Evolution and Identity of Synapsid Carpal Bones

Total Page:16

File Type:pdf, Size:1020Kb

Evolution and Identity of Synapsid Carpal Bones Editors' choice Evolution and identity of synapsid carpal bones SUSANNA KÜMMELL, FERNANDO ABDALA, JUDYTH SASSOON, and VIRGINIA ABDALA Kümmell, S., Abdala, F., Sassoon, J., and Abdala, V. 2020. Evolution and identity of synapsid carpal bones. Acta Palae­ ontologica Polonica 65 (4): 649–678. To date there is little information on carpal bone homology in late Palaeozoic and Mesozoic Synapsida. Crucial to the understanding of homology in synapsid carpal elements is the fact that different nomenclatures are used for the carpals of non-mammaliamorph Synapsida (Gegenbauer’s canonical nomenclature) and Mammaliaformes (mammalian nomencla- ture). The homologies of the carpals of non-mammaliamorph synapsids and mammals were established early last century and have not been reviewed since then. Here we provide a detailed study of the carpal bones of synapsids ranging in age from the early Permian to Late Cretaceous. The mammaliamorph lunate, previously considered the homologue of the intermedium of non-mammaliamorph synapsids, is interpreted here as homologous to their lateral centrale. We interpret the single mammaliamorph centrale as a homologue of the medial centrale of non-mammaliamorph synapsids. In some synapsid specimens, we found that one or two centralia are fused to the radiale (e.g., the gorgonopsian Arctognathus and tritylodontid Bienotheroides), supporting a digging habit. A third centrale is present in the therocephalian Theriognathus, very likely an abnormal duplication. An additional medial bone in a biarmosuchian was interpreted as a prepollex/ sesamoid. A cartilaginous prepollex/sesamoid may also have been present in several non-mammaliamorph synapsids, which have an open space proximal to distal carpal I. Distal carpal V is completely lost in dicynodonts and it is mainly fused to distal carpal IV in the adult stage of most other therapsid groups, but showed a delayed development in most non-mammaliamorph cynodonts. In mammaliamorphs, distal carpal V is not present. Our observations provide an up- dated revision of synapsid carpal homologies, mainly on the basis of position and anatomical contacts and also taking into account the results of embryological studies. Key words: Synapsida, carpus, intermedium, lunate, manus, homology, Permian, Mesozoic. Susanna Kümmell [susanna.kuemmell@uni­wh.de], Institute of Evolutionary Biology and Morphology, Center for Bio­ medical Education and Research (ZBAF), Faculty of Health, School of Medicine, University Witten/Herdecke, Stock­ umer Straße 10, 58454 Witten, Germany. Fernando Abdala [[email protected]], Unidad Ejecutora Lillo (CONICET­Fundación Miguel Lillo), Tucumán, Argentina and Evolutionary Studies Institute, University of the Witwatersrand, South Africa. Judyth Sassoon [[email protected]], School of Earth Sciences, University of Bristol, Queen’s Road, Bristol, BS8 1RJ, UK. Virginia Abdala [[email protected]], Instituto de Biodiversidad Neotropical, CONICET­Universidad Nacio­ nal de Tucumán, Catedra de Biologia General, Facultad de Ciencias Naturales e IML, Tucumán, Argentina. Received 2 December 2019, accepted 12 August 2020, available online 6 November 2020. Copyright © 2020 S. Kümmell et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Figures 14B and 15 excluded, see pertinent figure captions. different phalanges in mammals and non-therapsid synap- Introduction sids (Hopson 1995). Under these circumstances, providing reliable hypotheses of homology is a fundamental palaeon- The homologies of carpal bones in late Palaeozoic and tological task. The synapsid carpus is a complex structure Mesozoic Synapsida have not been extensively