Stainless Steel Fasteners – a Systematic Approach to Their Selection

Total Page:16

File Type:pdf, Size:1020Kb

Stainless Steel Fasteners – a Systematic Approach to Their Selection STAINLESS STEEL FASTENERS – A SYSTEMATIC APPROACH TO THEIR SELECTION A DESIGNERS’ HANDBOOK SERIES NO 9003 Produced by Distributed by AMERICAN IRON NICKEL AND STEEL INSTITUTE INSTITUTE STAINLESS STEEL FASTENERS – A SYSTEMATIC APPROACH TO THEIR SELECTION A DESIGNERS’ HANDBOOK SERIES NO 9003 Originally, this handbook was published in 1976 by the Committee of Stainless Steel Producers, American Iron and Steel Institute. The Nickel Institute republished the handbook in 2020. Despite the age of this publication the information herein is considered to be generally valid. Material presented in the handbook has been prepared for the general information of the reader and should not be used or relied on for specific applications without first securing competent advice. The Nickel Institute, the American Iron and Steel Institute, their members, staff and consultants do not represent or warrant its suitability for any general or specific use and assume no liability or responsibility of any kind in connection with the information herein. Nickel Institute [email protected] www.nickelinstitute.org CONTENTS Introduction ................................................3 Fastener Materials ..........................................3 Stainless Steels Identification ................................5 Choosing the Right Type .....................................8 Stainless Steel Fastener Properties ...........................13 Tensile & Yield Strength Shear Strength High- and Low-Temperature Service ..........................16 Magnetic and Electrical Properties ...........................19 Electrical conductivity ......................................19 Manufacture of Stainless Steel Fasteners .....................19 Plated Coatings ............................................20 Effective Utilization of Stainless Steel Fasteners ...............22 Designing for Optimum Corrosion Resistance ..................23 Types of corrosion ..........................................24 Availability of Stainless Steel Fasteners .......................26 References ................................................26 ROUND FLAT PLAIN The designer should consider a Preface A systematic fastener as a system, and regard the assembled joint as a critical There was a time when the approach to and integral portion of the design periodic repair of mechanical and -not as an afterthought-because electrical components was taken stainless steel the joint is normally an area under for granted. Today, with labor costs highest stress and often the place at record levels and going up, fastener selection where failure is most likely to occur. greater consideration at the design Selecting the optimum fastener A designer should start with the level is being given to the reduction can be an awesome task for any optimum fastener and design the -or even elimination-of main­ designer. There is a staggering joint around that, rather than start­ tenance. In cases where a joint diversity of fastener types available ing with the joint and then looking must be taken apart and reassem­ (over 500,000 standard items), and for the fastener that seems most bled, the corrosion resistance of for any one type there can be a adequate. the fastener is particularly important large number of sizes from which so that corrosion will in no way to choose. For example, one of the hamper or prevent its removal. The smallest standard fasteners has a Fastener materials cost of removing rusty bolts, and head of 0.01 inch (.254mm); the Fasteners have been made of a replacing them with new ones, is largest has a head 4 feet (1.219m) more expensive than using cor­ vast number of materials for one in diameter. To further complicate reason or another. The designer rosion resistant fasteners to the problem of fastener selection, begin with. there are special designs, which Other costs resulting from are not considered to be "off-the­ fastener failure, such as downtime shelf" items, and a wide variety of and lost production, make an even different materials. stronger case for stainless steel Stainless steel is one of these fasteners. fastener materials, and it is used extensively throughout industry for both original equipment manufac­ ture as well as for replacement. The purpose of this publication is to help designers trace an orderly path through the fastener complex­ ity to arrive at a stainless steel fastener system that best fills the need. • . 