Université Victor Segalen Bordeaux 2 FACTEURS

Total Page:16

File Type:pdf, Size:1020Kb

Université Victor Segalen Bordeaux 2 FACTEURS Université Victor Segalen Bordeaux 2 UFR Sciences de la Vie Année 2009 Thèse n°1688 THÈSE pour le DOCTORAT DE L’UNIVERSITÉ DE BORDEAUX Mention : Sciences, Technologie, Santé Option : Neurosciences Présentée et soutenue publiquement le 21 Décembre 2009 Par Nadège ROBERT (épouse BERSON) Née le 28 Novembre 1981 à Périgueux (24) FACTEURS NEUROBIOLOGIQUES ASSOCIÉS À L’ADDICTION A LA COCAÏNE : ETUDE AU MOYEN D’UN MODELE D’ADDICTION CHEZ LE RAT Membres du jury Président : M. Bruno Aouizerate, PU-PH, Université de Bordeaux, Bordeaux, France Rapporteur : M. Rafael Maldonado, Professeur, Université Pompeu Fabra, Barcelone, Espagne Rapporteur : M. François Tronche, DR CNRS, CNRS FRE2401, Collège de France, Paris, France Invité : M. Pier Vincenzo Piazza, DR INSERM, CRI U862, Bordeaux, France Directrice de thèse : Mme Véronique Deroche-Gamonet, CR INSERM, U862, Bordeaux À mes Amours Pascal et Pierric… REMERCIEMENTS Le meilleur ami de "merci" est "beaucoup". Michel Bouthot. Ce travail de thèse s’est déroulé dans le laboratoire INSERM U862 sous la direction du Docteur Véronique Deroche-Gamonet que je souhaite tout particulièrement et très sincèrement remercier pour son implication dans l’ensemble de ces travaux et son dévouement à m’enseigner la rigueur scientifique et la passion pour le travail bien fait. Cette thèse n’aurait pas été ce qu’elle est sans vous : un grand merci ! Je voudrais également remercier le Docteur Pier-Vincenzo Piazza de m’avoir accompagnée en tant que Directeur de l’unité INSERM U862 « Physiopathologie de l’addiction » tout au long de cette thèse. Merci au Professeur Michel Le Moal pour ses encouragements, sa gentillesse et les longues discussions scientifiques que nous avons eu certains WE « comportementaux ». Cela m’a beaucoup aidé. Je suis profondément reconnaissante aux docteurs Rafaël Maldonado et François Tronche de m’avoir fait l’honneur de porter leur jugement expert sur ce travail. Je tiens également à exprimer ma reconnaissance au Professeur Bruno Aouizerate d’avoir accepté de présider mon jury de thèse. Que tous les membres de l’unité INSERM U862 soient assurés de ma gratitude et de ma reconnaissance pour leur soutien et la chaleur humaine qu’ils m’ont apportée. Je souhaite remercier du fond du cœur le docteur Guillaume Drutel de m’avoir encadré en biologie moléculaire ainsi que Thierry Leste-Lasserre qui a accompli un travail considérable dans ce domaine. Merci à vous deux pour votre professionnalisme, votre patience et votre gentillesse. J’ai passé d’agréables moments en votre compagnie. Je souhaite remercier chaleureusement le Docteur Nora Abrous pour l’apprentissage des techniques d’immunohistochimie et pour tous ses précieux conseils et encouragements. Il m’est impossible d’oublier mes compères d’unité sans qui les jours de « comportement » auraient été bien tristes et beaucoup plus difficiles : Merci Eric de m’avoir appris les filons de l’autoadministration et pour ta patience, Merci Jean-Fançois de m’avoir si souvent écouté et pour ta bonne humeur et pour finir un grand Merci à toi Jean-Marc de m’avoir fait tant rire…et ainsi donné l’envie de revenir dans ce laboratoire les jours d’après, même quand ça n’allait pas très bien. Merci à vous trois, je vous dois beaucoup ! Un grand merci au C.B.I.B. (centre de bioinformatique de Bordeaux) pour le développement d’outils informatiques fondamentaux dans l’étude des micropuces à ADN et plus particulièrement à Alexandre BROCHARD, dit « Super Bio-Informaticien », pour son travail d’analyse et pour avoir su traduire avec brio le langage des biologistes en langage que les ordinateurs comprennent… Je souhaite également remercier les Docteurs Sophie Layé et Jan-Pieter Konsman pour l’accueil dans leur laboratoire, leur prêt de microscope, leur aide dans l’exploitation des images d’immunohistochimie et surtout leur gentillesse, une vrai bouffée d’air frais ! - I - RESUMÉ De nombreux individus consomment une, ou plusieurs, substances psychoactives au cours de leur vie. Alors que la majorité des consommateurs maintient une utilisation épisodique et contrôlée, certains perdent le contrôle sur l’usage de la substance ; symptôme majeur d’une addiction. Comprendre les mécanismes psychobiologiques, qui sous-tendent cette vulnérabilité à passer d’un usage contrôlé à un usage compulsif, constituerait une étape décisive dans la