Press Release
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orbital Debris Program Office Figure 1
National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 13, Issue 1 January 2009 Inside... New Debris Seen from Decommissioned Fengyun-1C Debris: Two Years Later 2 Satellite with Nuclear Power Source The ESA’s ATV-1 Reentry Event 3 A 21-year-old satellite containing a dormant According to Russian reports, the nuclear reactors nuclear reactor was the source of an unexpected on Cosmos 1818 and Cosmos 1867 functioned for Two New Microsatellite debris cloud in early July 2008. Launched by the approximately 5 and 11 months, respectively. For Impact Tests 4 former Soviet Union in February 1987, Cosmos the next two decades, the two inactive spacecraft 1818 (International Designator 1987-011A, circled the Earth without significant incident. Review of Different U.S. Satellite Number 17369) was the first of two Following the fragmentation event on or about Solar Cycle 24 vehicles designed to test a new, more advanced 4 July 2008, the U.S. Space Surveillance Network Predictions 7 nuclear power supply in low Earth orbit. Dozens was able to produce orbital data on 30 small debris of small particles were released during the still- (Figure 2). The majority of these debris were ejected Don Kessler Wins unexplained debris generation event. in a posigrade direction with velocities of less Space Safety Pioneer Cosmos 1818 and its sister spacecraft, than 15 meters per second, suggesting a relatively Award 8 Cosmos 1867 (Figure 1), carried a thermionic low energy event. From radar detections, a larger nuclear power supply, in contrast to the simpler, number of very small debris appear to have also Abstracts from the thermoelectric nuclear device which provided been released, but routine tracking of these debris NASA OD Program energy to the well-known RORSATs (Radar Ocean has proven difficult. -
Ariane-DP GB VA209 ASTRA 2F & GSAT-10.Indd
A DUAL LAUNCH FOR DIRECT BROADCAST AND COMMUNICATIONS SERVICES Arianespace will orbit two satellites on its fifth Ariane 5 launch of the year: ASTRA 2F, which mainly provides direct-to-home (DTH) broadcast services for the Luxembourg-based operator SES, and the GSAT-10 communications satellite for the Indian Space Research Organization, ISRO. The choice of Arianespace by the world’s leading space communications operators and manufacturers is clear international recognition of the company’s excellence in launch services. Based on its proven reliability and availability, Arianespace continues to confirm its position as the world’s benchmark launch system. Ariane 5 is the only commercial satellite launcher now on the market capable of simultaneously launching two payloads and handling a complete range of missions, from launches of commercial satellites into geostationary orbit, to dedicated launches into special orbits. Arianespace and SES have developed an exceptional relationship of mutual trust over more than 20 years. ASTRA 2F will be the 36th satellite from the SES group (Euronext Paris and Luxembourg Bourse: SESG) to use an Ariane launcher. SES operates the leading direct-to-home (DTH) TV broadcast system in Europe, based on its Astra satellites, serving more than 135 million households via DTH and cable networks. Built by Astrium using a Eurostar E3000 platform, ASTRA 2F will weigh 6,000 kg at launch. Fitted with active Ku- and Ka-band transponders, ASTRA 2F will be positioned at 28.2 degrees East. It will deliver new-generation DTH TV broadcast services to Europe, the Middle East and Africa, and offers a design life of about 15 years. -
NEW FRONTIERS Annual Report 2017 Worldreginfo - 4245Ca48-E355-44B8-9Afc-76729Ab4a35e Worldreginfo - 4245Ca48-E355-44B8-9Afc-76729Ab4a35e CONTENTS