researched. consisting of many small bones, and homologizing them in Homology is a key concept for different disciplines such as fossils spanning over 170 million years is challenging. Here taxonomy, systematics, and morphology. In some cases, a we investigate the homology and evolutionary change of deep understanding of homologies for the interpretation of the synapsid carpals from the early Permian to the end of evolutionary changes can only be provided by fossils. An the Cretaceous on the basis of currently accepted synapsid example of this is the proposed homology of the amniote systematics. astragalus with four tarsal bones in anamniote tetrapods The carpus is the proximal part of the manus (see ex- (O’Keefe et al. 2006), or the established homologies of the panded concept in SOM, Supplementary Online Ma te rial Acta Palaeontol. Pol. 65 (4): 649–678, 2020 https://doi.org/10.4202/app.00709.2019 650 ACTA PALAEONTOLOGICA POLONICA 65 (4), 2020 Fig. 1. Schematic diagrams of a non-therapsid synapsid (“pelycosaur”) carpus (A) and a mammaliaform carpus (B), labelled using the canonical and mammalian nomenclatures. Abbreviations: ca, capitate; ce, centrale; di, distal carpal; ha, hamate; int, intermedium; l ce, lateral centrale; lu, lunate; mc, metacarpal; m ce, medial centrale; pis, pisiform; ra, radius; rl, radiale; sc, scaphoid; td, trapezoid; tp, trapezium; tq, triquetrum; ul, ulna; ur, ulnare. available at http://app.pan.pl/SOM/app65-Kuemmell_etal_ and Bardeleben (1889). These used the mammalian nomen- SOM.pdf). Traditionally, the carpals of mammals were des- clature more broadly and also applied it to describe the ignated using a different nomenclature than that of reptiles carpals of the Permo-Triassic fossil synapsids. In contrast, and amphibians. These terms were known as the “mam- Broom (1901) established a homology of the Permo-Triassic malian nomenclature” (sensu Shubin and Alberch 1986) synapsids and the mammalian carpals adopting the canon- and the “canonic nomenclature” (sensu Čihák 1972), re- ical and the mammalian systems to describe the proximal spectively. The canonic nomenclature (henceforth «canon- and central carpals of the dicynodont “Udenodon gracilis” ical nomenclature») is not only used for reptiles and am- (= Dicynodontoides recuvidens; Angielczyk et al. 2009). phibians, but also for the non-mammaliaform members of However, in his later publications, he only used the canon- the clade Synapsida (Fig. 1A; e.g., Broom 1904; Jenkins ical nomenclature to describe the carpus of Permo-Triassic 1971; Liu et al. 2017), whereas the carpal bones of Mesozoic synapsids (Broom 1904, 1907, 1913, 1930). Broom (1901) Mammaliaformes are designated with the mammalian no- homologized the canonical and mammalian nomenclature, menclature (Fig. 1B, Table 1; e.g., Kielan-Jaworowska 1977; following Gegenbaur (1864), but he misinterpreted the me- Ji et al. 2002; Luo et al. 2003). These different naming con- dial centrale as distal carpal I, thus identifying only one ventions can lead to confusion in anatomical descriptions. centrale in “Udenodon”. However, later on, he described The use of different nomenclatures for the carpal bones of two centralia in non-mammaliamorph synapsids (Broom mammaliaforms and the remaining synapsids is an histor- 1904, 1907). The carpus in non-mammaliamorph synapsids ical artefact. It probably arose because of the early classi- has five distal carpals and two centralia, two carpals more fication of non-mammaliaform synapsids within the class than extant, basal mammals, which indicates that two carpal Reptilia (“mammal-like reptiles”), whereas those specimens bones were lost along the evolutionary transition to mam- now termed Mesozoic Mammaliaformes were, as a whole, mals (Fig. 1). Broom (1901, 1904, 