compréhension de la pathologie et l’identification de cibles thérapeutiques pertinentes. En effet, malgré un intense effort de recherche au cours des 40 dernières années, les thérapies disponibles se révèlent d’une efficacité limitée. Il faut probablement en chercher la cause dans la complexité de la pathologie, mais aussi dans l’inadéquation des préparations expérimentales à la définition clinique de l'addiction. Dans ce contexte, une étape décisive a été franchie il y a 5 ans lorsque des chercheurs de notre équipe ont développé le premier modèle pluri-symptomatique d’addiction à la cocaïne chez le rat. Grâce à ce modèle, il est possible d’identifier des animaux qui développent un comportement similaire à l’addiction, alors que d’autres maintiennent un usage contrôlé, et ce, malgré une consommation préalable de drogue équivalente. S'appuyant sur ce modèle d'addiction chez le rat, le but de nos travaux de thèse était d’identifier des différences neurobiologiques entre usagers addicts et non-addicts et d’aborder les mécanismes neurobiologiques qui sous-tendent la transition vers l’addiction. Pour ce second point, nous avons considéré les différences majeures identifiées et étudié leur évolution de l’usage précoce de cocaïne (avant l'addiction) à l'usage tardif (après développement de l’addiction) en fonction des sujets (addicts versus non-addicts). Nous avons utilisé une approche multidisciplinaire associant les principales méthodes des neurosciences comportementales, moléculaires et des systèmes. Nous avons comparé addicts et non-addicts au moyen d’une stratégie ciblée et d’une stratégie non ciblée. La stratégie non ciblée a consisté à évaluer l'expression des gènes à grande échelle, dans des structures cérébrales clés, au moyen d’une technique de gene profiling (environ 28 000 gènes testés simultanément). L'approche ciblée a consisté à analyser des facteurs connus pour être modifiés par l'usage ou l’administration chronique de cocaïne. Nous nous sommes concentrés sur une structure majeure, le noyau accumbens, et avons étudié : i. l'expression de gènes cibles au moyen de la qPCR, ii. plusieurs formes de plasticité synaptique à l'aide de l’électrophysiologie in vitro, iii. l'activité des neurones dopaminergiques de l’aire tegmentale ventrale (VTA) (projetant vers le noyau accumbens) au moyen de l’électrophysiologie in vivo, iv. la libération de dopamine dans le noyau accumbens au moyen de la microdialyse in vivo. Nous avons montré que les rats addicts et non-addicts s'adaptent très différemment à la cocaïne. Les usagers non-addicts paraissent en mesure de contrecarrer les changements neurobiologiques précoces provoqués par la cocaïne, tandis que les addicts ne le sont pas. Ils présentent des réponses neurobiologiques similaires à celles d'animaux naïfs vis-à-vis de la cocaïne ou d'animaux ayant été exposés à la drogue sur une très courte période. En résumé, les données obtenues au cours de ce travail de thèse modifient drastiquement la perception commune de la psychopathologie de l’addiction. L'addiction résulterait moins de modifications produites par la drogue (comme on le pense depuis 40 ans) que de l'incapacité à lutter contre ces modifications. - II - ABSTRACT Numerous individuals consume one, or several, psychoactive substances during their lifetime. Although most consumers make only occasional and controlled use of a substance, some lose control of their use, which constitutes a major symptom of addiction. Understanding the psychobiological mechanisms which underlie this vulnerability to the transition from controlled drug use to addiction would constitute a decisive step forward in our understanding of the pathology and in our identification of the relevant therapeutic targets. Indeed despite intense research efforts during the last 40 years, the therapies available are of limited efficacy. This is probably related to the complexity of the pathology, as well as to the unsuitability of experimental preparations to the clinical definition of addiction. In such a context, there was a significant breakthrough 5 years ago when our research team developed the first pluri-symptomatic model of cocaine addiction in the rat. Thanks to this model it is possible to single out animals that develop an addiction-like behavior from others that, despite equivalent prior drug consumption, keep their use under control. The aim of our doctoral research, based on this rat addiction model, was to identify the neurobiological differences