https://ntrs.nasa.gov/search.jsp?R=19900009026 2020-03-20T00:02:40+00:00Z NASA Reference Publication 1216

1989 Fifty Year Canon of Lunar Eclipses: 1986-2035

Fred Espenak Goddard Space Flight Center Greenbelt, Maryland

National Aeronautics and Space Administration Off ice of Management Scientific and Technical Information Division FIFTY YEAR CANON OF LUNAR ECLIPSES: 1986 . 2035

Table of Contents

Introduction ...... 1 Organization of the Canon ...... 3 Description of Section 1 ...... 5 Description of Section 2 ...... 9 Description of Section 3 ...... 11 Accuracy of the Ephemerides ...... 13 References ...... 15

SECTION 1 . LUNAR ECLIPSE CATALOG: 1901 . 2100 ...... 17

SECTION 2 . ECLIPSE PATHS AND GLOBAL MAPS: 1901 . 2100 ..... 31

SECTION 3 . ECLIPSE PATHS AND WORLD MAPS: 1986 . 2035 ...... 79

APPENDIX A . Lunar Eclipses ...... 195

APPENDIX B . Program MONECL ...... 213

iii I pAG€A I 1NTENTIQNALkY BLAff K PRECEDING PAGE BLANK NOT FILMED INTRODUCTION

Fifty Year Canon of Lunar Eclipses: 1986 - 2035 has been designed to compliment Fifty Year Canon of Solar Eclipses: 1986 - 2035 (NASA RP 1178 Revised). Like its companion volume. its primary goal is to provide a five decade reference of moderately detailed eclipse predictions and maps for use by the astronomical community. During the past century, Canon of Eclipses [Oppolzer, 18871 has served as an invaluable guide to both solar and lunar eclipses. However, with the advent of high speed electronic computers and modern ephemerides, eclipse predictions of far greater accuracy are possible today. Although such predictions are published annually in the Astronomical Almanac by the Nautical Almanac Office, this publication only becomes available three to six months before the beginning of each year. Canon of Lunar Eclipses: -2002 to +2526 [Meeus and Mucke, 19791 covers eclipses over an unprecedented 45 century interval. But due to the sheer number of eclipses covered in this work, the details for any one event must be rather brief. For instance, very little information is given concerning the visibility of an eclipse except for the geographic coordinates where the appears at the zenith at greatest eclipse. While mathematical formulae are provided for calculating the Moon's altitude from any point on Earth, a map showing regions of visibility during each phase would convey a great deal of information at one glance. Since Fifty Year Canon covers a much shorter time period, it's possible to include such maps in addition to diagrams showing the Moon's path through Earth's shadow. The graphical representation of this information provides the reader with an immediate appreciation of the geometry involved during each eclipse. Finally. data included with the figures and in the accompanying tables supplement the eclipse predictions. Teachers, students, amateur astronomers and interested laymen should find this work useful as a general reference on eclipses during this century and the next. Lunar eclipses are one of the most dramatic and beautiful celestial phenomena visible to the naked eye. As such, they generate a great deal of interest among the general public and news media. Naturally, questions arise as to where a particular eclipse will be visible from, and when the next eclipse occurs. Unfortunately, there is very little information in print about the visibility of future eclipses and most references are obscure, not easily accessible and/or out of print. The eclipse path diagrams, world maps and detailed tables appearing in Fifty Year Canon should go far in addressing these issues.

1 ORGANIZATION OF THE CANON

Fifty Year Canon of Lunar Eclipses: 1986 - 2035 is composed of three major sections and two appendices. Section 1 is a catalog which lists the general characteristics of every lunar eclipse from 1901 through I 2100. Section 2 graphically illustrates the path of the Moon through Earth’s shadow and the global visibility of every lunar eclipse from 1901 through 2100. Finally, section 3 consists of detailed eclipse path figures and predicted contact times along with cylindrical projection maps (including political boundaries) of the global visibility for every lunar eclipse from 1986 through 2035. Appendix A provides some general background on lunar eclipses and covers eclipse geometry, eclipse frequency and recurrence, enlargement of Earth’s shadow, crater timings during eclipses, eclipse brightness estimation and time determination. Appendix B is a listing of a very simple Fortran program which can be used to predict the occurrence and general characteristics of lunar eclipses. It makes use of many approximations while maintaining a reasonable level of accuracy and reliability. The program is based primarily on algorithms devised by Meeus [1982] and the ample comments should make the program self- explanatory. A detailed description of each section of Fifty Year Canon of Lunar Eclipses: 1986 - 2035 follows.

3 I PREcuI)iNG PAGE BLANK NOT FILMED SECTION 1 - LUNAR ECLIPSE CATALOG: 1901 - 2100

Section 1 is a catalog which lists the general characteristics of every lunar eclipse during the two hundred year interval 1901 to 2100. During the first century, there are 230 eclipses of which 83 are penumbral, 66 are partial and 81 are total. The second century contains 230 eclipses of which 87 are penumbral, 58 are partial and 85 are total. In order to achieve a realistic frequency and type distribution of present eclipses, it's necessary to sample a period commensurate with the 18 year 11 day Saros cycle. The period from 1986 to 2003 contains 41 eclipses of which 15 (36.6%) are penumbral and 26 (63.4%) are umbral. Of these, 10 (24.4%) are partial and 16 (39.0%) are total. Since the Saros cycle is not static, these figures will change. For example, eclipses in Saros series 113 change from partial to penumbral in 2006. The first two columns of the catalog list the Gregorian and Julian Dates of each eclipse. The Julian Date is the number of days elapsed since Greenwich Mean Noon on 1 January 4713 BC. Column 3 lists the value for delta T (seconds) used in the calculations. Delta T is the difference between Terrestrial Dynamical Time and Universal Time. For the period 1901 - 1985, the values for delta T are determined from observations. Beyond 1985, the values for delta T are extrapolated and are only approximate since fluctuations in the Earth's rotation rate are unpredictable (See: Appendix A - Time Determination). Column 4 characterizes the nature of the eclipse as follows:

T = Total Umbral Eclipse P = Partial Umbral Eclipse PN = Penumbral Eclipse PNb = Beginning Penumbral Eclipse (first eclipse of Saros series) PNe = Ending Penumbral Eclipse (last eclipse of Saros series)

The next column gives the Saros series to which the eclipse belongs. The Saros series numbers are consistent with those introduced by van den Bergh [1955]. Eclipses belonging to an even numbered Saros take place at the ascending node of the Moon's orbit (lunar ecliptic latitude decreases with each succeeding eclipse), while eclipses of an odd numbered Saros take place at the descending node (lunar ecliptic latitude increases with each succeeding eclipse). Column 6 lists the value GAMMA, which is defined as the minimum distance (equatorial Earth radii) of the Moon's center from the central axis of the shadow cone. This corresponds to the instant of middle or maximum eclipse. The sign