1907) identified one of the considered to be members of Mammalia in former times. lost carpals as distal carpal V and proposed the second to The nomenclature of the mammalian carpus was first be a centrale when he homologized the mammalian lunate established for the human carpals in the 17th and 18th centu- (= lunar) with the intermedium. ries (Lyser 1653; Monro 1726; Albinus 1726; see McMurrich 1914) and later extended to describe the mammalian carpus Table 1. Homology of the reptilian and mammalian carpals after Ge- genbaur (1864). in general. A combination of the three slightly differing nomenclature systems of Lyser (1653), Monro (1726), and Canonical nomenclature Mammalian nomenclature Albinus (1726), together with the term central bone (cen- radiale scaphoideum trale) are still in use to designate carpal bones of mod- intermedium lunatum ern mammals and Mesozoic mammaliaforms (Table 1; e.g. ulnare triquetrum Kielan-Jaworowska 1977; Ji et al. 2002; Luo et al. 2003). In pisiforme pisiforme 1864, Gegenbaur introduced the canonical nomenclature centrale centrale for the carpus, which was more generally applicable to all carpale 1 mutungulatum majus/trapezium classes of vertebrates. He established homologies of the dif- ferent carpal bones in all vertebrate clades and homologized carpale 2 mutungulatum minus/trapezoides the reptilian and mammalian carpals (Table 1). carpale 3 capitatum carpale 4 The first descriptions of the carpus in non-mammali- hamatum amorph synapsids were provided by Seeley (1888, 1895) carpale 5 KÜMMELL ET AL.—EVOLUTION AND IDENTITY OF SYNAPSID CARPAL BONES 651 The homology of the canonical and mammalian nomen- ontogenetic fusion (Milaire 1978; Holmgren 1952; Čihák clature erected by Gegenbaur (1864; see Table 1) and adopted 1972; Slabý 1967). Thus, in addition to paleontological in- by Broom (1901, 1904) is followed up
Recommended publications
  • O Esqueleto Pós-Craniano De Exaeretodon Riograndensis Abdala Et Al
    Rev. bras. paleontol. 10(2):79-94, Maio/Agosto 2007 © 2007 by the Sociedade Brasileira de Paleontologia O ESQUELETO PÓS-CRANIANO DE EXAERETODON RIOGRANDENSIS ABDALA ET AL. (CYNODONTIA, TRAVERSODONTIDAE), TRIÁSSICO DO BRASIL TÉO VEIGA DE OLIVEIRA, CESAR LEANDRO SCHULTZ & MARINA BENTO SOARES Instituto de Geociências, UFRGS, Avenida Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brasil. [email protected], [email protected], [email protected] RESUMO – Pela primeira vez, elementos pós-cranianos de Exaeretodon riograndensis, um cinodonte traversodontídeo da Cenozona de Rhynchosauria da Formação Santa Maria, Neotriássico do sul do Brasil, são descritos e comparados com E. frenguellii e outros cinodontes não-mamalianos. O material inclui parte da coluna vertebral, radio, ulna e elementos da cintura pélvica. As diferenças mais significativas em relação a E. frenguellii estão na morfologia e nas dimensões do arco neural do atlas, na presença de intercentros em vértebras cervicais posteriores ao áxis e na ausência da dilatação do ápice do espinho neural das vértebras truncais. A morfologia da região sacral da coluna, do rádio, da ulna e da cintura pélvica são concordantes com o observado em E. frenguellii. A comparação com outros táxons de cinodontes não-mamalianos permite a observação da nítida evolução em mosaico do esqueleto pós-craniano destes animais: E. riograndensis mostra alguns caracteres similares a outros Cynognathia (grupo ao qual pertence), enquanto outros são mais próximos aos observados em alguns Probainognathia (incluindo mamíferos), como a natureza mais avançada do complexo atlas-áxis. Palavras-chave: Triássico, Brasil, Formação Santa Maria, Traversodontidae, Exaeretodon riograndensis, pós-crânio. ABSTRACT – THE POSTCRANIAL SKELETON OF EXAERETODON RIOGRANDENSIS ABDALA ET AL.