NEW FRONTIERS Annual Report 2017 WorldReginfo - 4245ca48-e355-44b8-9afc-76729ab4a35e WorldReginfo - 4245ca48-e355-44b8-9afc-76729ab4a35e CONTENTS SES AT A GLANCE 4 - Introduction 5 - SES Video in Numbers 6 - SES Video – Market Description 8 - SES Networks – Market Description 9 - SES Networks in Numbers 10 - Company Structure 12 - Launch Manifest 13 - Network Map 14 2017 IN REVIEW 16 - Letter from the Chairman of the Board - Romain Bausch 17 - Letter from the President and CEO – Karim Michel Sabbagh 21 - Financial Highlights 24 - SES Video in 2017 25 - SES Networks in 2017 27 - SES Innovation in 2017 30 CORPORATE GOVERNANCE 32 Corporate Social Responsibility (CSR) 58 FINANCIAL REVIEW BY MANAGEMENT 62 CONSOLIDATED FINANCIAL STATEMENTS 70 SES S.A. ANNUAL ACCOUNTS 138 SES Annual Report 2017 3 WorldReginfo - 4245ca48-e355-44b8-9afc-76729ab4a35e SES AT A GLANCE WorldReginfo - 4245ca48-e355-44b8-9afc-76729ab4a35e INTRODUCTION SES supplies the power of connection everywhere on the globe - shaping experiences and opportunities for countless people, businesses, and organisations. Our reliable satellite and ground communications solutions deliver both video distribution services and network connectivity to urban centres and remote villages across the world. Innovation shapes the company we are, and our pursuit provide unrivalled convenience, low cost, low latency and of excellence made us the first to deliver a differentiated high reliability for customers. We go the extra mile, also and scalable GEO-MEO offering worldwide, with more delivering our network as a managed service so that our than 50 satellites in Geostationary Earth Orbit (GEO) and customers are able to stay focused on how to best maximise 12 in Medium Earth Orbit (MEO). -
From Strength to Strength Worldreginfo - 24C738cf-4419-4596-B904-D98a652df72b 2011 SES Astra and SES World Skies Become SES
SES Annual report 2013 Annual Annual report 2013 From strength to strength WorldReginfo - 24c738cf-4419-4596-b904-d98a652df72b 2011 SES Astra and SES World Skies become SES 2010 2009 3rd orbital position Investment in O3b Networks over Europe 2008 2006 SES combines Americom & Coverage of 99% of New Skies into SES World Skies the world’s population 2005 2004 SES acquires New Skies Satellites Launch of HDTV 2001 Acquisition of GE Americom 1999 First Ka-Band payload in orbit 1998 Astra reaches 70m households in Europe Second orbital slot: 28.2° East 1996 SES lists on Luxembourg Stock Exchange First SES launch on Proton: ASTRA 1F Digital TV launch 1995 ASTRA 1E launch 1994 ASTRA 1D launch 1993 ASTRA 1C launch 1991 ASTRA 1B launch 1990 World’s first satellite co-location Astra reach: 16.6 million households in Europe 1989 Start of operations @ 19.2° East 1988 ASTRA 1A launches on board Ariane 4 1st satellite optimised for DTH 1987 Satellite control facility (SCF) operational 1985 SES establishes in Luxembourg Europe’s first private satellite operator WorldReginfo - 24c738cf-4419-4596-b904-d98a652df72b 2012 First emergency.lu deployment SES unveils Sat>IP 2013 SES reach: 291 million TV households worldwide SES maiden launch with SpaceX More than 6,200 TV channels 1,800 in HD 2010 First Ultra HD demo channel in HEVC 3rd orbital position over Europe 25 years in space With the very first SES satellite, ASTRA 1A, launched on December 11 1988, SES celebrated 25 years in space in 2013. Since then, the company has grown from a single satellite/one product/one-market business (direct-to-home satellite television in Europe) into a truly global operation. -
Classification of Geosynchronous Objects Issue 12
EUROPEAN SPACE AGENCY EUROPEAN SPACE OPERATIONS CENTRE GROUND SYSTEMS ENGINEERING DEPARTMENT Space Debris Office CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS ISSUE 12 by R. Choc and R. Jehn Produced with the DISCOS Database February 2010 ESOC Robert-Bosch-Str. 5, 64293 Darmstadt, Germany 3 Abstract This is a status report on geosynchronous objects as of the end of 2009. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring (here defined as orbits with mean motion between 0.9 and 1.1 revolutions per day, eccentricity smaller than 0.2 and inclination below 30 deg) is analysed. From 1161 objects for which orbital data are available, 391 are controlled inside their longitude slots, 594 are drifting above, below or through GEO, 169 are in a libration orbit and 7 whose status could not be determined. Furthermore, there are 77 uncontrolled objects without orbital data (of which 66 have not been catalogued). Thus the total number of known objects in the geostationary region is 1238. During 2009 twenty-one spacecraft reached end-of-life. Eleven of them were reorbited following the IADC recommendations, one spacecraft was reorbited with a perigee of 225 km - it is not yet clear if it will enter the 200-km protected zone around GEO or not -, six spacecraft were reorbited too low and three spacecraft did not or could not make any reorbiting manouevre at all and are now librating inside the geostationary ring. If you detect any error or if you have any comment or question please contact R¨udiger Jehn European Space Operations Center Robert-Bosch-Str. -
The ASTRA Satellite System the ASTRA Satellite System at 19.2° East Services on ASTRA (September 2000)
Société Européenne des Satellites SES in brief (I) u Operator of ASTRA, the leading DTH satellite system in Europe u Satellite fleet: è 9 satellites in operation (7 at 19.2° East, 2 at 28.2° East) è 4 additional satellites until end of year 2001 u ASTRA carries more than 600 digital and analogue TV services and 389 radio services of leading European and international broadcasters for Europe's main language markets u ASTRA audience exceeds 79 million households in 22 European countries SES in brief (II) u Company listed on Luxembourg and Frankfurt Stock Exchanges èinstitutional and private shareholders èLuxembourg State holds 16.67 % of equity è33% of capital floated on Stock Exchange u Operating under a concession agreement with the Luxembourg State u 426 employees of 20 different nations u Turnover 1999: EUR 725.2 million H1 2000: EUR 403.0 million The ASTRA Satellite System The ASTRA Satellite System at 19.2° East Services on ASTRA (September 2000) 19.2° East u 85 analogue TV services for the German, English and pan- European market u 324 digital TV services for the French, German, More than -to-air Spanish, Dutch, Polish, Italian, Luxembourgish 75 free and pan-European market TV services u 313 analogue and digital radio services 28.2° East u 207 digital TV services for the UK and Ireland u 72 digital audio services for the UK and Ireland ASTRA coverage in Europe* (Mid Year 1992 to 2000) 90 80 70 60 50 40 30 20 ASTRA Households in Mill. 10 0 1992 1993 1994 1995 1996 1997 1998 1999 2000 DTH&SMATV 9.77 13.87 16.71 21.43 22.03 23.57 25.83 27.92 29.04 Cable 26.98 31.33 36.44 37.49 41.97 44.70 47.61 49.05 50.20 *22 European countries within the ASTRA footprint Source: SES/ASTRA, Satellite Monitors SES/ASTRA, Market Information Group, August 2000 Forecast of European DTH/SMATV Households 1997 – 2010 DTH/SMATV Households in Mill. -
GB-ASTRA 3B-Comsatbw-21Mai V
A BOOST FOR SPACE COMMUNICATIONS SATELLITES For its first launch of the year, Arianespace will orbit two communications satellites: ASTRA 3B for the Luxembourg-based operator SES ASTRA, and COMSATBw-2 for Astrium as part of a contract with the German Ministry of Defense. The choice of Arianespace by leading space communications operators and manufacturers is clear international recognition of the company’s excellence in launch services. Because of its reliability and availability, the Arianespace launch system continues to set the global standard. Ariane 5 is the only commercial satellite launcher now on the market capable of simultaneously launching two payloads. Over the last two decades, Arianespace and SES have developed an exceptional relationship. ASTRA 3B will be the 33rd satellite from the SES group (Euronext Paris and Luxembourg Bourse: SESG) to have chosen the European launcher. SES ASTRA operates the leading direct-to-home TV broadcast system in Europe, serving more than 125 million households via DTH and cable networks. ASTRA 3B was built by Astrium using a Eurostar E 3000 platform, and will weigh approximately 5,500 kg at launch. Fitted with 60 active Ku-band transponders and four Ka-band transponders, ASTRA 3B will be positioned at 23.5 degrees East. It will deliver high-power broadcast services across all of Europe, and offers a design life of 15 years. Astrium chose Arianespace for the launch of two military communications satellites, COMSATBw-1 and COMSATBw-2, as part of a satellite communications system supplied to the German Ministry of Defense. The first satellite in this family, COMSATBw-1, was launched by Arianespace in October 2009. -