0. 3 CID 0 ◊ D FLAT HEAD CAP iSCREW OR HEX HEAD SQUARE HEAD MACHINE BOLT WASHER' iBOLT TI BOLT can specify anything from hard oak CARBON STEELS (AISI Type): They are not hardenable by to lnvar, a low coefficient-of­ 1008, 1010, 1015 are low-carbon heat treatment but are hard­ expansion material. There are steels used for the great enable by cold working, such indeed many cases wherein an majority of machine screws, as by heading and thread exotic material must be used wood screws, etc. Sometimes rolling. They are nonmagnetic because of design requirements. called mild steel, they have a in the annealed condition and However, the common materials tensile strength of about 55 ksi only slightly magnetic in the used to produce both standard and (379MPa), which cannot be cold worked condition. special fasteners should be con­ increased by heat treatment. 384 is a stainless steel that has sidered first. The common materials 1018, 1020, 1022 are medium lower work-hardening char­ are a first choice because of the low-carbon steels that can be acteristics than Type 305. It is ease in manufacturing fasteners heat treated for strength to a in the 18-8 family of stainless from these materials, because they minor degree (except 1018), steels and is included in most provide adequate physical charac­ and they can be case hardened AN and MS specifications. teristics at more economical cost, to form an outer layer of hard, 316 stainless steel has the and because they are readily tough, but brittle carburized highest degree of corrosion available from suppliers throughout steel. They are used for sheet resistance of the commonly­ the United States and Canada. The metal screws, thread-cutting used 18-8 stainless steels. brief outline which follows identifies screws, and for grade 2 410, 416, 430 are magnetic some different common fastener (bright) hexhead cap screws. stainless steels having less materials. About 59 ksi (407MPa) is the corrosion resistance than the usual tensile strength for 300 Series types. Types 41 0 these materials. and 416 are hardenable by 1035, 1038 are high-carbon, heat treatment to 125-180 ksi medium alloy steels that can tensile (862-1241MPa). be heat treated to 120 ksi Designers also have choices to (827MPa) tensile strength. Cap make from among a large group of screws are a typical use. nonferrous fasteners, and fasteners ALLOY STEELS (AISI Type): that have been plated either for 4037, 4137 are molybdenum alloy purposes of corrosion protection or steels that can be heat treated for appearance. to 150 ksi tensile (1034MPa) This publication is concerned and above. Typical uses only with stainless steels; however, include hex socket and cap some comments will be made screws and for spline concerning the other materials fasteners. FREE-CUTTING STEELS (AISI Type): 1110, 1112, 1113 are low-carbon, free-machining steels used for low-strength nuts that are used in all but critical applications. STAINLESS STEELS (AISI Type): - 303, 304, S30430 (UNS), 305 are in the "18-8" family of stain­ less steels that have tensile strengths in the 80 ksi (552MPa) and up range. 4 fied by the new Unified Numbering System (UNS), which encompasses all commercial metals and rare earths. For example, Type 304 is Type S30400 in UNS. Special analysis and proprietary stainless steels are identified by trade names, some of which may resemble AISI numbers. The terms austenitic, martensitic, terrific and precipitation hardening serve to identify categories of stainless steels on the basis of their metallurgical structure. De­ signers should recognize these terms and understand what they mean, because stainless steels so classified tend to have similar characteristics with respect to corrosion resistance, hardenability, and fabricability. Austenitic stainless steels are chromium-nickel-manganese and chromium-nickel composi­ tions identified by 200 and 300 Series numbers, respectively. They are hardenable only by cold working and are non­ magnetic in the annealed con­ because an evaluation requires a the American Iron and Steel Institute dition. Typical of the austenitic comparison of available materials. as standard compositions. A com­ group is Type 304, which con­ plete listing of all AISI stainless tains nominally 18% chromium steels and a description of each and 8% nickel, hence the Stainless steels are contained in the AISI publica­ 18-8 name. Stainless steel is a family of tion, "Steel Products Manual Ferritic stainless steels are iron-base alloys containing about -Stainless and Heat-Resisting straight-chromium steels in the 10.5% chromium or more, plus Steels, December 197 4.1'' 400 Series that are not harden­ other alloying elements such as In addition to the standard AISI able by heat treatment and only nickel, manganese, molybdenum, types, many special analysis and slightly hardenable by cold sulfur, selenium, titanium, etc. The proprietary stainless steels are working. All are magnetic. Type chromium is chiefly responsible for produced in the United States 430 is typical of this group. corrosion and heat resistance; the and Canada. Martensitic stainless steels
Recommended publications
  • PMPA Member H & R Screw Machine Products Finds Success in Its Wide
    Helping Precision Machine Shops Be More Productive and Profitable Helping Precision Machine Shops Be More Productive and Profitable PMPA Member H & R Screw Machine Products Finds Success in its Wide Customer Base and Diverse Machining Capabilities When it was founded in 1976, H & R Screw Machine Products was no more than a single Brown & Sharpe screw machine in a small building located behind the home of founder, David Halladay. Mr. Halladay, who spent years as a technician in several screw machine shops, dreamed of owning his own company one day. So, with the help of his business partner, Walter Randolph, the two opened H & R Screw Machine Products. What started as a small operation with just two customers evolved into a company that manufactures millions of precision machined components each month in a 38,000-square-foot facility in Reed City, Michigan. Today, the company is run by Mr. Halladay’s sons, Tim and Tom Halladay, who spent most of their lives working their way up through the company. “As a company, we all work very closely together and we try to treat our employees like family,” says Tom Halladay, president of H & R Screw Machine Products. “We have many people on staff who’ve been with the company 10 to 30 years, and they’re a major reason why we’ve succeeded over headquarters also features aqueous parts washing systems, a the years.” quality assurance lab and a scrap and oil processing system. The company’s state-of-the-art scrap and oil processing In the company’s early years, 100 percent of sales came system conveys steel and aluminum scrap material from its from the automotive industry.
    [Show full text]
  • 2 Simple Machines
    Name Class Date CHAPTER 13 Work and Energy SECTION 2 Simple Machines KEY IDEAS As you read this section, keep these questions in mind: • What are simple machines? • What simple machines are in the lever family? • What simple machines are in the inclined plane family? • What are compound machines? What Are Simple Machines? We are surrounded by many different electronics and READING TOOLBOX machines. In physics, a machine is a mechanical device Compare As you read that changes the motion of an object. Remember that this section, make a chart machines make work easier by changing the way a force showing the similarities and is applied. Many machines, such as cars and bicycles, differences between the six simple machines. Describe are complicated. However, even the most complicated how each machine affects machine is made from a combination of just six simple input and output forces machines. Simple machines are the most basic machines. and distances. Include the Scientists divide the six simple machines into two fam- mechanical advantage each machine provides. ilies: the lever family and the inclined plane family. The lever family includes the simple lever, the pulley, and the wheel and axle. The inclined plane family includes the simple inclined plane, the wedge, and the screw. The lever family Simple lever Pulley EHHDBG@<EHL>K Wheel and axle 1. Infer What do you think The is the reason that the wedge inclined and the simple inclined plane plane are in the same family of simple machines? family Screw Simple inclined Wedge plane How Do Levers Work? If you have ever used a claw hammer to remove a nail from a piece of wood, you have used a simple lever.