between addicted and non-addicted users, and then to start investigating neurobiological mechanisms that could underly transition to addiction. For this latter point we considered the major differences identified between addicts and non- addicts, and we studied their evolution from early (before addiction) to late cocaine use (after addiction development). We used a multidisciplinary approach associating behavioral, molecular and systems neuroscience. We compared addicts and non-addicts by means of a targeted strategy and a non-targeted strategy. The non-targeted strategy consisted in evaluating large-scale gene expression by means of a gene–profiling technique (approximately 28,000 genes tested simultaneously). The targeted approach consisted in analysing factors known to be modified by the use or chronic administration of cocaine. Concentrating on one main structure, the nucleus accumbens, we studied: (i) the expression of targeted genes by means of qPCR; (ii) several forms of synaptic plasticity using in vitro electrophysiology; (iii) the activity of the dopaminergic neurons of the ventral tegmental area (VTA) (projecting towards the nucleus accumbens) using in vivo electrophysiology; (iv) the liberation of dopamine in the nucleus accumbens by means of in vivo microdialysis. We showed that addict and non-addict rats adapt to cocaine in very different ways.
Recommended publications
  • Number 2 February 2017 Atlas of Genetics and Cytogenetics in Oncology and Haematology
    Volume 1 - Number 1 May - September 1997 Volume 21 - Number 2 February 2017 Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST-CNRS Scope The Atlas of Genetics and Cytogenetics in Oncology and Haematology is a peer reviewed on-line journal in open access, devoted to genes, cytogenetics, and clinical entities in cancer, and cancer-prone diseases. It is made for and by: clinicians and researchers in cytogenetics, molecular biology, oncology, haematology, and pathology. One main scope of the Atlas is to conjugate the scientific information provided by cytogenetics/molecular genetics to the clinical setting (diagnostics, prognostics and therapeutic design), another is to provide an encyclopedic knowledge in cancer genetics. The Atlas deals with cancer research and genomics. It is at the crossroads of research, virtual medical university (university and post-university e-learning), and telemedicine. It contributes to "meta-medicine", this mediation, using information technology, between the increasing amount of knowledge and the individual, having to use the information. Towards a personalized medicine of cancer. It presents structured review articles ("cards") on: 1- Genes, 2- Leukemias, 3- Solid tumors, 4- Cancer-prone diseases, and also 5- "Deep insights": more traditional review articles on the above subjects and on surrounding topics. It also present 6- Case reports in hematology and 7- Educational items in the various related topics for students in Medicine and in Sciences. The Atlas of Genetics and Cytogenetics in Oncology and Haematology does not publish research articles. See also: http://documents.irevues.inist.fr/bitstream/handle/2042/56067/Scope.pdf Editorial correspondance Jean-Loup Huret, MD, PhD, Genetics, Department of Medical Information, University Hospital F-86021 Poitiers, France phone +33 5 49 44 45 46 [email protected] or [email protected] .
    [Show full text]
  • Redefining the Specificity of Phosphoinositide-Binding by Human
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins Nilmani Singh1†, Adriana Reyes-Ordoñez1†, Michael A. Compagnone1, Jesus F. Moreno Castillo1, Benjamin J. Leslie2, Taekjip Ha2,3,4,5, Jie Chen1* 1Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; 2Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205; 3Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218; 4Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205; 5Howard Hughes Medical Institute, Baltimore, MD 21205, USA †These authors contributed equally to this work. *Correspondence: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.163253; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. ABSTRACT Pleckstrin homology (PH) domains are presumed to bind phosphoinositides (PIPs), but specific interaction with and regulation by PIPs for most PH domain-containing proteins are unclear. Here we employed a single-molecule pulldown assay to study interactions of lipid vesicles with full-length proteins in mammalian whole cell lysates.