PNT Symposium Paper -- Sirius 5 EGNOS -- Pavloff
21 October 2009 SES SIRIUS European Geostationary Navigation Overlay Service (EGNOS) Capability on Sirius 5 Satellite for SES Mike Pavloff, Executive Director, Space Systems/Loral Information included herein is deemed non-ITAR. 1 “Use or disclosure of the data contained on this sheet is subject to the restrictions on the title page.” Agenda Overview EGNOS SES SS/L Sirius 5 program EGNOS system description Sirius 5 EGNOS implementation Summary 2 “Use or disclosure of the data contained on this sheet is subject to the restrictions on the title page.” Overview 3 “Use or disclosure of the data contained on this sheet is subject to the restrictions on the title page.” Introduction – EGNOS Background EGNOS – European Geostationary Navigation Overlay System Part of the world-wide Satellite-Based Augmentation Systems (SBAS) to the U.S. Global Positioning System (GPS), the Russian GLONASS System and European Galileo system An initiative of the European Commission (EC) and the European Space Agency (ESA) to build a civilian component to the military navigation systems of GPS and GLONASS Provide integrity and high availability and continuity to the (aeronautical) users; improve accuracy of single-frequency navigation receivers Other SBAS elements are WAAS (US, Canada Anik 1R) and MSAS (Japan MTSAT-1R, 2) Three GEO satellites providing EGNOS signals are currently on orbit (Inmarsat 3F2, Inmarsat 4F2 and ESA Artemis satellite) Ground infrastructure deployed EGNOS Satellite operations Autonomous network of monitoring stations located -
SES Global Reach YE2019
THE GROWTH OF SES REACH IN AFRICA PRESENTED BY PRESENTED ON Clint Brown June 2020 SES Proprietary and Confidential | SES reach in Africa per orbital position 30.0 32.6 34.9 35 34.9M YE19 vs. 32.6M YE18 30 Changes vs. YE18: 13.7 • Updated Ghana and Nigeria (last done YE17) 14.2 25 • Growth in “Canal+ Afrique” (+0.8M) 13.0 Opportunities identified: 20 • Ongoing digital switch-over in many countries, Terrestrial e.g. Ghana, Ivory Coast, Nigeria, etc. Satellite 15 • Uptake in TV penetration across the region, e.g. In million homes Ethiopia, Kenya, Tanzania, Uganda 10 21.2 • HD TV set growth: homes purchasing a TV set 18.3 16.9 for the first time will have it with HD / UHD 5 0 YE17 YE18 YE19 Source: Satellite Monitors YE2019 SES Proprietary and Confidential | June '20 – SES Reach for Africa YE2019 2 SES reach in Africa per orbital position 22.0ºW 4.8ºE / 5.0ºE 28.2ºE 57.0ºE* SES-4 ASTRA-4A / SES-5 ASTRA-2F / -2G NSS-12 Total 6.2M 17.7M 11.6M 0.9M Satellite 6.2M 5.0M 10.5M 0.9M Key DTH platforms * Figures from YE2017 Source: Satellite Monitors YE2019 SES Proprietary and Confidential | June '20 – SES Reach for Africa YE2019 3 Overview of ASTRA-2F / ASTRA-2G | 28.2ºE 22.0ºW 4.8E / 5.0E 28.2°E 57.0°E SES-4 ASTRA-4A / SES-5 ASTRA-2F / 2G NSS-12 Footprints Key Markets & Customers Positioning 11.6M TV homes 171 TV channels ▲ Fastest growing DTH position for Anglophone West & Central African DTH HD 1 TV channel Key benefits ▲ Proven highest technical reach in West Africa, ASTRA-2F West Africa Ku-band beam giving broadcasters access to millions of -
Year in Review 2013