    [Show full text]
  • Origin and Beyond
    EVOLUTION ORIGIN ANDBEYOND Gould, who alerted him to the fact the Galapagos finches ORIGIN AND BEYOND were distinct but closely related species. Darwin investigated ALFRED RUSSEL WALLACE (1823–1913) the breeding and artificial selection of domesticated animals, and learned about species, time, and the fossil record from despite the inspiration and wealth of data he had gathered during his years aboard the Alfred Russel Wallace was a school teacher and naturalist who gave up teaching the anatomist Richard Owen, who had worked on many of to earn his living as a professional collector of exotic plants and animals from beagle, darwin took many years to formulate his theory and ready it for publication – Darwin’s vertebrate specimens and, in 1842, had “invented” the tropics. He collected extensively in South America, and from 1854 in the so long, in fact, that he was almost beaten to publication. nevertheless, when it dinosaurs as a separate category of reptiles. islands of the Malay archipelago. From these experiences, Wallace realized By 1842, Darwin’s evolutionary ideas were sufficiently emerged, darwin’s work had a profound effect. that species exist in variant advanced for him to produce a 35-page sketch and, by forms and that changes in 1844, a 250-page synthesis, a copy of which he sent in 1847 the environment could lead During a long life, Charles After his five-year round the world voyage, Darwin arrived Darwin saw himself largely as a geologist, and published to the botanist, Joseph Dalton Hooker. This trusted friend to the loss of any ill-adapted Darwin wrote numerous back at the family home in Shrewsbury on 5 October 1836.
    [Show full text]
  • Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
    Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus
    [Show full text]
  • Distributions of Extinction Times from Fossil Ages and Tree Topologies: the Example of Some Mid-Permian Synapsid Extinctions
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448028; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Distributions of extinction times from fossil ages and tree topologies: the example of some mid-Permian synapsid extinctions Gilles Didier1 and Michel Laurin2 1IMAG, Univ Montpellier, CNRS, Montpellier, France 2CR2P (“Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”; UMR 7207), CNRS/MNHN/UPMC, Sorbonne Université, Muséum National d’Histoire Naturelle, Paris, France June 11, 2021 Abstract Given a phylogenetic tree of extinct and extant taxa with fossils where the only temporal infor- mation stands in the fossil ages, we devise a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account the possibility that the taxa or the clade considered may diversify before going extinct, whilst previous methods just rely on the fossil recovery rate to estimate confidence intervals. We assess and compare our new approach with a standard previous one using simulated data. Results show that our method provides more accurate confidence intervals. This new approach is applied to the study of the extinction time of three Permo-Carboniferous synapsid taxa (Ophiacodontidae, Edaphosauridae, and Sphenacodontidae) that are thought to have disappeared toward the end of the Cisuralian, or possibly shortly thereafter. The timing of extinctions of these three taxa and of their component lineages supports the idea that a biological crisis occurred in the late Kungurian/early Roadian.
    [Show full text]
  • Morphology and Evolutionary Significance of the Atlas−Axis Complex in Varanopid Synapsids
    Morphology and evolutionary significance of the atlas−axis complex in varanopid synapsids NICOLÁS E. CAMPIONE and ROBERT R. REISZ Campione, N.E. and Reisz, R.R. 2011. Morphology and evolutionary significance of the atlas−axis complex in varanopid synapsids. Acta Palaeontologica Polonica 56 (4): 739–748. The atlas−axis complex has been described in few Palaeozoic taxa, with little effort being placed on examining variation of this structure within a small clade. Most varanopids, members of a clade of gracile synapsid predators, have well pre− served atlas−axes permitting detailed descriptions and examination of morphological variation. This study indicates that the size of the transverse processes on the axis and the shape of the axial neural spine vary among members of this clade. In particular, the small mycterosaurine varanopids possess small transverse processes that point posteroventrally, and the axial spine is dorsoventrally short, with a flattened dorsal margin in lateral view. The larger varanodontine varanopids have large transverse processes with a broad base, and a much taller axial spine with a rounded dorsal margin in lateral view. Based on outgroup comparisons, the morphology exhibited by the transverse processes is interpreted as derived in varanodontines, whereas the morphology of the axial spine is derived in mycterosaurines. The axial spine anatomy of Middle Permian South African varanopids is reviewed and our interpretation is consistent with the hypothesis that at least two varanopid taxa are present in South Africa, a region overwhelmingly dominated by therapsid synapsids and parareptiles. Key words: Synapsida, Varanopidae, Mycterosaurinae, Varanodontinae, atlas−axis complex, axial skeleton, Middle Permian, South Africa.