    [Show full text]
  • 1.5 Mm Headless Compression Screw Surgical Technique
    For Fixation of Small Bones and Small Bone Fragments 1.5 mm Headless Compression Screw Surgical Technique Table of Contents Introduction 1.5 mm Headless Compression Screw 2 Technique Overview—Lag Screw Technique 3 with Compression Sleeve Indications 4 Surgical Technique Predrill 5 Determine Screw Length 6 Pick Up Screw 6 Insert Screw and Compress 8 Countersink Screw 9 Screw Extraction 11 Product Information Implants 12 Instruments 13 Set Lists 15 MR Information The Headless Compression Screws System has not been evaluated for safety and compatibility in the MR environment. It has not been tested for heating, migration or image artifact in the MR environment. The safety of the Headless Compression Screws System in the MR environment is unknown. Scanning a patient who has this device may result in patient injury. Image intensifier control 1.5 mm Headless Compression Screw Surgical Technique DePuy Synthes 1 1.5 mm Headless Compression Screw T4 StarDriveTM Recess For optimal torque transmission Cutting fl utes on screwhead Facilitate countersinking of the screw Identical pitch of head and 2.2 mm diameter shaft threads head thread Maintains compression when countersinking the head Available in stainless steel and titanium All Headless Compression Screws from DePuy Synthes are available in both implant quality 316L stainless steel and titanium alloy (Ti-6Al-7Nb) 1.2 mm shaft diameter 1.5 mm diameter shaft thread Self-drilling and self-tapping tip For simplifi ed surgical technique 2 DePuy Synthes 1.5 mm Headless Compression Screw Surgical Technique Technique Overview—Lag Screw Technique With Compression Sleeve 1 2 3 Insert screw Compress Countersink Thread the head of the screw into the The tip of the compression sleeve acts Once the desired amount of compression tip of the compression sleeve.
    [Show full text]
  • Tool Holders & Attachments
    Screw Machine Attachments 2019 Tool Holders & Attachments Providing quality attachments for any screw machine challenge through original innovative design and engineering, with proven results! Screw Machine Attachments About BME.. BME is a Screw Machine Rebuilder and Custom tooling supplier located in southeast Michigan. Founded on the principle that quality attachments and accessories for multi spindles can be manufactured and supported right here in our own country. We pride ourselves on our quality of work and exceeding our customer’s expectations. Founded, in 2007, BME provided attachments for Acme-Gridley's, mainly Flat Generators and Sync attachments, but over the years we’ve expanded our product line to include attachments for New Britains, Wickmans, Davenports, and any multi-spindles we’ve been maintaining steady growth while continuing to expand our knowledge and skill base. Our growth over the years has also led to the purchase and integration of Precision Form and Grind, and in 2016, Schlitter Tool/ Genius Inc product line. We attribute a majority of this growth to our ability to solve the screw machine industries’ challenges, along with our commitment to our customers, and meeting their deadlines. Our 15,000 square foot facility also contains a variety of CNC manufacturing equipment, that allows us to manufacture a majority of components in house. Our staff includes personnel that have a combined 80 plus years of experience in diagnosing, designing, and debugging a variety of solutions to customer challenges on screw machines. Have you ever been told that “you can’t do that on a screw machine”? Give us a call and let us solve your problems! Why BME? • Our engineering is unsurpassed, with years of experience working on machines and attachments to blend with years of experience in mechanical design.
    [Show full text]
  • Fastener Identification Guide • 4.13 KM • Printed in the USA
    HEAD STYLES Hex Cap Screw Bugle Hex cap screws feature a washer face on the Button Washer bearing surface, a chamfered point, and tighter body tolerances than hex bolts. Pan Binding Undercut Hex Bolt Similar to hex cap screw, hex bolts do not require a washer face or a pointed end and have a greater tolerance range in the body. Round Head Fillister Socket Head Cap Screw Socket heads feature an internal hexagonal drive DRIVES socket and close tolerances for precision assembly. Flat 82° Cross Recess Button Head Socket Cap Screw Type I FASTENER (Phillips) Button heads feature a dome shaped head, though Flat 100° this feature reduces the tensile capacity. Cross Recess Flat Head Socket Cap Screw Type IA Flat heads feature an 82° countersunk head for Flat Undercut (Pozidriv®) IDENTIFICATION flush connections. Like the button heads, this feature reduces the tensile capacity. Cross Recess Type II (Frearson) Low Head Socket Cap Screw Indented Hex Low heads are similar to standard socket heads, but with a shorter head for applications where clearance Cross Recess Square GUIDE is an issue. This head configuration also reduces the Combo strength capacity. Indented Hex Washer (Quadrex®) NUTS Carriage Bolt A round head bolt with a square neck under the Slotted head. These must be tightened with a nut. Serrated Hex Finished Hex Nuts: Hex Coupling Nuts: Washer Hexagonal shaped nuts with internal screw Designed to join two externally threaded Plow Bolt threads. Finished hex nuts are one of the most objects, usually threaded rod, together. Combination Similar to a carriage bolt, these have a flat head common nuts used.
