal Agrina, Eucheila and Inna, and the myrmecophilous Helluonini from the islands is notable. Since the fauna needs much study and new groups are likely to be discovered, a key to carabid adults of the entire Neotropical Region and adjacent areas is provided. Keys are provided to genera of all tribes known to occur on the West Indies and these genera are subsequently annotated. A complete checklist and bibliography are given which cover published accounts and some annecdotal information provided by those now engaged in revisions of the West Indian carabids. SUMMARIO La fauna de las Antillas Mayores ha sido estudiada y muestreada ampliamenta por P.J. Darlington, Jr., desde sus primeros viajes de campo en 1934 hasta su Ultima publicacibn sobre carabidos en las islas tropicales en 1970. Las Antillas Menores y las Bahamas no han sido mayormente tomadas en cuenta, por que gran parte de las islas no han sido aUn muestreadas. Las siguientes tribus estan registradas dentro del area geografica cubierta por este estudio, que incluye las Antillas Mayores y Menores, las Bahamas y la mayor parte de las pequehas islas oceanicas: Carabini; Megacephalini; *Cicindelini; Enceladini; Pseudomorphini; Scaritini; *Clivinini; Ozaenini; Brachinini; * Rhysodini; Trechini; Pogonini; 'Bembidiini; Morionini; "Pterostichini; Panagaeini; Callistini; Oodini; Licinini; "Harpalini; 352 Erwin and Sims Ctenodactylini; Perigonini; Lachnophorini; Cyclosomini; Masoreini; Pentagonicini; Odacanthini; 'Lebiini; 'Zuphiini; Galeritini. Las tribus cuyos nombres estan marcados con un asterisco tienen hasta ahora registradas mas de doce especies cada una. Las tribus que aparecen en esta area tambien estan ampliamente distribuidas en el mundo y muy bien representadas en la regidn Neotropical. Ademas, alguna taxa Africana o taxa cuyos ancestros vienen de Africa han sido ya descubiertos y posiblemente mas seran hayados en el futuro. La ausencia de Agrina, Eucheila e Inna arbbreos y de myrmecophilous Helluonini en las islas es resaltante. Ya que la fauna necesita mas estudios y que nuevos grupos probablemente seran descubiertos, se suministra una tabla dicotbmica para carabidos adultos en toda la regidn neotropical y areas adyacentes. Tambien se proporcionan otras tablas para los gineros de todas las tribus que se conocen en las Jndias Occidentales y que han sido posteriormente anotados. Se incluye ademas un listado, una bibliografta y algunas referencias anecdbticas e informes publicados que han sido proporcionados por aquellos actualmente ocupados en las revisiones de los carabidos de las Jndias Occidentales. Table of Contents Introduction 352 Classification and Tribes of Terrestrial Caraboidea 354 Key to Tribes and Some Genera of Neotropical Carabidae 357 Subfamily Carabinae 364 Subfamily Scaritinae 368 Subfamily Paussinae 373 Subfamily Psydrinae 376 Subfamily Harpalinae 381 Acknowledgements 399 Literature Cited 400 Appendix A: Checklist of the Species of the West Indies 422 Appendix B: Current Revisors of West Indian Genera 448 Index to Names of Taxa 451 INTRODUCTION The fauna of the Greater Antilles was extensively sampled and studied by Darlington (1934, 1935a and b, 1937a and b, 1939, 1941, 1947, 1953, and 1970) although many of the higher mountains remain untouched by carabid collectors. The Lesser Antilles and Bahamas have had far less attention; most islands have not yet been adequately sampled and some not even visited. The following 29 tribes are recorded within the geographic area covered by the study, which includes the Greater and Lesser Antilles, Bahamas, and most smaller islands not on the continental shelf (see Fig. 1): Carabini; Megacephalini; 'Cicindelini; Enceladini; Pseudomorphini; Scaritini; 'Clivinini; Ozaenini; Brachinini; 'Rhysodini; Trechini; Pogonini; *Bembidiini; Morionini; *Pterostichini; Panagaeini; Callistini; Oodini; Licinini; "Harpalini; Ctenodactylini; Perigonini; Lachnophorini; Cyclosomini; Masoreini; Pentagonicini; Odacanthini; 'Lebiini; *Zuphiini; Galeritini. The tribes whose names are marked with an asterisk each have more than a dozen species thus far recorded from the West Indies. The tribes which occur in this