    [Show full text]
  • Um Novo E Peculiar Cinodonte Traversodontídeo Para O Triássico Médio Do Rio Grande Do Sul E Suas Implicações Para a Paleoecologia De
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS Um Novo e Peculiar Cinodonte Traversodontídeo para o Triássico Médio do Rio Grande do Sul e suas Implicações para a Paleoecologia de Cynodontia Míriam Reichel Orientador: Prof. Dr. Cesar Leandro Schultz Co-Orientadora: Profª. Drª. Marina Bento Soares Comissão Examinadora: Prof. Dr. José Fernando Bonaparte Prof. Dr. Mario Cozzuol Profª. Drª. Cristina Vega Dias Dissertação de Mestrado apresentada como requisito para obtenção do título de Mestre em Ciências Reichel, Miriam Um novo e peculiar Cinodonte Traversodontídeo para triássico médio do Rio Grande do Sul e suas implicações para a Paleoecologia de Cynodontia. / Miriam Reichel. - Porto Alegre : UFRGS, 2006. [145 f.] il. Dissertação (Mestrado). - Universidade Federal do Rio Grande do Sul. Instituto de Geociências. Programa de Pós-Graduação em Geociências. Porto Alegre, RS - BR, 2006. 1. Paleoecologia. 2. Cynodontia. 3. Traversodontidae. 4. Triássico Médio. 5. Formação Santa Maria. 6. Rio Grande do Sul. I. Título. _____________________________ Catalogação na Publicação Biblioteca Geociências - UFRGS Renata Cristina Grun CRB 10/1113 AGRADECIMENTOS • Ao professor Dr. José Fernando Bonaparte, pelos ensinamentos a respeito dos cinodontes, por estimular este trabalho, contribuindo com importantes comentários, e pela grande dedicação à paleontologia e àqueles que por ela se interessam. • Ao professor Dr. Cesar Leandro Schultz, por orientar este trabalho, por sempre tornar o ambiente de trabalho agradável, pelos conselhos e pela amizade. • À professora Dra. Marina Bento Soares, por me trazer para o mundo dos cinodontes, pela paciência e didática de fundamental importância para este trabalho, pelo carinho e pela amizade. • Às colegas Paula C.
    [Show full text]
  • The Big Picture Book
    BOOK PUBLISHERS Teachers Notes (Middle Years) by Dr John Long The Big Picture Book by Dr John Long, illustrated by Brian Choo ISBN 9781741143287 Recommended for ages 8-14 These notes may be reproduced free of charge for use and study within schools but they may not be reproduced (either in whole or in part) and offered for commercial sale. Introduction ............................................ 2 Science studies........................................ 2 Time........................................... 2 Astronomy .................................. 3 Geology ...................................... 3 Biology ....................................... 4 Science and the future .................. 6 Cultural studies ....................................... 6 Language................................................ 7 Meanings of some of the names featured in the book ........... 7 About the writer and illustrator .................. 7 Appendix: A ‘Bestiary’ of living things featured in the illustrations........................ 10 83 Alexander Street PO Box 8500 Crows Nest, Sydney St Leonards NSW 2065 NSW 1590 ph: (61 2) 8425 0100 [email protected] Allen & Unwin PTY LTD Australia Australia fax: (61 2) 9906 2218 www.allenandunwin.com ABN 79 003 994 278 INTRODUCTION This book was written to introduce to upper primary and lower secondary level children an outline of the three main themes that contribute towards our understanding of evolution: time, physical processes, and biological change. The book can be used to augment studies in general science (astronomy, geology, biology), but also to contribute to an understanding of the birth of human culture and to promote discussion of environmental issues confronting the world today. The writing is a simple, almost lyrical style to facilitate an easy level of reading, with pronunciation guide and glossary at the back of the book to help children say and understand the meaning of most of the technical words used in the text.