    [Show full text]
  • Cord Buckles Center-Release Spaenaur Home Spaenaur 2 All Rights Rights All Reserved
    1-800-265-8772 [email protected] Spaenaur Home Full Spaenaur Catalog Contact Us Français Metric Center-Release Buckles / Cord Locks & Cord Ends Métrique Boucles à dégagement central / Autobloqueurs et embouts de cordon EXTRA STRONG CLIP BUCKLE (Clip and Hold) Suitable for webbings of Terylene, Nylon, etc. Special protection against accidental opening. Used on Life-Saving Jackets, heavy Rucksacks, etc. 86 mm 122-A01-1M. Suitable for 40 mm strap of 1.4 - 1.5 mm thickness. The surface of the strap should not be too smooth. Mounting without sewing or rivets. Insert the strap in the clip and holder to the desired length. The Clip Buckle remains in position whether the strap is in use or not, but is nevertheless adjustable. Adjust the position by pushing the outer part of the strap inwards in order to release the strap. The loose end is hidden by the outer 122-A01-1M part of the strap. SPAENAUR Strap Strap PKG No. Colour Width Thickness QTY. 122-A01-1M Black 40 mm 1.4 to 1.5 mm 10 M All CORD BUCKLE Buckles Holder and locking wheel have supplied separately. White Locking Used for bags and clothing. E.g. ruck- Wheel sacks, duffel bags, laundry bags, CATALOG 14 C CATALOG AT sleeping bag covers, anoraks, ALOG 1 swimming trunks, sou’westers. 4 SPAENAUR No. For Cord Size WHITE BLACK PKG QTY. 25 2 mm 122-652 122-655 3-4 mm 122-660 122-663 MOUNTING: After threading the cord through the holder, push in the locking wheel. Knot the ends of the cord.
    [Show full text]
  • Connected PAID PRST STD Liberty, MO Liberty, Permit # 649 U.S
    Product Feature: CAD/CAM Software • Transatlantic Trade Show Today’s Machining World After Crime & Shop of Sherwood Punishment the Future The magazine for the precision parts industry october 2007 volume 3 issue 10 volume 1 number 1 January 2006 volume 3 issue 10 Today’s Machining World Magazine PRST STD P.O. Box 847 U.S. Postage Lowell, MA 01853 PAID Permit # 649 Japan www.todaysmachiningworld.com CHANGE SERVICE REQUESTED Liberty, MO America october 2007 Connected U.S. Bicycle Manufacturing On the Rise Scott Walker of Mitsui Seiki Hiring: Best Practice Your Customers Demand the Highest Quality at The Lowest Cost. NexTurn CNC Swiss turning centers deliver Turn D series machines come equipped with world-class machining performance and high standard features such as 20 tools (8 live with precision capabilities found only on the best rigid tapping on all spindles), oil cooled direct CNC Swiss Turning brands. And they’re priced drive motor (main and sub spindle), front work- thousands less than comparably equipped ing modular tooling system, program check by machines. manual pulse generator, full C-axis contouring In sizes ranging from 12mm to 38mm, Nex- (.001 degrees) for main and sub spindle. And, >> SA-20D tool layout. Oil cooled built in motors. a Fanuc 18iTB Dual Processor/2 Path Control warranty, you can be confident your NexTurn that comes with all the software needed to Machine will remain productive. make your NexTurn machine productive right Contact NexTurn today ... our low cost in- out of the box. Custom engineered configura- vestment and high productivity will provide a tions are also available.