area are also extensively distributed in the world, and are well represented in the Neotropical Region. In addition, a few African lineages already have been discovered and possibly more will be found. Absence of arboreal Agrina, Eucheila and Inna, other arboreal lebiines, and the myrmecophilous Helluonini from the islands is notable. The purpose of the present paper is to provide a foundation, that is keys, up-to-date checklist, and bibliography for those engaged in generic revisions of the West Indies fauna. Carabid Beetles of the West Indies Geographic area covered by this paper and the West Indies Carabid Beetle Project; includes all the Greater and Lesser Antilles, Bahamas, and most smaller islands of the Caribbean not on the continental shelf. Quaest.Ent., 1984,20(4) 354 Erwin and Sims These combined revisions will then provide the basis for a handbook of the fauna that will be dedicated to Philip J. Darlington Jr., who in 1934, stated that someday he wished to revise the West Indian carabid fauna when enough material became available. We hope that the present literature condensation will result in enhancing existing collections of West Indian ground beetles and that these will find their way to the generic revisors listed in Appendix B. Since the fauna needs much study and new groups are likely to be discovered, a key to carabid adults of the entire Neotropical Region and adjacent areas is provided. Keys are provided to genera of all tribes known to occur on the West Indies and these genera are subsequently annotated. A complete checklist and bibliography are given which cover all published accounts and we provide some anecdotal information provided by those now engaged in revisions of the West Indian carabids. The classification of terrestrial Caraboidea provided herein is based on that given by Erwin (1984). Keys and generic annotations benefited greatly from Reichardt (1977). CLASSIFICATION AND TRIBES OF TERRESTRIAL CARABOIDEA Names in bold face are those of tribes represented in the West Indies SUPERFAMILY CARABOIDEA I. Family Trachypachidae 01. Tribe Trachypachini 02. Tribe Systolosomini II. Family Carabidae Division Nebriiformes A. Subfamily Carabinae a. Supertribe Nebriitae 01. Tribe Nebriini 02. Tribe Notiokasini 03. Tribe Opisthiini 04. Tribe Cicindisini 05. Tribe Notiophilini b. Supertribe Loriceritae 06. Tribe Loricerini c. Supertribe Carabitae 07. Tribe Carabmi 08. Tribe Ceroglossini 09. Tribe Pamborini 10. Tribe Cychrini d. Supertribe Cicindelitae 11. Tribe Collyrini 12. Tribe Megacephalini 13. Tribe Ctenostomatini 14. Tribe Mantichorini 15. Tribe Cicindelini e. Supertribe Omophronitae 16. Tribe Omophronini Carabid Beetles of the West Indies Division Loxomeriformes B. Subfamily Scaritinae f. Supertribe Migadopitae 17. Tribe Amarotypini 18. Tribe Migadopini g. Supertribe Elaphritae 19. Tribe Elaphrini h. Supertribe Promecognathitae 20. Tribe Promecognathini i. Supertribe Siagonitae 21. Tribe Enceladini 22. Tribe Siagonini j. Supertribe Hiletitae 23. Tribe Hiletini k. Supertribe Pseudomorphitae 24. Tribe Pseudomorphini 1. Supertribe Scarititae 25. Tribe Cnemacanthini 26. Tribe Scaritini 27. Tribe Clivinini C. Subfamily Paussinae m. Supertribe Metriitae 28. Tribe Metriini n. Supertribe Paussitae 29. Tribe Nototylini 30. Tribe Mystropomini 31. Tribe Ozaenini 32. Tribe Protopaussini 33. Tribe Paussini o. Supertribe Brachinitae 34. Tribe Crepidogastrini 35. Tribe Brachinini Division Melaneiformes D. Subfamily
Recommended publications
  • Checklist of the Coleoptera of New Brunswick, Canada