SM_Dec_2013 cover Worldwide Satellite Magazine December 2013 SatMagazine 2013 YEAR IN REVIEW SatMagazine December 2013—Year In Review Publishing Operations Senior Contributors This Issue’s Authors Silvano Payne, Publisher + Writer Mike Antonovich, ATEME Mike Antonovich Robert Kubbernus Hartley G. Lesser, Editorial Director Tony Bardo, Hughes Eran Avni Dr. Ajey Lele Richard Dutchik Dave Bettinger Tom Leech Pattie Waldt, Executive Editor Chris Forrester, Broadgate Publications Don Buchman Hartley Lesser Jill Durfee, Sales Director, Editorial Assistant Karl Fuchs, iDirect Government Services Eyal Copitt Timothy Logue Simon Payne, Development Director Bob Gough, 21 Carrick Communications Rich Currier Jay Monroe Jos Heyman, TIROS Space Information Tommy Konkol Dybvad Tore Morten Olsen Donald McGee, Production Manager David Leichner, Gilat Satellite Networks Chris Forrester Kurt Peterhans Dan Makinster, Technical Advisor Giles Peeters, Track24 Defence Sima Fishman Jorge Potti Bert Sadtler, Boxwood Executive Search Simen K. Frostad Sally-Anne Ray David Gelerman Susan Sadaat Samer Halawi Bert Sadtler Jos Heyman Patrick Shay Jack Jacobs Mike Towner Casper Jensen Serge Van Herck Alexandre Joint Pattie Waldt Pradman Kaul Ali Zarkesh Published 11 times a year by SatNews Publishers 800 Siesta Way Sonoma, CA 95476 USA Phone: (707) 939-9306 Fax: (707) 838-9235 © 2013 SatNews Publishers We reserve the right to edit all submitted materials to meet our content guidelines, as well as for grammar or to move articles to an alternative issue to accommodate publication space requirements, or removed due to space restrictions. Submission of content does not constitute acceptance of said material by SatNews Publishers. Edited materials may, or may not, be returned to author and/or company for review prior to publication. -
2010 Commercial Space Transportation Forecasts
2010 Commercial Space Transportation Forecasts May 2010 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) HQ-101151.INDD 2010 Commercial Space Transportation Forecasts About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Cover: Art by John Sloan (2010) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration / Commercial Space Transportation Table of Contents Executive Summary . 1 Introduction . 4 About the CoMStAC GSo Forecast . .4 About the FAA NGSo Forecast . .4 ChAracteriStics oF the CommerCiAl Space transportAtioN MArket . .5 Demand ForecastS . .5 COMSTAC 2010 Commercial Geosynchronous Orbit (GSO) Launch Demand Forecast . 7 exeCutive Summary . .7 BackGround . .9 Forecast MethoDoloGy . .9 CoMStAC CommerCiAl GSo Launch Demand Forecast reSultS . -
Internet Access and Backbone Technology
3/30/15 AIS 2015 1 Internet access and backbone technology Henning Schulzrinne Columbia University COMS 6181 – Spring 2015 03/30/2015 3/30/15 AIS 2015 2 Key objectives • How do DSL and cable modems work? • How do fiber networks differ? • How do satellites work? • What is spectrum and its characteristics? • What is the difference between Wi-Fi and cellular? 3/30/15 AIS 2015 3 Broadband Access Technologies FBWA or 4G FTTHome BPL FTTCurb DSL 4G Fiber PON HFC Digital Fiber -- Passive Fixed Broadband 4G/LTE Subscriber Line Optical Network Wireless Access • Cellular operators • Telco or ILEC • Telco or ILEC • Wireless ISP • 5-10 Mbps (100 kph) • 10s of Mbps • ~75 Mb/s • WiMAX or LTE: • Entertainment, data, voice • Futureproof? -10s of Mbps • Satellite: few Mbps Hybrid Fiber Coax Broadband Power Line • CableCo (MSO) • PowerCo • Entertainment, data, voice • Data, voice • 10s of Mbps • ~few Mbps Paul Henry (AT&T), FCC 2009 3/30/15 AIS 2015 4 FTTx options Alcatel-Lucent 3/30/15 AIS 2015 5 Available access speeds 100 Mb/s marginal 20 Mb/s VOIP 10 Mb/s 5 Mb/s 1 Mb/s avg. sustained throughput 20% 80% 90% 97%100% of households (availability) 3/30/15 AIS 2015 6 Maximum Theoretical Broadband Download Speeds Multiple Sources: Webopedia, bandwidthplace.com, PC Magazine, service providers, ISPs, Paul Garnett, CTIA, June 2007 Phonescoop.com, etc. 3/30/15 AIS 2015 7 Access costs • Fiber à GPON 200 Mb/s both directions • $200-400 for gear • Verizon FiOS < $700/home passed -- dropping • $20K/mile to run fiber • Wireless LTE/WiMAX • 4-10 Mb/s typical • 95% of U.S.