    [Show full text]
  • Impact of Synthesis Conditions on the Morphology and Crystal Structure of Tungsten Nitride Nanomaterials
    RSC Advances View Article Online PAPER View Journal | View Issue Impact of synthesis conditions on the morphology and crystal structure of tungsten nitride Cite this: RSC Adv.,2021,11, 28198 nanomaterials Olivia Wenzel, *a Viktor Rein,b Milena Hugenschmidt, ac Frank Schilling,d Claus Feldmann b and Dagmar Gerthsena Nanocrystalline tungsten nitride (WNx) aggregates and nanosheets are synthesized with a new alkylamine- based synthesis strategy for potential applications in nanoelectronics and catalysis. These applications preferentially require crystalline materials with controlled morphology, which has been rarely demonstrated for WNx nanomaterials in the past. In the synthesis approach presented in this work, the morphology of nanoscale WNx is controlled by long-chained amines that form lyotropic or lamellar phases depending on the surfactant concentration. The structural and chemical properties of the WNx nanomaterials are studied in detail using different electron microscopic techniques in combination with Creative Commons Attribution-NonCommercial 3.0 Unported Licence. electron spectroscopic analyses. Material synthesis and sample preparation for transmission electron microscopy (TEM) were performed in an argon atmosphere (Schlenk line and glovebox). The samples were inserted into the electron microscope via an air-tight TEM transfer holder to protect the material from hydrolysis and oxidation. From the lyotropic phase nanocrystalline WNx aggregates were obtained, which consist of 2.4 Æ 0.8 nm small crystallites of the cubic WNx phase with a composition of WN0.7. The lamellar phase with a higher surfactant concentration yields WNx nanosheets with lateral dimensions up to 500 nm and a mean thickness of 2.1 Æ 1.1 nm. The nanosheets are N rich with a composition Received 8th June 2021 WN – and occur in the hexagonal crystal structure.
    [Show full text]
  • Taps and Dies a Product of #GTCAT - August 2016 Greenfield Industries' Tradition of Excellence Has Stood the Test of Time
    Taps And Dies a product of #GTCAT - August 2016 Greenfield Industries' tradition of excellence has stood the test of time. Since 1834 the mission remains the same, provide the highest quality cutting tools at the greatest value possible. As part of the TDC Group, that mission is easily fulfilled with direct access to the finest raw materials from our own mines. These materials are then refined in our own mills and made into the raw material used in manufacturing Greenfield’s unparalleled drills, end mills, taps, dies and other specially manufactured tools. This catalog showcases the range of taps available along with machining parameters. Various coatings are available for our taps designed for specific applications. This catalog is also available to download at our website, www.gfii.com. There you will find catalogs and supplements to our other globally recognized brands. For more information, contact our Customer Service at 800- 348-2885 or by email at [email protected], or visit the our web site, www.gfii.com. Greenfield is moving from 302 302 to 302A tap styles beginning August 1st, 2015. Look for this rolling change in your orders and continue 302A to enjoy the superior quality and reliability you have always known in Greenfield! We are proud to announce the combination of our Greenfield Threading brand with Vermont Tap & Die. Greenfield Industries' centuries old dedication to our customers has brought these two products lines together, creating a commitment of high-quality taps and dies. This provides you, our customer, the confidence that you are receiving the quality and reliability you expect from the Greenfield family of tools.