    A peer-reviewed open-access journal ZooKeys 573: 387–512 (2016)Checklist of the Coleoptera of New Brunswick, Canada 387 doi: 10.3897/zookeys.573.8022 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research Checklist of the Coleoptera of New Brunswick, Canada Reginald P. Webster1 1 24 Mill Stream Drive, Charters Settlement, NB, Canada E3C 1X1 Corresponding author: Reginald P. Webster ([email protected]) Academic editor: P. Bouchard | Received 3 February 2016 | Accepted 29 February 2016 | Published 24 March 2016 http://zoobank.org/34473062-17C2-4122-8109-3F4D47BB5699 Citation: Webster RP (2016) Checklist of the Coleoptera of New Brunswick, Canada. In: Webster RP, Bouchard P, Klimaszewski J (Eds) The Coleoptera of New Brunswick and Canada: providing baseline biodiversity and natural history data. ZooKeys 573: 387–512. doi: 10.3897/zookeys.573.8022 Abstract All 3,062 species of Coleoptera from 92 families known to occur in New Brunswick, Canada, are re- corded, along with their author(s) and year of publication using the most recent classification framework. Adventive and Holarctic species are indicated. There are 366 adventive species in the province, 12.0% of the total fauna. Keywords Checklist, Coleoptera, New Brunswick, Canada Introduction The first checklist of the beetles of Canada by Bousquet (1991) listed 1,365 species from the province of New Brunswick, Canada. Since that publication, many species have been added to the faunal list of the province, primarily from increased collection efforts and
    [Show full text]
  • LBB 0048 2 1255-1294.Pdf
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Linzer biologische Beiträge Jahr/Year: 2016 Band/Volume: 0048_2 Autor(en)/Author(s): Jaeger Bernd, Kataev Boris M., Wrase David W. Artikel/Article: New synonyms, and first and interesting records of certain species of the subtribe Stenolophina from the Palaearctic, Oriental and Afrotropical regions (Coleoptera, Carabidae, Harpalini, Stenolophina) 1255-1294 download www.zobodat.at Linzer biol. Beitr. 48/2 1255-1294 19.12.2016 New synonyms, and first and interesting records of certain species of the subtribe Stenolophina from the Palaearctic, Oriental and Afrotropical regions (Coleoptera, Carabidae, Harpalini, Stenolophina) Bernd JAEGER, Boris M. KATAEV & David W. WRASE Abstract: Anthracus descarpentriesi JEANNEL, 1948 is considered a junior synonym of Anthracus angusticollis (PÉRINGUEY, 1908), Dicheirotrichus punicus aegyptiacus SCHATZMAYR, 1936 is treated as a junior synonym of Dicheirotrichus (Pelagophilus) punicus BEDEL, 1899, and Stenolophus narentinus J. MÜLLER, 1916 [previously the authorship of Stenolophus narentinus was erroneously attributed to DROVENIK & PEKS (1999)] is considered a junior synonym of Stenolophus (Stenolophus) proximus DEJEAN, 1829. For Psychristus (Psychristus) dentatus JAEGER, 2009 male characters are described and figured for the first time. First or additional distribution data are provided for: Acupalpus (Acupalpus) exiguus DEJEAN, 1929: first record for the Turkish province of Kars. Acupalpus (Acupalpus) flavicollis (STURM, 1825): first record for Albania. Acupalpus (Acupalpus) laferi KATAEV & JAEGER, 1997: first records for the Chinese provinces of Gansu and Heilongjiang. Acupalpus (Acupalpus) maculatus (SCHAUM, 1960): first record for Tadzhikistan. Acupalpus (Acupalpus) planicollis (SCHAUM, 1857): first detailed record for Italy, Triest, additional records for Greece.
    [Show full text]
  • Terry L. Erwin (1940–2020): Un Científico Muy Agra-Dable
    Received: 4 June 2020 | Accepted: 9 June 2020 DOI: 10.1111/btp.12828 COMMENTARY REMEMBRANCE: Terry L. Erwin (1940–2020): Un científico muy Agra-dable Carlos García-Robledo1 | Erin K. Kuprewicz1 | W. John Kress2 1Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 2National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Correspondence: Carlos García-Robledo, Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA. Email: [email protected] It is with a profound sadness that we acknowledge the passing of the past 10 years, Terry has performed most of his fieldwork in the ineffable Terry L. Erwin on 11 May 2020. Along with being a Yasuní National Park, Ecuador, where he worked every summer until true giant in the fields of entomology and biodiversity science, Terry last year. was a steadfast colleague, an unsurpassed curator of specimens and If you asked Terry to classify himself, he would tell you that he information, an indefatigable mentor, and most of all a dear friend. was a carabidologist: an entomologist who studies the taxonomy Terry was a powerhouse in the field of biodiversity science, but he of a particularly charismatic and beautiful group of predatory bee- was also a very “nice” (= “agradable” in Spanish) scientist who emitted tles (specializing even further on the genus Agra). However, if you a playfulness that belied his extensive knowledge and deep under- asked Terry what he thought of as his most significant contribution