5 I PAGE, 7 INTENTIOBALW %LANK 1 PRECEDING PAGE BUNK NOT FILMEO I of GAMMA indicates whether the Moon‘s center passes north (+) or south (-) of the shadow axis. Columns 7 and 8 give the penumbral and umbral magnitudes at the instant of middle eclipse. Eclipse magnitude is defined as the fraction of the Moon’s diameter obscured by the penumbral or umbral shadow. For penumbral eclipses, the umbral magnitude is negative. For partial eclipses, the umbral magnitude is always greater than 0.00 and less than 3.00. For total eclipses, the umbral magnitude is greater than or equal to 1.00. The Universal Time of middle eclipse (hours:minutes) is found in column 9. Middle eclipse is defined as the instant when the Moon passes closest to the axis of Earth’s shadow. The semidurations (minutes) of the partial and total phases of each eclipse are listed in the next two columns. The semiduration of the partial phase is half of the time elapsed between the first and last external contacts of the Moon with Earth’s umbral shadow. Similarly, the semiduration of the total phase is half of the time elapsed between the first and last internal contacts of the Moon with Earth‘s umbra. The start (Ul) and end (U4) of the partial phase is calculated by subtracting or adding the partial semiduration to the instant of middle eclipse. Likewise, the start (U2) and end (U3) of the total phase is calculated by subtracting or adding the total semiduration to the instant of middle eclipse. Total eclipses have both partial and total phases while partial eclipses have partial phases only, Penumbral eclipses have neither partial nor total phases. Columns 12 and 13 give the Moon’s geocentric right ascension (hours) and declination (degrees) at middle eclipse, referred to the mean equinox of date. Finally, the last column lists the Greenwich Sidereal Time (hours) at 0O:OO UT. The altitude and azimuth of the Moon during each phase of an eclipse depends on the time and the observer‘s geographic coordinates. Using the values tabulated in columns 12, 13 and 14, the Moon’s altitude (a) and azimuth (A) may be calculated for any observer as follows:

h = 15 (GST + UT - a) - X

a = ArcSin [Sin 6 Sin # + Cos 6 Cos h Cos #]

A = ArcTan [-(Cos 6 Sin h)/(Sin 6 Cos # - Cos 6 Cos h Sin #)]

where: h = Hour Angle of the Moon a = Altitude A = Azimuth GST = Greenwich Sidereal Time at 0O:OO UT

6 UT = Universal Time a = Right Ascension of the Moon 6 = Declination of the Moon X = Longitude of Observer (West +, East -) # = Latitude of Observer (North +, South -)

These expressions do not include the effects of lunar parallax, atmospheric refraction or lunar orbital motion. At low altitudes, the errors may be on the order of 1". Furthermore, the Moon's coordinates are strictly valid only at the time of middle eclipse. This may also lead to errors of about 1" for the beginning and end of the partial phase. With these caveats in mind, the expressions for altitude and azimuth are convenient and adequate for most planning purposes. Finally, the geographic coordinates of the point where middle eclipse occurs in the zenith are:

X = 15 (GST + UTm - a)

where: UTm = Universal Time at Middle Eclipse

7 SECTION 2 - ECLIPSE PATHS AND GLOBAL MAPS: 1901 - 2100

Diagrams of the Moon's path through Earth's shadow and maps of global visibility for every lunar eclipse are presented for the two hundred year period 1901 through 2100 (as tabulated in Section 1). The eclipse figures are plotted ten pair per page which typically covers four to five years. A typical pair are illustrated in Figure 2-1 for the total lunar eclipse of 17 August 1989. Each diagram of the Moon's path through the shadow is plotted on the same scale with north at the top. The radius of the dark umbral shadow ranges from 0.64" to 0.78" and is surrounded by the lighter penumbral shadow with a radius of 1.17" to 1.31". The axis of the shadow is marked by '+' and the cardinal points are plotted with respect to the axis. The ecliptic is represented by a dashed line which always passes through the shadow axis. The Moon's outline is plotted to scale at each of the umbral contacts as well as the external penumbral contacts and the instant of middle eclipse. Orbiting with an eastward motion, the Moon moves from right to left in each figure. A heading at the top of every path diagram identifies the eclipse type (penumbral, partial or total), followed by the Gregorian date and the Universal Time of middle eclipse (hours:minutes) below the date. Directly beneath the eclipse type is the Saros series to which the eclipse belongs. In the lower left corner is the penumbral magnitude 'P' and in the lower right corner is the umbral magnitude 'U'. To the right of each eclipse path diagram is an azimuthal equal-area or Lambert projection map of Earth, centered on the north pole. At any one instant, the Moon is always visible from one hemisphere of Earth. For each of the umbral contacts as well as the external penumbral contacts, the hemisphere facing the Moon is indicated as follows. For the external penumbral contacts, the hemispheres are plotted with a dotted line. For external umbral contacts (start and end of partial phase), a solid line delineates the appropriate hemispheres. Finally, for interior umbral contacts (start and end of total phase), a dark solid line marks the hemispheres. The eclipse is not visible (Moon below the horizon) from the darkly shaded regions bordered by the external penumbral contact curves. All other regions of Earth will witness some phase of the eclipse. As seen from the north pole, Earth rotates in the counter-clockwise direction. If we fix our frame of reference with Earth, then the Moon and the hemisphere facing it rotate clockwise with time. Starting from any point in the shaded region and moving clockwise, the first hemispheric curve encountered would be for first external penumbral contact (Pi). This would be followed by the hemispheres for first external umbral contact

I 9 1 PRECEDING PAGE BLANK NOT FILMED I (UI) and first internal umbral contact (U2). The final three hemispheric curves correspond to last internal umbral contact (U3), last external umbral contact (U4) and last external penumbral contact (P4). The geographic point where the Moon appears in the zenith at middle eclipse is indicated with an ’*’. It appears opposite the shaded or non-visibility zone and lies in a region bordered by the two external penumbral contact hemispheres. From this region, every phase of the eclipse is visible. For locations between this zone and the shaded zone, some phase of the eclipse is in progress at moonrise (clockwise from ’*’) or at moonset (counterclockwise from ’*’).

TOTAL 17 RUG 19 128 I 3: 8 UT

/... 8. *_ .. . Penumbra

, ...... ;::. .A. u I P = 2.596 U = 1.6011 in Zenith

Figure 2-1

10

. . ri SECTION 3 - ECLIPSE PATHS AND WORLD MAPS: 1986 - 2035

Section 3 consists of a series of 114 path diagrams and visibility maps, one pair for every lunar eclipse during the fifty year interval 1986 to 2035. During this period, there are 42 penumbral eclipses and 72 umbral eclipses. The umbral eclipses consist of 28 partial and 44 total events. Each lunar eclipse has two diagrams associated with it. The top figure shows the path of the Moon through Earth's penumbral and umbral shadows. Above and to the left of the path diagram is the time of middle eclipse (MID), followed by the penumbral (PMAG) and umbral (UMAG) magnitudes of the eclipse. The penumbral and umbral magnitudes are defined as the fraction of the Moon's diameter immersed in the penumbral and umbral shadows at middle eclipse. Below the eclipse magnitudes is the minimum distance (GAMMA) of the Moon's center from the shadow axis in units of Earth equarorial radii. To the upper right are the eclipse contact times (Universal Time or UT) which are defined as follows: t P1 = First external contact of the Moon with penumbra (Penumbral eclipse begins) U1 = First external contact of the Moon with umbra (Partial eclipse begins) U2 = First internal contact of the Moon with umbra (Total eclipse begins) U3 = Last internal contact of the Moon with umbra (Total eclipse ends) U4 = Last external contact of the Moon with umbra (Partial eclipse ends) P4 = Last external contact of the Moon with penumbra (Penumbral eclipse ends)