    [Show full text]
  • Self-Clinching Nuts Install Permanently in Aluminum, Steel Or Stainless Steel Sheets
    PEM® brand self-clinching nuts install permanently in aluminum, steel or stainless steel sheets. CL™ SELF-CLINCHING NUTS SELF-CLINCHING NUTS Self-clinching nuts are installed by placing them in properly sized holes in sheets and applying a parallel squeezing force to the head of the nut. The sheet metal surrounding the head cold flows into an undercut thereby making the fastener an integral part of the sheet. A serrated clinching ring prevents the fastener from rotating after installation. S™/SS™/CLA™/CLS™/CLSS™ nuts H™ (non-locking) and HNL™ (locking) provide load-bearing threads in thin nuts have threads that provide high sheets with high pushout and torque-out pushout and torque-out resistance - resistance - PAGES 4 and 5 PAGE 8 SP™, PEM 300® nuts provide strong SH™ hard panel nuts install into thin, load-bearing threads in stainless steel harder, high strength steel materials - sheets as thin as .030”/0.8 mm - PAGE 8 PAGES 4 and 5 SMPS™/SMPP™ nuts are for thinner PEM RT® free-running locknuts are sheet/close-to-edge applications - free-running until clamp load is induced. A PAGE 9 modified thread angle on the loaded flank provides the vibration resistant locking Material and finish specifications - PAGE 9 feature- PAGE 6 SL™ self-locking nuts are designed with Installation - PAGES 10 and 11 a unique and economical TRI-DENT® locking feature, meeting 3 cycle locking Performance data - PAGES 12 - 15 performance requirements - PAGE 7 Many PEM self-clinching nuts in this bulletin are dimensionally equivalent to nuts manufactured to NASM45938/1 specifications. Consult our Marketing department for a complete Military Specifications and National Aerospace Standards guide (Bulletin NASM) on our website.
    [Show full text]
  • Fastener Guide
    Experts in supplying Vendor Managed fasteners and industrial Inventory Programs products to manufacturers and sub-contract On-Site Parts assemblers. Kitting Department 763.535.0400 763.535.0400 Table of Contents Standard Fasteners.................................................................. 3 Hex Bolt Sizes and Thread Pitches Size Chart.............................................................. 4 Standard US Machine Screw Size Chart....................................................................... 7 Sheet Metal Screw Size Chart....................................................................................... 8 Shoulder Bolt Size Chart................................................................................................ 9 Socket Button Head Size Chart.................................................................................... 11 Socket Cap Size Chart................................................................................................. 12 Socket Flat Head Size Chart........................................................................................ 15 US Nuts Size Chart...................................................................................................... 17 SAE Flat Washer Size Chart........................................................................................ 20 USS Flat Washer Size Chart........................................................................................ 21 Screw Eye Size Chart.................................................................................................
    [Show full text]
  • Mechanical Assembly
    MECHANICAL ASSEMBLY •Threaded Fasteners •Rivets and Eyelets •Assembly Methods Based on Interference Fits •Other Mechanical Fastening Methods •Molding Inserts and Integral Fasteners •Design for Assembly ©2002 John Wiley & Sons, Inc. M. P. Groover, “Fundamentals of Modern Manufacturing 2/e” Mechanical Assembly Defined Use of various fastening methods to mechanically attach two or more parts together •In most cases, discrete hardware components, called fasteners, are added to the parts during assembly •In other cases, fastening involves shaping or reshaping of a component, and no separate fasteners are required ©2002 John Wiley & Sons, Inc. M. P. Groover, “Fundamentals of Modern Manufacturing 2/e” Products of Mechanical Assembly •Many consumer products are assembled largely by mechanical fastening methods Examples: automobiles, large and small appliances, telephones •Many capital goods products are assembled using mechanical fastening methods Examples: commercial airplanes, trucks, railway locomotives and cars, machine tools ©2002 John Wiley & Sons, Inc. M. P. Groover, “Fundamentals of Modern Manufacturing 2/e” Two Major Classes of Mechanical Assembly 1. Methods that allow for disassembly Example: threaded fasteners 2. Methods that create a permanent joint Example: rivets ©2002 John Wiley & Sons, Inc. M. P. Groover, “Fundamentals of Modern Manufacturing 2/e” Reasons Why Mechanical Assembly is Often Preferred Over Other Methods •Ease of assembly –can be accomplished with relative ease by unskilled workers using a minimum of special tooling and in a relatively short time •Ease of disassembly –at least for the methods that permit disassembly Some disassembly is required for most products so maintenance and repair can be performed ©2002 John Wiley & Sons, Inc. M. P.
    [Show full text]