    [Show full text]
  • Ground Beetle Assemblages on Illinois Algific Slopes: a Rare Habitat Threatened by Climate Change
    Ground Beetle assemblages on Illinois algific slopes: a rare habitat threatened by climate change by: Steven J. Taylor, Ph.D. Alan D. Yanahan Illinois Natural History Survey Department of Entomology University of Illinois at Urbana-Champaign 320 Morrill Hall 1816 South Oak Street University of Illinois at Urbana-Champaign Champaign, IL 61820 505 S. Goodwin Ave [email protected] Urbana, IL 61801 report submitted to: Illinois Department of Natural Resources Office of Resource Conservation, Federal Aid / Special Funds Section One Natural Resources Way Springfield, Illinois 62702-1271 Fund Title: 375 IDNR 12-016W I INHS Technical Report 2013 (01) 5 January 2013 Prairie Research Institute, University of Illinois at Urbana Champaign William Shilts, Executive Director Illinois Natural History Survey Brian D. Anderson, Director 1816 South Oak Street Champaign, IL 61820 217-333-6830 Ground Beetle assemblages on Illinois algific slopes: a rare habitat threatened by climate change Steven J. Taylor & Alan D. Yanahan University of Illinois at Urbana-Champaign During the Pleistocene, glacial advances left a small gap in the northwestern corner of Illinois, southwestern Wisconsin, and northeastern Iowa, which were never covered by the advancing Pleistocene glaciers (Taylor et al. 2009, p. 8, fig. 2.2). This is the Driftless Area – and it is one of Illinois’ most unique natural regions, comprising little more than 1% of the state. Illinois’ Driftless Area harbors more than 30 threatened or endangered plant species, and several unique habitat types. Among these habitats are talus, or scree, slopes, some of which retain ice throughout the year. The talus slopes that retain ice through the summer, and thus form a habitat which rarely exceeds 50 °F, even when the surrounding air temperature is in the 90’s °F, are known as “algific slopes.” While there are numerous examples of algific slopes in Iowa and Wisconsin, this habitat is very rare in Illinois (fewer than ten truly algific sites are known in the state).
    [Show full text]
  • Manual De Identificação De Invertebrados Cavernícolas
    MINISTÉRIO DO MEIO AMIENTE INSTITUTO BRASILEIRO DO MEIO AMBIENTE E DOS RECURSOS NATURAIS RENOVÁVEIS DIRETORIA DE ECOSSISTEMAS CENTRO NACIONAL DE ESTUDO, PROTEÇÃO E MANEJO DE CAVERNAS SCEN Av. L4 Norte, Ed Sede do CECAV, CEP.: 70818-900 Telefones: (61) 3316.1175/3316.1572 FAX.: (61) 3223.6750 Guia geral de identificação de invertebrados encontrados em cavernas no Brasil Produto 6 CONSULTOR: Franciane Jordão da Silva CONTRATO Nº 2006/000347 TERMO DE REFERÊNCIA Nº 119708 Novembro de 2007 MINISTÉRIO DO MEIO AMIENTE INSTITUTO BRASILEIRO DO MEIO AMBIENTE E DOS RECURSOS NATURAIS RENOVÁVEIS DIRETORIA DE ECOSSISTEMAS CENTRO NACIONAL DE ESTUDO, PROTEÇÃO E MANEJO DE CAVERNAS SCEN Av. L4 Norte, Ed Sede do CECAV, CEP.: 70818-900 Telefones: (61) 3316.1175/3316.1572 FAX.: (61) 3223.6750 1. Apresentação O presente trabalho traz informações a respeito dos animais invertebrados, com destaque para aqueles que habitam o ambiente cavernícola. Sem qualquer pretensão de esgotar um assunto tão vasto, um dos objetivos principais deste guia básico de identificação é apresentar e caracterizar esse grande grupo taxonômico de maneira didática e objetiva. Este guia de identificação foi elaborado para auxiliar os técnicos e profissionais de várias áreas de conhecimento nos trabalhos de campo e nas vistorias técnicas realizadas pelo Ibama. É preciso esclarecer que este guia não pretende formar “especialista”, mesmo porque para tanto seriam necessários muitos anos de dedicação e aprendizado contínuo. Longe desse intuito, pretende- se apenas que este trabalho sirva para despertar o interesse quanto à conservação dos invertebrados de cavernas (meio hipógeo) e também daqueles que vivem no ambiente externo (meio epígeo).