In the lower left corner is the angle subtended between the Moon's center and the shadow axis at greatest eclipse (AXIS), and the angular radii of the penumbral (Fl) and umbral (F2) shadows. The Moon's geocentric coordinates at maximum eclipse are given in the lower right corner. They consist of the right ascension (RA), declination (DEC), apparent semi- diameter (SD) and horizontal parallax (HP). Below, the Saros series of the eclipse is given, followed by a pair of numbers in parentheses. The first number identifies the sequence order of the eclipse in the series, while the second number is the total number of eclipses in the Saros series. The Julian Date (JD) at middle eclipse is given, followed by the

11 extrapolated value of AT used in the calculations (AT is the difference between Terrestrial Dynamical Time and Universal Time). The bottom map is a cylindrical equidistant projection of Earth which shows the regions of visibility for each stage of the eclipse. In particular, the moonrise/moonset terminator is plotted for each contact (Le. - Pi, U1, U2, U3, U4 and P4) and is labeled accordingly. The geographic position where the Moon is in the zenith at middle eclipse is indicated by an '*'. The region which is completely unshaded will observe the entire eclipse while the area shaded by solid diagonal lines will witness none of the event. The remaining shaded areas will experience moonrise or moonset while some phase of the eclipse is in progress. The shaded zones directly east of '*' will witness moonset before the eclipse ends while the shaded zones directly west of '*' will witness moonrise after the eclipse has begun.

12 ACCURACY OF THE EPHEMERIDES

The solar and lunar ephemerides used for these predictions are the same ones used in Fifty Year Canon of Solar Eclipses: 1986 - 2035. The solar ephemeris is based on the classic work of Newcomb [1895] and includes all planetary perturbation terms in longitude and latitude with arguments greater than 0.01 arc-seconds. The lunar ephemeris was developed primarily from the the work of Brown [1919] with modifications from , Jones and [1954]. All solar perturbation terms in longitude and latitude with coefficients greater than 0.025 arc-seconds have been included. The cut-off for planetary perturbations is 0.025 and 0.01 in longitude and latitude respectively. Perturbations in lunar parallax include all terms with coefficients greater than 0.0010. Finally. all terms additive to the Moon's fundamental arguments with coefficients greater than 0.025 arc-seconds have been retained. In order to determine the accuracy of these ephemerides, they have been compared against the Jet Propulsion Laboratory's Developmental Ephemeris 200 (or JPL DE-200) for 260 full moon dates over the interval 1980 through 2000. The mean differences and standard deviations of the solar and lunar ephemerides with the JPL DE-200 are as follows:

Comparison of Solar/Lunar Ephemerides with JPL DE-200

RA RA Dec Dec Mean S. Dev. Mean S. Dev. (4 (set) (arc-sec) (arc-sec)

Sun +0.037 0.044 -0.029 0.172

Moon -0,001 0.041 -0.006 0.399

The agreement between these ephemerides is quite good and actually exceeds the accuracy required for lunar eclipse predictions as follows. Due to the variable attenuation of the terrestrial atmosphere, the edge of Earth's shadow is rather poorly defined and limits the measurement of contact timings to a precision of about 0.1 minute. Since the Moon's mean angular velocity in right ascension with respect to the Sun (and Earth's shadow) is 0.0343 seconds per second, the combined uncertainties in right ascension can be transformed into an uncertainty of 1.1 seconds in contact times. However, this uncertainty is almost an order of magnitude smaller than the measurable precision of contact timings.

13 Positional shifts of the magnitude determined above are far too small to detect when plotted at the scale of the eclipse path figures presented in Sections 2 and 3. In fact, lunar occultation measurements including corrections for the lunar limb profile would be required to detect such small differences. In the generation of eclipse predictions presented in the Fifty Year Canon of Lunar Eclipses, the author has applied a -0.6 arc-second correction to the Moon‘s ecliptic latitude. This takes into account the difference between the Moon’s center of mass and center of figure. In accordance with the Astronomical Almanac, Earth’s umbral and penumbral shadows have been increased by 2% to approximate the effects of an opaque layer in the middle atmosphere. Finally, a correction of -1.34 seconds has been applied to the lunar ephemeris to reconcile it with the FK4 equinox.

14 REFERENCES

Astronomical Almanac for 1986 (Government Printing Office, Washington, D.C., 1985).

E. W. Brown, Tables of the Motion of the Moon (Yale University Press, New Haven, 1919).

W. A. , A Manual of Spherical and Practical Astronomy (Dover reprint, New York, 1960).

A. Danjon, L’Astronomie, 65, 51-53 (1951).

W. J. Eckert, R. Jones and H. K. Clark, Improved Lunar Ephemeris 1952-1959 (Government Printing Office, Washington, D.C., 1954).

F. Espenak, Fifty Year Canon of Solar Eclipses: 1986 - 2035 (NASA RP- 1178, Washington, D.C., 1987).

Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac (H. M. Stationary Office, London, 1974).

A. Kuhl, Physik. Zeitschrift, 29, 1 (1928).

P. Lahire, Tabulae Astronomicae (Paris 1707).

F. Link, Eclipse Phenomena in Astronomy (Springer-Verlag, New York. 1969).

J. Meeus and H. Mucke, Canon of Lunar Eclipse: -2002 to +2526 (Astronomisches Buro, Wein, 1979).

J. Meeus, Astronomical Formulae for Calculators (Willmann-Bell, Richmond, 1982).

S. Newcomb, “Tables of the Motion of the Earth on its Axis Around the Sun”, Astron. Papers Amer. Eph.. Vol. 6, Part I (1895).

Th. von Oppolzer, Canon of Eclipses (1887, tr. by 0. Gingerich, Dover reprint, New York. 1962).

W. M. Smart, Text-Book on Spherical Astronomy, 6th Ed. (Cambridge University Press, Cambridge, 1977).

15 G. van den Bergh, Periodicity and Variations of Solar (and Lunar1 Eclipses (Tjeenk Willink. Haarlem, Netherlands, 1955).

16 FIFTY YEAR CANON OF LUNAR ECLIPSES: 1986 - 2035

SECTION 1 - LUNAR ECLIPSE CATALOG: 1901 - 2100 mmBmmPvbmcD...... BcDBbNd(Dmvm QP...... mNN mmhl mbmmvmvrldrr dd ddNN

v) W v, a H J V W E U Z 3 -I LL 0 ...... dBBBBddNNN Z z0 d

19 PRECEDING PAGE BLANK NOT FILMED < I

v) 0 <[L v) w LLaLL++aLLaLL.az zzz >0- I- $ LII- W n

W

20 ...... IVL' PcobmbcocoNU)W mtcodbBmmmm tNPmNcobmcom NPNBtrlBmNB W rld Nd d rld d rldrl rlrld d N Nrl rl tn 0 fn wa -I w" ...... rldBBBBrll-irlB K 4 II 5 I

(Dmm (Dcoao

21 WW ?ma, JuJn .. dQN gh E meum HJL ...... XU- NQfll r(coBB W r(r(dN wuJ

...... ddQQQQQr(d6l QQQPBQdddQ 111 IIII

J -cn K3 LL rnc 0 IH z zu32 0 w4 2 Lsi U W U I I 4 W

v) 0 K 4 uJ W 0-* t- < st- W n

-vu) bmv mlnco... Nmm...