    [Show full text]
  • HOXD8 Exerts a Tumor-Suppressing Role in Colorectal Cancer As an Apoptotic Inducer
    HOXD8 exerts a tumor-suppressing role in colorectal cancer as an apoptotic inducer Mohammed A. Mansour1, Takeshi Senga2 1Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt 2Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550 Japan Address correspondence to: Mohammed A. Mansour; Biochemistry division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt; E-mail: [email protected] Running title: HOXD8 suppresses colorectal cancer progression Keywords: Colorectal Cancer; HOXD8; homology modeling; TCGA; STK38; MYC; Apoptosis Conflict-of-interest statement: The authors declare that they have no conflict of interest. The data sharing statement: No additional data are available. Abstract Homeobox (HOX) genes are conserved transcription factors which determine the anterior- posterior body axis patterning. HOXD8 is a member of HOX genes deregulated in several tumors such as lung carcinoma, neuroblastoma, glioma and colorectal cancer (CRC) in a context-dependent manner. In CRC, HOXD8 is downregulated in cancer tissues and metastatic foci as compared to normal tissues. Whether HOXD8 acts as a tumor suppressor of malignant progression and metastasis is still unclear. Also, the underlying mechanism of its function including the downstream targets is totally unknown. Here, we clarified the lower expression of HOXD8 in clinical colorectal cancer vs. normal colon tissues. Also, we showed that stable expression of HOXD8 in colorectal cancer cells significantly reduced the cell proliferation, anchorage-independent growth and invasion. Further, using The Cancer Genome Atlas (TCGA), we identified the genes associated with HOXD8 in order to demonstrate its function as a suppressor or a promoter of colorectal carcinoma.
    [Show full text]
  • Open Data for Differential Network Analysis in Glioma
    International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes.
    [Show full text]
  • NUDT21-Spanning Cnvs Lead to Neuropsychiatric Disease And
    Vincenzo A. Gennarino1,2†, Callison E. Alcott2,3,4†, Chun-An Chen1,2, Arindam Chaudhury5,6, Madelyn A. Gillentine1,2, Jill A. Rosenfeld1, Sumit Parikh7, James W. Wheless8, Elizabeth R. Roeder9,10, Dafne D. G. Horovitz11, Erin K. Roney1, Janice L. Smith1, Sau W. Cheung1, Wei Li12, Joel R. Neilson5,6, Christian P. Schaaf1,2 and Huda Y. Zoghbi1,2,13,14. 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA. 2Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030, USA. 3Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, 77030, USA. 4Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, 77030, USA. 5Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, 77030, USA. 6Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030, USA. 7Center for Child Neurology, Cleveland Clinic Children's Hospital, Cleveland, OH, United States. 8Department of Pediatric Neurology, Neuroscience Institute and Tuberous Sclerosis Clinic, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA. 9Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas, USA. 10Department of Molecular and Human Genetics, Baylor College of Medicine, San Antonio, Texas, USA. 11Instituto Nacional de Saude da Mulher, da Criança e do Adolescente Fernandes Figueira - Depto de Genetica Medica, Rio de Janeiro, Brazil. 12Division of Biostatistics, Dan L Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA. 13Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, 77030, USA.
    [Show full text]
  • Altered Gene Expression in Circulating Immune Cells Following a 24-Hour Passive Dehydration
    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 5-10-2020 Altered Gene Expression in Circulating Immune Cells Following a 24-Hour Passive Dehydration Aidan Fiol [email protected] Follow this and additional works at: https://opencommons.uconn.edu/gs_theses Recommended Citation Fiol, Aidan, "Altered Gene Expression in Circulating Immune Cells Following a 24-Hour Passive Dehydration" (2020). Master's Theses. 1480. https://opencommons.uconn.edu/gs_theses/1480 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. Altered Gene Expression in Circulating Immune Cells Following a 24- Hour Passive Dehydration Aidan Fiol B.S., University of Connecticut, 2018 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science At the University of Connecticut 2020 i copyright by Aidan Fiol 2020 ii APPROVAL PAGE Master of Science Thesis Altered Gene Expression in Circulating Immune Cells Following a 24- Hour Passive Dehydration Presented by Aidan Fiol, B.S. Major Advisor__________________________________________________________________ Elaine Choung-Hee Lee, Ph.D. Associate Advisor_______________________________________________________________ Douglas J. Casa, Ph.D. Associate Advisor_______________________________________________________________ Robert A. Huggins, Ph.D. University of Connecticut 2020 iii ACKNOWLEDGEMENTS I’d like to thank my committee members. Dr. Lee, you have been an amazing advisor, mentor and friend to me these past few years. Your advice, whether it was how to be a better writer or scientist, or just general life advice given on our way to get coffee, has helped me grow as a researcher and as a person.