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE AMY C. HENRICI Collection Manager Section of Vertebrate Paleontology Carnegie Museum of Natural History 4400 Forbes Avenue Pittsburgh, Pennsylvania 15213-4080, USA Phone:(412)622-1915 Email: [email protected] BACKGROUND Birthdate: 24 September 1957. Birthplace: Pittsburgh. Citizenship: USA. EDUCATION B.A. 1979, Hiram College, Ohio (Biology) M.S. 1989, University of Pittsburgh, Pennsylvania (Geology) CAREER Carnegie Museum of Natural History (CMNH) Laboratory Technician, Section of Vertebrate Paleontology, 1979 Research Assistant, Section of Vertebrate Paleontology, 1980 Curatorial Assistant, Section of Vertebrate Paleontology, 1980-1984 Scientific Preparator, Section of Paleobotany, 1985-1986 Scientific Preparator, Section of Vertebrate Paleontology, 1985-2002 Acting Collection Manager/Scientific Preparator, 2003-2004 Collection Manager, 2005-present PALEONTOLOGICAL FIELD EXPERIENCE Late Pennsylvanian through Early Permian of Colorado, New Mexico and Utah (fish, amphibians and reptiles) Early Permian of Germany, Bromacker quarry (amphibians and reptiles) Triassic of New Mexico, Coelophysis quarry (Coelophysis and other reptiles) Upper Jurassic of Colorado (mammals and herps) Tertiary of Montana, Nevada, and Wyoming (mammals and herps) Pleistocene of West Virginia (mammals and herps) Lake sediment cores and lake sediment surface samples, Wyoming (pollen and seeds) PROFESSIONAL APPOINTMENTS Associate Editor, Society of Vertebrate Paleontology, 1998-2000. Research Associate in the Science Division, New Mexico Museum of Natural History and Science, 2007-present. PROFESSIONAL ASSOCIATIONS Society of Vertebrate Paleontology Paleontological Society LECTURES and TUTORIALS (Invited and public) 1994. Middle Eocene frogs from central Wyoming: ontogeny and taphonomy. California State University, San Bernardino 1994. Mechanical preparation of vertebrate fossils. California State University, San Bernardino 1994. Mechanical preparation of vertebrate fossils. University of Chicago 2001.
    [Show full text]
  • Lower Triassic Postcanine Teeth with Allotherian-Like Crowns
    Research Letters South African Journal of Science 103, May/June 2007 245 Lower Triassic postcanine teeth with allotherian-like crowns F. Abdala*‡, H. Mocke*§ and P.J. Hancox* The Allotheria are fossil mammals with upper and lower post- canines usually showing two longitudinal rows of cusps separated by a central valley. The group comprises the poorly known haramiyids, mostly represented by isolated teeth, and the notably diverse and long-lived multituberculates; its monophyly is uncer- tain. The oldest records of this particular group are the Late Triassic (Norian–Rhaetian) haramiyids. We present here postcanines with haramiyid-like crowns that were recovered from the Lower Triassic of South Africa. A distinguishing feature of the new teeth is that they are single-rooted. This is the oldest record of mammal-like teeth with crowns having parallel rows of cusps, representing a temporal extension of some 43 million years from similar crown patterns of haramiyids and tritylodontids. This finding reinforces evidence of the remarkable faunal turnover of therapsids in the Early/Middle Triassic, at which time an explosive origin followed by a rapid early diversification of herbivorous/omnivorous forms with occluding expanded postcanines took place. Introduction The Beaufort Group of the South African Karoo shows an abundance and diversity of non-mammalian synapsids, which have allowed for biostratigraphic subdivisions ranging from Middle Permian to Middle Triassic.1 The youngest of these Fig. 1.Allotherian-like teeth.A, Occlusal and lateral views of BP/1/6515 (Pattern 1); B, occlusal and lateral views of BP/1/6516 (Pattern 2). biozones, the Cynognathus Assemblage Zone (AZ), comprises the full extent of the Burgersdorp Formation of the Tarkastad Sub- found to be most parsimonious from an unconstrained search, group (J.