5 5 m Ptt NNN

22 t

0 v) 0- H -I V W ...... BdBBBBBddd <& Ill1 z 3 J L 0 ...... i5 dNNNr(BdBNN dNBBBddNNN f

i-

W I-< P

23 I- O I-

L 3 H -1 c & LL < 0 ...... a z r(rlr(NNcVr(BBB rCdNNNdBr(BN NNNBBBr(r(NN (D 0z (D ua < J xI < K 5 rn

V W K U

3-I B m

24 w

-I LL 0 ...... NdPBBQNNNN BddNNNdBdB

W I- d

25 I.

v) a H -I V W ...... l-4r(dB6iBOBrrB K IIII 4 Z JW 3 6n mmm K3 SrLl-i lL a+ UNI- 0 =In 32 .... ??Y ... ZW NNNd BdB W4 Z ax 4. V 4 I I 4 W

bbB ?--!?

26 w v) 0- H ::J K Z 2 LL 0 ...... z NNNddBBBNN 0 Z

dm tmm ttm 'v? Cntl.0.. vau)

27 ?? ?Y Nd (DN ....u) P.... Pr( bln N l-ld

W v) L n -I V W K 5

hi a2

w zz zzzz zzz Z zzzz Z IL ILILI-I-I-ILILILILIL ILILI-I-ILLLILILILI- I-I-I-ILILILILI-I-+ LLILILILILILI-I-I-IL

W

28 i

I

U W 4 I I 4 ...... W Bl-4l-4BBBBdr(d r(BBBPIpBddl+ BBBBBdddBB BBddddBBBB II I I I I II I I II I I I I II I I

k n

I

29 -I 4 I- 0 I-

J 4 JW H un c [L meE3 < IH Q 32 ZW m w4 u) aI

J 4 K a I 3 wz a

I-

v)w v) a H J Y Q m IN

30 I

FIFTY YEAR CANON OF LUNAR ECLIPSES: 1986 - 2035

t

SECTION 2 - ECLIPSE PATHS AND GLOBAL MAPS: 1901 - 2100 PCNLIMB3AL 3 tlRY 1901 PPRTIAL 27 OCT 1901 I!O I :8:31 UT

-

,jr

P - :.C6 I U =-0.029

TOTAL 22 APR 1902 120 I 13:53 IJT

F = 2.02C I U = 1.337

PARTIAL 12 APR 1903 1311 I n:13 UT

F = 2.11- I b = 0.973

PENIJ.4BRRL 2 MFlR 1904 PENUMBRRL 31 MFlR 19011 I' 2 I 3: 2 UT

,'

I r = II 723 u =-u 263

PARTIRL 19 FEB 1905 112 I i8:60 UT

- ,' , 0 P = 1.406 ' u = 0.410

33 PEC€OUUG PAGE BLANK NOT FILMED ;om II RUG 1906 PARTIAL 29 JAN 1907 I !9: I1 IJT 15 1 ! 13:38 IJT

i ~ 1 -<- ' ii = 1.785 F I.R?J I 'J = fl.716

PR31IRL 25 JUL 1907 PENkJMBRAL 18 JAN 1908 I 4:,2 UT

- --..

- --b-'i- ~ c.-yJQQj- 'I

F , r?_I - U = 0.1521 - C 56; I U =-0 5EU I - __ '. ,-

35 PPilTlAL Y SEP 19111 PENUMBRAL 31 JAN 1915 I 13:55 UT 1IJ-G 4:57 IJT '. 00 % ,I 'Y., J- -I - i '-' .''

~ j. I 'J = IJ.SG, = 11. ii;, I IJ =-o. wy

PENUMBRAL I MAR 1915 PENUMBRAL 26 JUL 1915

1-1 I 13:19 IJT r' I !2:c'!4 IJT

I ,%- ,,

1 =-I.UY?

1 5 6

36 PENUMBRRL 17 DEC 1918 PARTIAL 24 JUN 1918 143 I 9: G IJT !3i I 10:28 UT /

F = I) E59 I U =-0 163

PARTIAL 7 NClV 191 9 PENUMBRAL 15 MAY 1919 1 I 1:lll IJT

TOTRL 27 OCT 192'0 1:5 l1U:llL~T

PflRTlflL 16 OCT 192 1 TOTRL 22 RPR 1921 135 I 22:'54 UT 130 I 7:49 UT

PENUMBRRL 11 RPR 1922 145

u2uT 0 ,I 0 /' 17, , ,, 4', - ,/-

, /' \ \.J

37 PENUMBRAL 6 OCT 1922 PARTIAL 3 MAR 1923 145 I 0:43 IJT 11; I 3:72 UT

---.fC-7, - ..‘t>*,) - -

‘. /’ 0 00 I I P - 1’. 35: U =-3.4117 P - 1.37. U = 0.376

PARTIAL 26 RUG 1923 TOTAL 20 FEB 192Y I’ 1 10:iY UT ll2 I 16: 9 UT ..oQp- f--. -

l id‘.._ .

F = 1.22- u = 0.168 F = 2.65: I U = 1.605

TOTAL 111 RUG 192U PARTIAL 8 FEB 1925 12- 1 20:20 UT 132 I Zl:Li2 UT Q,- ,. 09 - _- - \ /

P = 2.65: I U = 1.658 P = 1 8Li0 ’ u = 0 735

PRSTIAL U RUG 1925 PENUMBRGL 28 JRN 1926 137 142 0 / -/ @A’-’ c---A .. I F = 1.716 ’ U = 0.752 P = 0 562 U =-0 51111

PENUMBRAL 25 JUN 1926 PENUMBRRL 25 JUL 1926 14. 1 Y:GO UT

-_-L- - - -.

I P = 3.579 F - 0.703 U GQQ =-0.289 --0.591

38 PENIJHBRAL 19 DEC 1 i! I 6:20

TOTFL 8 DEL 1927 TOTRL 3 JUN 1928 1;L I 17:3' UT 119 I 12:lO UT

0.

P = ?.?EL I u = 1.356 P = 2.335 Ll = 1.2117

PFlRTlRL 7 OCT 1930 TOTRL 2 RPR 1931 11: I 19: 7 UT 121 I 20: 7 UT

-

-\'.

P - 2.483 U = 1.508

39 TOTAL 26 SEP 1931 PARTIAL 22 MAR 1932 ILL 1 19:118 UT 131 I 12:32 UT

- .

1 - 2.45: I u = 1.325

PENUMBRAL 10 FEE 1933 I L1: 1 UT

I IJ = O.Ll80 P = O.OU4 U =-1.022

PENUKBRAL 12 MAR 1933 PENUMBRAL 5 AUG 1933 141 I 2:33 UT 108 I 19:LLF UT

-_ ,7

u =-O.Yl0 P = U 258

PENUMBRAL Y SEP 1933 PARTIflL 30 JFlN 393Y

I 3.721 U =-0.296 I P P = 1 2311 u = 0 117

PLRTIFIL 26 JUL 19311 TOTFIL 19 JAN 1935 llE 1 12:15 UT 123 I 15:117 UT

I

~ 1.627 U = 0.667 I P P = 2 1177 u = 3.35Y

40 I TOTAL 16 JUL 1935 TOTAL 8 JAN 1936 12il I Q:GO ur

1 P = ;.-do I U = 1.760 F = 2.10s ’ LI = 1.022

1 PARTIAL II JUL 1936 PENUMBRAL 28 DEC 1936 I 1-8 I t7:25 IJT i43 I 3:49 IJT

~ 1

1 PENUMSRAL 25 MAY 1937 PARTIAL 18 NOV 1937 11’ I 7:51 UT .IC I 8:19 UT I “QQ-)o

~ \ /-- - . - -[---. +--J - i I----. \-...J’