    [Show full text]
  • Missing Proteins in Chromosome 16
    Missing proteins in Chromosome 16 - Spanish HPP Manuel Fuentes1, Noelia Dasilva1, Felipe Clemente2, María Luisa Hernáez2, Paula Díez1, Maria Gonzalez-Gonzalez1, Alberto Orfao1, Felix Elortza5, Fernando Corrales4, Juan Pablo Albar3, Concha Gil2. 1Cancer Research Center. University of Salamanca-CSIC, IBSAL. Campus Miguel de Unamuno s/n. 37007 Salamanca. Spain. 2ProteoRed-ISCIII. Dpt. Microbiology & Proteomics Unit. University Complutense. Madrid. Spain. 3 ProteoRed-ISCIII. National Center of Biotechnology. CSIC. Madrid. Spain. 4ProteoRed-ISCIII. Center for Applied Medical Research (CIMA), Spain. 5ProteoRed-ISCIII. CIC bioGUNE. Bilbao. Spain. AIM In the scope of the HPP project, there is a special situation for the proteins that had not spectral and/or expression evidence, those are called "Unknown proteins".These proteins must be studied specifically to get enough information to build MRM quantitation methods. The Spanish HPP consortium has developed a specific protocol for unknown proteins in order to get MSMS information for the MRM method. MATERIALS AND METHODS Clones and plasmids All the clones used are from pANT7_cGST clone collection distributed by Plasmid repository at Arizona State University Biodesign Institute. Each clone contains an in-frame fused C-terminal GST tag. Each bacterial clone was grown overnight in 5 mL of Luria broth with 100 µg/mL ampicillin. Plasmid DNA was extracted using Mini- Prep Kit from Promega, following manufacture instructions. All plasmids were sequence to confirm the identity of the insert. DNA isolation and sequence verification Protein IVVT production Proteins were synthesized from plasmid DNA using Human In vitro Protein Expression kit (Thermo) following manufacture s protocol with a few minimal modifications in order to adapt for 1.5 mL eppendorf tubes.
    [Show full text]
  • HOXD8 Exerts a Tumor-Suppressing Role in Colorectal Cancer As an Apoptotic Inducer
    Mansour, M. A. and Senga, T. (2017) HOXD8 exerts a tumor-suppressing role in colorectal cancer as an apoptotic inducer. International Journal of Biochemistry and Cell Biology, 88, pp. 1-13. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/140905/ Deposited on: 30 May 2017 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk HOXD8 exerts a tumor-suppressing role in colorectal cancer as an apoptotic inducer Mohammed A. Mansour1,2,3, Takeshi Senga4 1Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt 2Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK 3Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK 4Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550 Japan Address correspondence to: Mohammed A. Mansour; Biochemistry division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt; E-mail: [email protected] Running title: HOXD8 suppresses colorectal cancer progression Keywords: Colorectal Cancer; HOXD8; homology modeling; TCGA; STK38; MYC; Apoptosis Conflict-of-interest statement: The authors declare that they have no conflict of interest. The data sharing statement: No additional data are available. Abstract Homeobox (HOX) genes are conserved transcription factors which determine the anterior- posterior body axis patterning. HOXD8 is a member of HOX genes deregulated in several tumors such as lung carcinoma, neuroblastoma, glioma and colorectal cancer (CRC) in a context-dependent manner.