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • Quaderni Del Museo Civico Di Storia Naturale Di Ferrara
    ISSN 2283-6918 Quaderni del Museo Civico di Storia Naturale di Ferrara Anno 2018 • Volume 6 Q 6 Quaderni del Museo Civico di Storia Naturale di Ferrara Periodico annuale ISSN. 2283-6918 Editor: STEFA N O MAZZOTT I Associate Editors: CARLA CORAZZA , EM A N UELA CAR I A ni , EN R ic O TREV is A ni Museo Civico di Storia Naturale di Ferrara, Italia Comitato scientifico / Advisory board CE S ARE AN DREA PA P AZZO ni FI L ipp O Picc OL I Università di Modena Università di Ferrara CO S TA N ZA BO N AD im A N MAURO PELL I ZZAR I Università di Ferrara Ferrara ALE ss A N DRO Min ELL I LU ci O BO N ATO Università di Padova Università di Padova MAURO FA S OLA Mic HELE Mis TR I Università di Pavia Università di Ferrara CARLO FERRAR I VALER I A LE nci O ni Università di Bologna Museo delle Scienze di Trento PI ETRO BRA N D M AYR CORRADO BATT is T I Università della Calabria Università Roma Tre MAR C O BOLOG N A Nic KLA S JA nss O N Università di Roma Tre Linköping University, Sweden IRE N EO FERRAR I Università di Parma In copertina: Fusto fiorale di tornasole comune (Chrozophora tintoria), foto di Nicola Merloni; sezione sottile di Micrite a foraminiferi planctonici del Cretacico superiore (Maastrichtiano), foto di Enrico Trevisani; fiore di digitale purpurea (Digitalis purpurea), foto di Paolo Cortesi; cardo dei lanaioli (Dipsacus fullonum), foto di Paolo Cortesi; ala di macaone (Papilio machaon), foto di Paolo Cortesi; geco comune o tarantola (Tarentola mauritanica), foto di Maurizio Bonora; occhio della sfinge del gallio (Macroglossum stellatarum), foto di Nicola Merloni; bruco della farfalla Calliteara pudibonda, foto di Maurizio Bonora; piumaggio di pernice dei bambù cinese (Bambusicola toracica), foto dell’archivio del Museo Civico di Lentate sul Seveso (Monza).
    [Show full text]
  • From Characters of the Female Reproductive Tract
    Phylogeny and Classification of Caraboidea Mus. reg. Sci. nat. Torino, 1998: XX LCE. (1996, Firenze, Italy) 107-170 James K. LIEBHERR and Kipling W. WILL* Inferring phylogenetic relationships within Carabidae (Insecta, Coleoptera) from characters of the female reproductive tract ABSTRACT Characters of the female reproductive tract, ovipositor, and abdomen are analyzed using cladi­ stic parsimony for a comprehensive representation of carabid beetle tribes. The resulting cladogram is rooted at the family Trachypachidae. No characters of the female reproductive tract define the Carabidae as monophyletic. The Carabidac exhibit a fundamental dichotomy, with the isochaete tri­ bes Metriini and Paussini forming the adelphotaxon to the Anisochaeta, which includes Gehringiini and Rhysodini, along with the other groups considered member taxa in Jeannel's classification. Monophyly of Isochaeta is supported by the groundplan presence of a securiform helminthoid scle­ rite at the spermathecal base, and a rod-like, elongate laterotergite IX leading to the explosion cham­ ber of the pygidial defense glands. Monophyly of the Anisochaeta is supported by the derived divi­ sion of gonocoxa IX into a basal and apical portion. Within Anisochaeta, the evolution of a secon­ dary spermatheca-2, and loss ofthe primary spermathcca-I has occurred in one lineage including the Gehringiini, Notiokasiini, Elaphrini, Nebriini, Opisthiini, Notiophilini, and Omophronini. This evo­ lutionary replacement is demonstrated by the possession of both spermatheca-like structures in Gehringia olympica Darlington and Omophron variegatum (Olivier). The adelphotaxon to this sper­ matheca-2 clade comprises a basal rhysodine grade consisting of Clivinini, Promecognathini, Amarotypini, Apotomini, Melaenini, Cymbionotini, and Rhysodini. The Rhysodini and Clivinini both exhibit a highly modified laterotergite IX; long and thin, with or without a clavate lateral region.