F = :.’9E I U =-0.299 P = : :39 I u = 0 1513

TOTRL 111 MRT 1938 TOTRL 7 NOV 1938 120 I 8:UQ UT 125 I 22:26 UT

I -i

P = 2.180 I U = 1.101 r = 2 38~’ u = 1 358 t TOTHL 3 MRY 1939 PRRTIAL 28 OCT 1939 ljll I 15:Il UT 1’‘13 I 6:36 UT I .-._c.. “od6cj “%,. \ -

P ~ _.,113 I u = 1.182 F = c U74 ’ U = 0.992

41

i PENUMBRAL 22 APR 19110

PENUMBRAL 16 OCT 19110 PARTIAL 13 MAR 19111 ! 4 5 I 8: 1 UT 112 I 11:55 IJT

- - '. /'

0 = fl 7112 I U =-0.370 P = 1.32; I IJ = 0.328

PARTIAL 5 SEP 19111 TOTAL 3 MAR 19112 I 17:117 UT I22 I 0:21 UT

P = 1.114 I U = 0.055 P = 2.613 I U = 1 566

TOTFlL 26 RUG 19112 PFIRTIRL 20 FEB 19Y3 127 1 3:48 UT 132 I 5:38 UT

O,//' -

F = 2 539 I U = 1.540 F = 1 87i U = 0 766

PGRTIAL 15 RUG 1911 3 PENUMBRRL 9 FEB 19YY 137 I 19:28 UT

.. P = 0.606 I U =-0.518 P = 1.840 I U = 0.875

42 PENUMBRAL 6 JUL 191111 PENUMBRAL U RUG 19YY , I 12:26 UT I

I j P = 0.c5: ' u =-o.L1311

I PENUMBRAL 29 DEC 1944 PARTIAL 25 JUN 1945 I 114 I 15:14 UT

----0

1 F = 1.912 I U = 0.6611

TOTAL 19 DEC 19115 TOTAL 1U JUN 19116 129 -1 18:39 UT

: P - 2.355 I U = 1.3118 P = 2 19i I U = 1 1103

TOTAL 8 DEC 19116 PARTIAL 3 JUN 19117 134 I 17:1113 UT 139 I 19:15 UT

--c)Q. __ _------?

--I G

P - 7.159 U = 1.170 P = 1 108 U = 0 025

PENUMBSRL 28 NO!! 1947 PARTIAL 23 APR 1911 8

.. ..

P = lj.854 u = 5.124 F = 1.~2I u = 0.028

43 PENUMBRAL 18 OCT 19Y 8 TOTAL 13 APR 19Y9

lj 1 2::5 IJT

F - 2 4CE I U = 1.1131

TOTAL 2 RPR 1950

-

,

F = 2 0ln ' U = 1.C38

PENUMBRAL 21 FEB 1951 1030 I 21:29 U1

PENUsBRRL 23 MflR 1951 PENUMBRRL 17 RUG 195 14L I 10:37 UT 108 I 3~111UT

- .

U =-0 E39

PENUMBRRL 15 SEP 195 1 PRRTIFIL 11 FEB 1952

.. ,.

P = 1.205 ' IJ = 0.088

44 PARTIFL 5 RUG 1952 TOTAL 29 JAN 1953 1Ii I 19:117 UT 12" I 23:'L7 UT

0-*,- - - -.-..

I 538 P - 2 U55 ' 11 = 1.336

TOTAL 26 JUL 1953 TOTAL 19 JAN 19511 133 I 2:32 LIT t

- - _.- 0

P = 2.852 I U = 1.869 P - 2.111 ' U = 1 037

PARTIAL 16 JUL 1951 PENUMBRAL 8 JAN 1955 135 I 0:20 UT * 1113 I 12:33 UT

-_ _--- - - I 0

P = l.4iiC I u = 0.u10 P = 0 R8i I U =-U 137

PENUMBRRL 5 JUN 1955 PflRTlAL 29 NOV 1955 110 I 1Y:23 UT 115 I 16.59 UT

u . /-, 0 ------

I P = 0.6U8 LI =-O.U45 P = 1 117 I U = 0 125

PARTlRL 211 MRY 1956 TOTAL 18 NOV 1956 i 123 1 15:31 UT 125 I G:48 UT i --- I - I t 0

P = 2.043 I LJ = 0.970 F = 2.3511 U = 1.323

45 TOTAL 13 MAY 1957 TOTAL 7 NOV 1957 13L 1 22:31 UT 135 1 14:27 UT - .. 0

F = 2. ' IJ = 1.303 P = 2.122 ' 'J = 1.035

PENUMBRAL Y APR 1958 PARTIAL 3 MAY 1958 1'1, I 3:6U IJT UT

,--' ,' - - -

I

p - 0 r=p 0=-0.93b P = I! 3q2 I il = 0.015

PEhUMB3;tL 27 OCT 1958 PARTIAL 2Y MAR 1959 !45 1 15:27 UT !I? I ?0:11 UT

.' T - .[--. -

\_ ,/ .._ I "0-, ..

P = C.ECY I U =-0.308 P = 1 2E3 ' U = 0 270

PENUMBRAL 17 SEP 1959 TOTAL 13 MFlR 1960 I 1: 3 dT 122 I 8:28 UT

.O- .. '. .

P = 1.c1; I u =-O.OYU P = 2.567 ' U = 1 520

TCTRL 5 SEP 1960 PQRTIAL 2 MFlR 1961 127 I 11~21UT I32 I 13:28 UT

h

F = ?.-28 I U = 1.430 F = 1.5CY I u = 0.805

46 PFRTlAL 26 RUG 1961 PENUMBFIAL 19 FEB 1962 I42 0 - . .,/' . ..

P = I P 1.956 I U = 0.992 0 63'3 U =-O.U82

PENUMBRAL 17 JUL 1962 PENUMBRAL 15 RUG 1962 '"0O'D UT - --

F = G..118 I IJ =-0.578

PARTIAL JUL 3 PENUMBRAL 9 JAN 196 3 6 196 1!9 I 23: 1'3 IJT !1Y I 22: 2 LIT ..

--- - -O?TO ----+------

TOTAL 30 OEC 1963 TOTAL 25 JUN 1961 129 I 1: G UT

P = 2.346 I U = 1.3UO P = 2 650 I U = 1 561

TOTAL 19 OEC 196U PRRTIRL 11 JUN 1965 139 I 1:49 UT ..

---

P = I U = 3.182 P = 2.171 I U = 1.180 1.2GI

47 PENUMBRAL 8 DEC 1965 PENUMBRAL Y MAT 1966 iil

0- ..--. - .

? = v.cL- I ‘ U =-0.115 p = i) 9LI: Ll =-0. 067

PENUMBRAL 29 OCT 1966 TOTAL 2Y RPR 1967 I in:iz UT 121 I 12: G UT

- ..

F = 1’. IJ 120 I 37‘ =-0. P - 2 314 U = 1.3111

TCTAL 18 OCT 1967 TbTRL 13 APR 1968 I !0:!5 UT 131 I 4:47 UT

,--7 *5- -1 ‘. G F = 2 250 I u = 1.1117 F = 2 097 u = I 117

TBTRL 6 OCT 1968 136 1 11:112 UT .. -

._. .. I F=2.250 u = 1.174

PENUMBRRL 27 RUG 1969 PENUMBRAL 25 SEP 1969 13: I i0:UB UT . . -

ti =-U.9YG P = D 926 I u =-0.090

48 PARTIAL 21 FEB 1970 PARTIAL 17 RUG 1970 i I i' I 3:23 IJT

- ..