    [Show full text]
  • Phenotype Informatics
    Freie Universit¨atBerlin Department of Mathematics and Computer Science Phenotype informatics: Network approaches towards understanding the diseasome Sebastian Kohler¨ Submitted on: 12th September 2012 Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Mathematik und Informatik der Freien Universitat¨ Berlin ii 1. Gutachter Prof. Dr. Martin Vingron 2. Gutachter: Prof. Dr. Peter N. Robinson 3. Gutachter: Christopher J. Mungall, Ph.D. Tag der Disputation: 16.05.2013 Preface This thesis presents research work on novel computational approaches to investigate and characterise the association between genes and pheno- typic abnormalities. It demonstrates methods for organisation, integra- tion, and mining of phenotype data in the field of genetics, with special application to human genetics. Here I will describe the parts of this the- sis that have been published in peer-reviewed journals. Often in modern science different people from different institutions contribute to research projects. The same is true for this thesis, and thus I will itemise who was responsible for specific sub-projects. In chapter 2, a new method for associating genes to phenotypes by means of protein-protein-interaction networks is described. I present a strategy to organise disease data and show how this can be used to link diseases to the corresponding genes. I show that global network distance measure in interaction networks of proteins is well suited for investigat- ing genotype-phenotype associations. This work has been published in 2008 in the American Journal of Human Genetics. My contribution here was to plan the project, implement the software, and finally test and evaluate the method on human genetics data; the implementation part was done in close collaboration with Sebastian Bauer.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]
  • The Genetic Architecture Underlying Ecological Adaptation in Atlantic
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.15.204214; this version posted July 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The genetic architecture underlying ecological adaptation in 2 Atlantic herring is not consistent with the infinitesimal model 3 4 Fan Han1, Minal Jamsandekar2, Mats E. Pettersson1, Leyi Su1, Angela Fuentes-Pardo1, Brian 5 Davis2, Dorte Bekkevold3, Florian Berg4,5, Michele Cassini6,7, Geir Dahle5, Edward D. 6 Farell8, Arild Folkvord4,5, Leif Andersson1,2,9,* 7 8 1Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, 9 Sweden. 10 2Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, 11 USA. 12 3National Institute of Aquatic Resources, Technical University of Denmark. 13 4Department of Biological Sciences, University of Bergen, Bergen, Norway. 14 5Institute of Marine Research, Bergen, Norway. 15 6Department of Aquatic Resources, Institute of Marine Research, Swedish University of 16 Agricultural Sciences, Lysekil, Sweden. 17 7Department of Biological, Geological and Environmental Sciences, University of Bologna, 18 Bologna, Italy.8School of Biology and Environmental Science, Science Centre West, 19 University College Dublin, Belfield, Dublin 4, Ireland.9Department of Animal Breeding and 20 Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. 21 *Corresponding author: Email:[email protected] 22 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.15.204214; this version posted July 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Redefining the Specificity of Phosphoinositide-Binding By
    ARTICLE https://doi.org/10.1038/s41467-021-24639-y OPEN Redefining the specificity of phosphoinositide- binding by human PH domain-containing proteins Nilmani Singh 1,6, Adriana Reyes-Ordoñez1,6, Michael A. Compagnone1, Jesus F. Moreno1, Benjamin J. Leslie2, ✉ Taekjip Ha 2,3,4,5 & Jie Chen 1 Pleckstrin homology (PH) domains are presumed to bind phosphoinositides (PIPs), but specific interaction with and regulation by PIPs for most PH domain-containing proteins are 1234567890():,; unclear. Here we employ a single-molecule pulldown assay to study interactions of lipid vesicles with full-length proteins in mammalian whole cell lysates. Of 67 human PH domain- containing proteins initially examined, 36 (54%) are found to have affinity for PIPs with various specificity, the majority of which have not been reported before. Further investigation of ARHGEF3 reveals distinct structural requirements for its binding to PI(4,5)P2 and PI(3,5) P2, and functional relevance of its PI(4,5)P2 binding. We generate a recursive-learning algorithm based on the assay results to analyze the sequences of 242 human PH domains, predicting that 49% of them bind PIPs. Twenty predicted binders and 11 predicted non- binders are assayed, yielding results highly consistent with the prediction. Taken together, our findings reveal unexpected lipid-binding specificity of PH domain-containing proteins. 1 Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. 2 Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA. 3 Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA. 4 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
    [Show full text]