    [Show full text]
  • Abundance and Diversity of Ground-Dwelling Arthropods of Pest Management Importance in Commercial Bt and Non-Bt Cotton Fields
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2007 Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields J. B. Torres Universidade Federal Rural de Pernarnbuco, [email protected] J. R. Ruberson University of Georgia Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Torres, J. B. and Ruberson, J. R., "Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields" (2007). Faculty Publications: Department of Entomology. 762. https://digitalcommons.unl.edu/entomologyfacpub/762 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Annals of Applied Biology ISSN 0003-4746 RESEARCH ARTICLE Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields J.B. Torres1,2 & J.R. Ruberson2 1 Departmento de Agronomia – Entomologia, Universidade Federal Rural de Pernambuco, Dois Irma˜ os, Recife, Pernambuco, Brazil 2 Department of Entomology, University of Georgia, Tifton, GA, USA Keywords Abstract Carabidae; Cicindelinae; Falconia gracilis; genetically modified cotton; Labiduridae; The modified population dynamics of pests targeted by the Cry1Ac toxin in predatory heteropterans; Staphylinidae.
    [Show full text]
  • Coleoptera: Carabidae) Diversity
    VEGETATIVE COMMUNITIES AS INDICATORS OF GROUND BEETLE (COLEOPTERA: CARABIDAE) DIVERSITY BY ALAN D. YANAHAN THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2013 Urbana, Illinois Master’s Committee: Dr. Steven J. Taylor, Chair, Director of Research Adjunct Assistant Professor Sam W. Heads Associate Professor Andrew V. Suarez ABSTRACT Formally assessing biodiversity can be a daunting if not impossible task. Subsequently, specific taxa are often chosen as indicators of patterns of diversity as a whole. Mapping the locations of indicator taxa can inform conservation planning by identifying land units for management strategies. For this approach to be successful, though, land units must be effective spatial representations of the species assemblages present on the landscape. In this study, I determined whether land units classified by vegetative communities predicted the community structure of a diverse group of invertebrates—the ground beetles (Coleoptera: Carabidae). Specifically, that (1) land units of the same classification contained similar carabid species assemblages and that (2) differences in species structure were correlated with variation in land unit characteristics, including canopy and ground cover, vegetation structure, tree density, leaf litter depth, and soil moisture. The study site, the Braidwood Dunes and Savanna Nature Preserve in Will County, Illinois is a mosaic of differing land units. Beetles were sampled continuously via pitfall trapping across an entire active season from 2011–2012. Land unit characteristics were measured in July 2012. Nonmetric multidimensional scaling (NMDS) ordinated the land units by their carabid assemblages into five ecologically meaningful clusters: disturbed, marsh, prairie, restoration, and savanna.
    [Show full text]
  • Vegetation Cover Drives Arthropod Communities in Mediterranean/Subtropical Green Roof Habitats
    sustainability Article Vegetation Cover Drives Arthropod Communities in Mediterranean/Subtropical Green Roof Habitats Ibrahim N. A. Salman * and Leon Blaustein Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; [email protected] * Correspondence: [email protected] Received: 24 October 2018; Accepted: 13 November 2018; Published: 15 November 2018 Abstract: Worldwide, urban areas are expanding both in size and number, which results in a decline in habitats suitable for urban flora and fauna. The construction of urban green features, such as green roofs, may provide suitable habitat patches for many species in urban areas. On green roofs, two approaches have been used to select plants—i.e., matching similar habitat to green roofs (habitat template approach) or identifying plants with suitable traits (plant trait approach). While both approaches may result in suitable habitats for arthropods, how arthropods respond to different combinations of plants is an open question. The aim of this study was to investigate how the structural complexity of different plant forms can affect the abundance and richness of arthropods on green roofs. The experimental design crossed the presence and absence of annuals with three Sedum sediforme (Jacq.) Pau (common name: stonecrops) treatments—i.e., uniformly disrupted Sedum, clumped disrupted Sedum, and no Sedum. We hypothesized that an increased structural diversity due to the coexistence of different life forms of plants on roofs is positively related to the abundance and richness of arthropods. We found that arthropod abundance and richness were positively associated with the percent of vegetation cover and negatively associated with substrate temperature.
    [Show full text]
  • Your Name Here
    RELATIONSHIPS BETWEEN DEAD WOOD AND ARTHROPODS IN THE SOUTHEASTERN UNITED STATES by MICHAEL DARRAGH ULYSHEN (Under the Direction of James L. Hanula) ABSTRACT The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, ground- dwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.
    [Show full text]