P = 1 37- I u = O.!4!U

TOTfiL 10 FEB 1971 TOTAL 6 RUG 1971 ::? ! 1Y:LL: LIT 12? I 7:U5 IJT I

I

D = 2 -21 IJ = !.734 P = 2.1,23 ' U = 1.313 '

PFlRTlAL 26 JUL 1972 TOTAL 30 JRN 1972 !?9 I 7:lb UT 133 I 10:53 UT - G(-&-$

- ~ --it --+- '! % \/

P = 1 587 I U = 0 P = 2.1211 u = 1.055 5U8

i 73 PENUMBRAL 18 JFlN 1973 PENUMBRAL 15 JUN 19 1 i 11 I 20:51 UT 14- I 21:17 UT

0.00 P = 0.E91 I U --0.12U

PhRTIRL 10 DEC 197 3 115 I 1:44 UT

F = 1. 101 I U = (1. 108

49 PARTiAL 11 JUN 19711 TOTAL 29 NOV 19711 1-0 I 2Z:lEi Ui

P - '.dJl I U = 0.832 P = 2.33; I lJ = 1.295

TOTAL 25 MAY 1975 TOTAL 18 NOV 1975 lil I 5:48 UT 135 I 22:2!3 UT -- - 0 0"

P = L.Y47 I IJ - 1.430 P = ?.lGl I IJ = 1.063

PARTIAL 13 MAY 3976 PENUMBRfiL 6 NClV 1976 111' I 13:SY UT 1 u: I 23: 1 UT

"_ ~ - (3 &) -

F = I 101 I U = 0.127 F - 0 E64 I U =-0 255

PRRTIRL 4 flPR 1977 PENUMBRAL 27 SEP 1977 112 I 4:18 UT I a:29 UT

- ,' '. 0 i = 1.!91 ' u = 0.133 P - 0 927 ' U =-0 131

TClTRL 211 MRR 1978 TOTAL 16 SEP 1978 12~ I lG:22 UT 127 1 19: 11 UT . ..

50 F‘ARSIAL 13 MAR 1979 T RL 6 SEP 1979 1‘2 I 21: 8 JT

,, 0, - , /’

P = I Y;l I U = 0.358

PENUMaRHL 1 HRR 1980 PENUMBRAL 27 JUL 1980 142 109 Oc3’0 UT -. ci -\ - -

Fa ,y’

1 PENUMBRAL 26 RUG 1980 PENUHERRL 20 JAN 198 114 I ?:SO LIT 147

... - 0

P = 0.7311

PARTIRL 17 JUL 1981 TClTRL 9 JFlN 1982 119 I U:U7 UT 124 I 19:56 UT

..

P = 1.E08 I U = 0.5511 P = 2.3110 U = I 337

TOTRL 6 JUL 1982 TOTFlL 30 DEC 1982 129 I 7:31 UT 13Y I 11:29 UT

P = 2.61: I LJ = 1.723 P = 2.18U I U = 1.188

51 PFRTiAL 25 JUN 1983 PENUMBRRL 20 OEC 1983 I 8:22 IJT

--_------0

I P = l.4!-, I Ll = c.339 P = IJ 9;4 I; =-0.111

PENUMBRAL 15 MAT 19811 PENUMBRAL 13 JUN 198Y I' 149 I 111:2G IJT _-- __- -- __---

2- . I IJ =-fl. 1-11 =-n. 936

TOTAL U MAY 1985 I 1'3:SG UT @(-gp$?

\.. J'

I F = 2 212 U = I 2113

TClTRL 17 OCT 198 I,C. I i9:18 UT

52 PARilAL 3 MAR 1988

P - 1.011 I LI =-o.i~nu

PARTIAL 27 RUG 1988 TOTAL 20 FEB 1989 !I> I 11: 5 UT 123 I !5::5 UT , - - .

P = 2 391 I IJ = 1.279

TOTAL 17 RUG 1989 TOTAL 9 FEB 1990 128 I 3: 8 UT 133 I 19:ll UT

I ,-, - - PO 0'. F = 2 145 I U = 1 080 F - 2.596 I U = 1.6011

PRFITIRL 6 RUG 1990 PENUMBRRL 30 JRN 1991 ,5b I 1Y:12 UT 143 I 5;59 UT

P = 1.726 ' U = 0.681

PENUMBRAL 27 JUN 1991 PENUMBRAL 26 JUL 1991 !1J I 3:lSUT

--- __ ---

I I P = 6.283 U =-1.607 t i = I?. 333 U =-0.752

53 PARTIAL 21 DEC 1991 PARTIAL 15 JUN 1992 i 5 1 11):33 IJT

? = 1.?52 U = 0.687

TOTAL 9 DEC 1992 TOTAL 4 JUN 1993 125 1 23:44 IJT 130 I 19: 0 UT /?%\

P - -, ' U = 1.271;

TOTAL 29 NOV 1993 PARTIAL E5 MAY 1994 135 I G:26 IJT 140 I 3:30 UT 0 0

- __--- -/-+

F = 2.189 U = 1.092 = I 219 u = 0.2ug

PENUMBRAL 18 NClV 199Y PQRTIRL 15 APR 1995 145 I G:44 UT 112 I 12:18 UT -. - -=I - - -_ 3 I I P = 0.908 u =-0.215 P = I 109 I u = 0.117

PENUMBRQL 8 OCT 1995 TClTQL II RPR 1996 !22 I 0:lO UT

I P = 9.E51 U =-0.206

54 I PARTIAL 24 MAR 1997 TOTAL 27 SEP 1996 1 13; I U:39 UT i

1 I PENUMBRAL 13 MAR 1998 TOTAL 16 SEP 1997 1

. , ..

I F = 0 -3: I U 1-0.378 b p = ,‘.I67 I u = 1.197

= 0 837 I u =-u 1u9 F = 0.1116 I U =-0.658 I I PENUMBRRL 31 JAN 1999 PRRTIAL 28 JUL 1999 I 119 I ll:34 UT 114 I :6:18 UT

I - ,-

F = 1 1160 I U = 0.402

TOTFIL 21 JFlN 2000 TOTAL 16 JUL 2000 129 I 13:5G UT 124 I 4:43 UT I! I I

~ p = E.B~Y ’ u = 1.i73 t P = 2 331 I I! = 1.330

55 TSTFL 9 JRN 2001 PFRTIAL 5 JUL 2001 L2h 1 2C:2! UT 13'3 I lY:55 UT

P = c.l ' I u = !.I311 P = 1.573 I U = 0.1199

PEkUM3RkL 50 DEC 2001 PENUMBRAL 26 MAY 2002 143 I 10:2j UT 111 3 UT 0 0 -I --- __--A - - \ - _c

I P (_. u =-0.iin F = r) 7!- I U =-0.283

PENUMBRhL 24 JUN 2002 PENUMBRAL 20 NOV 2002 ' Ll 3 1 21:27 UT 1 !L I 1:47 UT - <- . - -- --.. ;=1QO - L. I J J =-0.787 P = 11 88' u =-0 222