    [Show full text]
  • Cynognathus from the Karoo Basin of South Africa, Using Stable Light Isotope Analysis
    Palaeogeography, Palaeoclimatology, Palaeoecology 223 (2005) 303–316 www.elsevier.com/locate/palaeo The palaeoecology of the non-mammalian cynodonts Diademodon and Cynognathus from the Karoo Basin of South Africa, using stable light isotope analysis Jennifer Bothaa,*, Julia Lee-Thorpb, Anusuya Chinsamya aZoology Department, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa bArchaeology Department, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa Received 21 June 2004; received in revised form 15 March 2005; accepted 21 April 2005 Abstract The palaeoecology of the coeval Middle Triassic non-mammalian cynodonts, Diademodon and Cynognathus (Therapsida) remains poorly understood although their gross morphology has been studied intensively. Significant differences in their growth patterns suggest inherent biological differences, despite having inhabited similar environments. In this study, the palaeoecology of Cynognathus and Diademodon specimens were examined using intra-tooth stable carbon and oxygen isotope analyses of enamel carbonate. The resulting stable isotope patterns of Cynognathus and Diademodon were compared with that of Crocodylus niloticus and published mammalian tooth enamel data. Predictably, the non-mammalian cynodont d13C values 18 13 fall within the expected range for C3 plant diets. Both d O and d C values of Diademodon are markedly more depleted than those of Cynognathus, suggesting that the former fed in shadier, damper areas, was nocturnal and/or depended more directly on environmental water. The seasonal amplitude reflected in the Cynognathus teeth is relatively low. However, high amplitude, directional d18O intra-tooth variations in the Diademodon teeth are comparable to, or higher than, those observed for extant mammalian and C. niloticus teeth from semi-arid, seasonal regions.
    [Show full text]
  • Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
    ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut
    [Show full text]
  • A New Basal Sphenacodontid Synapsid from the Late Carboniferous of the Saar−Nahe Basin, Germany
    A new basal sphenacodontid synapsid from the Late Carboniferous of the Saar−Nahe Basin, Germany JÖRG FRÖBISCH, RAINER R. SCHOCH, JOHANNES MÜLLER, THOMAS SCHINDLER, and DIETER SCHWEISS Fröbisch, J., Schoch, R.R., Müller, J., Schindler, T., and Schweiss, D. 2011. A new basal sphenacodontid synapsid from the Late Carboniferous of the Saar−Nahe Basin, Germany. Acta Palaeontologica Polonica 56 (1): 113–120. A new basal sphenacodontid synapsid, represented by an anterior portion of a mandible, demonstrates for the first time the presence of amniotes in the largest European Permo−Carboniferous basin, the Saar−Nahe Basin. The new taxon, Cryptovenator hirschbergeri gen. et sp. nov., is autapomorphic in the extreme shortness and robustness of the lower jaw, with moderate heterodonty, including the absence of a greatly reduced first tooth and only a slight caniniform develop− ment of the second and third teeth. Cryptovenator shares with Dimetrodon, Sphenacodon, and Ctenospondylus, but nota− bly not with Secodontosaurus, enlarged canines and a characteristic teardrop outline of the marginal teeth in lateral view, possession of a deep symphyseal region, and a strongly concave dorsal margin of the dentary. The new find shows that sphenacodontids were present in the Saar−Nahe Basin by the latest Carboniferous, predating the record of sphenacodontid tracks from slightly younger sediments in this region. Key words: Synapsida, Sphenacodontidae, Carboniferous, Saar−Nahe Basin, Germany. Jörg Fröbisch [[email protected]], Department of Geology, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605, USA and [joerg.froebisch@mfn−berlin.de], Museum für Naturkunde Leibniz−Institut für Evolu− tions− und Biodiversitätsforschung an der Humboldt−Universität zu Berlin, Invalidenstr.
    [Show full text]