TOTfii 16 MAY 2003 TOTAL 9 NOV 2003 I,?! I 3:40 UT 12G I i:18 UT . .. . (-3J I - Oa .-

P = 2.1 10 I u = 1.133 P = 2 I40 u = 1.022

TOTHL Y MAY 2004 TOTAL 28 OCT 2004 !>I 1 20:30 UT 136 I 3: 4 UT r .. .L -i -

I I F = !.c36 U = 1.3GY i = d.530 = 1.313

56 .,-

I

P = 0. F z 1.03C ' IJ = 0.038

~ PENUMBRAL 111 MAR 2006 PRRTIRL 7 SEP 2006 118 I 18:51 UT 1 !i t

-0' ,J ,,

~ I 2 - i.o=c I u =-11.056

F = 2 17s I u = 1.681 P - 2 3115 I U = 1.237

I

57 PEKUMRRRL 6 RUG 2009 PARTIRL 31 DEC 2009 115 ! 1 UT

---

F 1 .4_i I U =-0.662 F = 1.081 I U = 0.082

PARTIRL 26 JUN 2010 TOTRL 21 DEC 2010 12'. I ll:3B UT 125 I 8:17 UT

F = I. I ?i = 0.542 P = 2.306 U = 1.261

Tl?'fi~ 15 JUN 2011 TOTRL 10 DEC 2011 131 I 20:12 UT 135 I 14:32 UT

--- - 3

F = 2 7!2 ' U = 1.705 P = 2 212 I u = 1.111

PPRTIP!. Y JUN 2012 PENUMBRAL 28 NOV 2012 1115 I 14~33UT

- - -

P = 1.3k3 ' U = 0.376 P = I1 9112 I U =-0.183

PPRTIAL 25 APR 2013 PENUMBRAL 25 MAY 2013 11; I 20: 7 UT 150

, ,--4 - - - /- . 0

F = l.Cic U = 0.020 F = 0.L110 I U =-0.928

58 TOTAL 15 APR 20I1 14 PENUMBRAL 18 OCT 201 3 122 I 7:46 UT

P = 0.791 I U =-0.26'

TOTAL 4 APR 2015 TOTAL 8 OCT 2014 I 132 I 12: 0 UT I?- I 10:s~UT

r = 2.10= ' u = 1.005

6 10113- 28 SEP 2015 PENUMBRAL 23 MRR 201 37 I 2:47 IJT

P = 2.25tl I U 1.282

16 PENUMBRAL 18 RUG 2016 PENUMBRAL 16 SEP 20 1117 I 18:54 UT ... - - 0 '-.

P = 0 933 058

PFIRTIRL 7 RUG 2017 119 I 18:20 CT - -.0 0 - - -._ . . .. I p = 1.315 U = 0.252

59 T3TFIL 31 JAN 2018 TOTAL 27 JUL 2018 2- I 13::: UT

I

P = i. 2-1 I U = 1.321

TOTAL 21 JAN 2019 PARTIAL 16 JUL 2019

I F = 1.729 ' IJ = 0.658 u

PENUISBRAL 10 JAN 2020 PENLlMBRRL 5 JUN 2020

1 ., 4 I 13:lO UT

F = C CJ21 ' U =-0.111 P = 0.534 U =-0.399

PENUMFRFIL 5 JUL 2020 PENUMBRAL 30 NOV 2020 149 I '1;30 UT I16 I 9:43 UT

------0

P = C.580 U =-0.539 P = 0 655 I U =-0 258

TOTAL 26 MAY 2021 PARTIRL 19 NOV 2021 121 I 11:lB UT e 125 I 3: 3 UT

I F = 1.579 I U = 1.015 F = ;.098 U = 0.979

60 TClTRL 16 MRY 2022 TOTRL 8 NOV 2022 136 10:59 UT 131 1 4:11 I

P = 2.237 ' u = l.Ul9 v

PARTIAL 28 OCT 2023 PENUMBRRL 5 MRY 2023 liil I V:23 UT . - -

,I

p = 1.1113 u = n.127 P - Ll.qs9 u =-0.@41

PARTIAL 18 SEP 202'11 PENUHBRFlL 25 HRR 20211 119 I 2:44 UT

P = ~.ga2 I u =-o.iz8

25 TOTRL 111 MAR 2025 TOTRL 7 SEP 20 128 I 18:ll UT 123 I 6:58 UT ..

/' -

p = 2.369 U = 1.368 P = 2.286 U = 1.183

TOTAL 3 MAR 2026 PARTIAL 28 RUG 2026 138 I UT 133 I 11:33 UT U:13 -. - -

,.

P = 1.991I I U = (1.935 P = 2.2115 U = 1.156

61 I

62 PENUMBRAL 7 HAY 2031 PENUMBRAL 5 JUN 2031

= 0.1511 u =-0.B14 P = 0.907 I U =-0.085 P

TOTAL 25 APR 2032 122 I 15:13 UT

P = 2.2US I U = 1.197

TOTAL 11 RPR 2033 :32 I 1'3:12 UT

F' = 2 197 u = 1 099

2031 TOTAL 8 OCT 2033 PE NUMBRFIL 3 RPR UT

,,' -

223

135 PRRTlRL 28 SEP 20311 PENUMBRAL 22 FEE 20 I 9: 5 UT 147 I 2:46 UT 114 .. .. .

63 PRRTlAL 19 RUG 2035 TOTRL 11 FEB 2036 I 1: 11 IJT . - 0- ’.‘.

I..

P ~ 1. I u = n.109 .-- P = 2.300 I IJ = 1.305

TOTAL 7 RUG 2036 TOTAL 31 JAN 2037 1~: 1 2:51 IJT 134 I 13:60 UT

0..-.

F = U = l.U59 ’. I P = 2.205 I IJ = 1.213

PARTIHL 27 JUL 2037 PENCMBRAL 21 JAN 2038 13q I ‘4: B UT I 3: 8 UT ---- 006..----., -_- -_ - - --+.J - - I ,--I-”’ “~.Qj& _-__ -$- I\ ?-*Le .-’

F = 1.m I = 0.814 u P = 0 925 I U =-0 109

PErJUMBR9L 17 JUN 2038 PENUMBRRL 16 JUL 2038 I I49 I ll:34 UT

1..- { - .- -- G/

I P = il.

64 I TOTAL 18 NOV 20110 PARTIHL 16 HAY 20111 lil! I 0:Ul UT

P = 1.100 I u = 0.070 t PARTlFlL 8 NOV 20111 FENUHBRHL 5 RPR 20112

F = 0 894 I U =-[I 213 P = 1.10, ' u = 0.175

I PFIRTIAL 29 SEP 20U2 PENUYGRAL 28 OCT 20112 119 I 1O:ilil UT 156 1. @3 UT

.. -.. -__- - - 0 --.

P = 0.008 I u =-a 974

TOTAL 25 MQR 20113 TOTAL 19 SEP 20113 123 I 111:30 UT 128 I 1:50 UT

.

65 TOTAL 13 MRR 20YY TOTAL 7 SEP 201111 I I 13:37 IJT 138 1 11:19 UT .. . -

2 = 1.111 I 11 = 1.050

PEhUHBRAL 3 MAR 20115 PENClHBRAL 27 RUG 20115 .Y j I 7:4? IJT

P = 'J 733 I IJ =-n. 388

Pl3RTIAL 22 JRN 20116 PARTIQL 18 JUL 20116 11' I1.1UT 120 I 1: 4 UT @-?_- - - - j/+-q-- - _e I b'

I P = 1 :30 U - C 059 P 1 307 I U = 0 252

TOTFlL 12 JRN 20117 TOTFlL 7 JUL 20117 125 1 1:24 UT ljCi I 10:14 UT

\

I F = 2.2gl I U = 1.239 2 = 2 757 U = 1 757

TOTRL 1 JFlN 20118 PGRTIRL 26 JUN 20118 135 1 6;52 UT 14J 1 2: 1 UT

_--- is /c>

F = ~.~4tl U = I. 132 I I F = 1 hc17 1 = 0.6114

66 I PENUMBRRL NClV 2049 PENL?lBRAL 15 JUN 2049 9 I 15:5n ,IT

I

PFlRTlRL 8 OCT 2052 PENUMBRRL 111 APR 2052 147 I 1O:Lill UT 142

0 - ! - .

I P = 1.099 I U = 0.087 t P - 11.972 U =-0.126

67 PENUMBRAL Y MAR 2053 PENUMBRAL 29 RUG 2053 i!4 1 17:20 UT I19 I 8: 4 IJT .. -

I P = 1.GUi U =-0.028

TOTAL 22 FEB 20511 TOTAL 18 RUG 2054 124 I 6:49 IJT 129 I 9:24 UT .

F z.2-i I iJ = 1.283 I F=Z 11117 U = 1.311

TOTAL 11 FEB 2055 PARTIAL 7 RUG 2055 "U I ,7Z:44 UT 13" I 10:51 UT

/--., ., ~ . 1 . -\ # - - - i- "":6;.&,. flp--,'

F : 2.222 I U = 1.230 F = 2 032 u = 0 964

PENUMBRAL 1 FEB 2056 PENUMBRAL 27 JUN 2056 Il'C)0 0 1 L'T

i ---i -----

t / .. -- --,'

I = U 9;1 U =-0.105 I F = 0 3UC U =-0 646

PENUMBRilL 26 JUL 2056 PENUMBRRL 22 DEC 2056 1q9 I 18:'41 UT '1G I 1: 47 LIT

c7 - --_- (:+> ---_ -. L-1 clog P =-0.3114 F = ~1.61I U =-0 C.C6, u ,306

68 FRR'IRL 17 JUN 2057 PRRTIAL 11 DEC 2057 ~?II I UT IC! I 2:24 UT 0:52

P = 1.722 I IJ = 0.762

TOTRL 6 JUN 20518 TOTAL 30 NOV 2058 136 I 3: 111 IJT 131 I 19:14 UT ..

= 2.505 lJ = I 431 P = Z.FLiS I IJ = 1.667

PRRTIFIL 27 MRY 2059 PARTIAL 19 NOV 2059 141 I ;':53 UT

F = 1.220 I U = 0. 188 P = I 229 I U = 0 213

PENUMBRFIL 15 APR 2060 PENUMBRAL 9 OCT 2060 UT I18 I 18:5l UT

,,' -

P = 0.794 I u =-0.31 1

PENUMBRAL 8 NOV 2060 TOTAL U RPR 2061 153 123 I 21:52 UT (02 UT ., -

.. I U = 1.039 F = 3.C.52 I Li =-0.932 F = 2.131

69 TOTAL 29 SEP 2061 TOTAL 25 MAR 2062 1,' 1 9:36 UT

- -

,,

F = I IJ = 168 ..I31 I. F = 2.316 I IJ = 1.275

TOTAL 18 SEP 2062 PXiTIAL 14 MAR 2063 137 1 18:32 UT 143 I 16: 9 UT

, , - 0

u = _I 9, L LL. lJ = 1.1511 u = 0.039

PENUMBRflL 7 SEP 2063 PARTIAL 2 FEE 20611

P = O.FT3G I IJ =-0.2EU P = 1 nu5 u = 0 ouu

PARTIAL 28 JUL 206Y TOTAL 22 JRN 2065 Id I 7:51 UT 125 1 9:57 UT -.._ - - 0 --.

P = ;.I152 I U = 0.109 P = 2 282 I U = 1.228

TOTAL 17 JUL 2065 TOTRL 11 JAN 2066 130 I 17:116 UT 13'5 I 15: 2 UT

-

/-

I P = U = 1.618 2.615 P = 2.252 I U = 1.1112

70 I ,I PFRTIAL 7 JUL 2066 PENCMBRRL 31 DEC 2066

P = 1.003 I u =-I). 1.24 P = \.TU? U = 0.781

PENUMBRRL 28 MAY 2067 PENUMBRRL 27 JUN 2067 1 L2 I 18:511 UT

---

P = 3.655 U :[email protected] F = fl llOC I U =-'l.57@

--.

F = 2 009 I u = 0 959 P 7 C.683 I U =-0.376

I TOTRL 9 NOV 2068 TOTAL 6 MAY 2069 132 I 9: UT 127 I ll:U5 UT B

i -c>Q'. - -r 0 / \ ~

P = 2 1122 U = P = 2.021 u = 1.021 327 1 TOTRL 30 OCT 2069 PENUMBRAL 25 RPR 2070 /I 137 I 3:33 UT 142 I 0 -

.A I ,,"

~ I I P = !.077 I IJ =-0.017 I F = c.443 I L = 1.467

71 PARTIAL 19 OCT 2070 PENUMBRAL 16 MAR 2071 !117 I 18:119 IJT . . - - 0 '.

F = 1.15: I ti = 0.1113

PENUMBRAL 9 SEP 2071 TOTFiL Y MAR 2072 I 15: 3 IJT

0- %-. '.

I - = 7 '12: LI =-r.i53 I k' = 2.2'7 u = 1.250

TOTAL 28 RUG 2072 TOTAL 22 FEB 2073 123 I 16: 3 UT 134 I 7:22 UT .OQ -\

P = 2.2159 I U = 1.171 7 = 2 2117 I U = 1 256

TOTAL 17 RUG 2073 PENLiMBRRL 11 FEB 20711 139 I 17:40 UT 144 '--. 0 0 - ,,,' ,

P = 2.173 ' U = 1.106 F = 0 3UY ' U =-O.O92

PENUHBRRL 8 JUL 2074 PENUMBRAL 7 RUG 20711 QoO'gUT iY9 I 1:SLi UT

--L_ - - --_- - ..

72 PENUMBRAL 2 JAN 2075 PARTIAL 28 JUN 2075 121 I 9:53 UT 1 !G I 9:53UT

p = 0.795 I U =-0.323

PARTIAL 22 DEC 2075 TOTAL 17 JUN 2076 131 I 2:37 UT l2L I 8:53 UT

I-o

F = z.027 I u = 0.90~

TOTAL 10 DEC 2076 PARTIAL 6 JUN 2077 14: I iq:57 ur 136 I 11:3i UT

--_0-

F = 1 351 I U = 0 317 P = 2 :z4 u = 1.1150

70 PRRTIAL 29 NOV 2077 PENUMBRRL 27 RPR I 21:33 UT 0 o~~:~~

-/ /,A

I F = 0 682 U =-0

PENCMBRRL 21 OCT 2078 PENUMBRAL 118 I 3: 5 UT 1 Sb

- - ---\

P = 0.066 I U =-0.699

73 PARTIAL 16 APR 2079 TOTAL 10 OCT 2079 11 I C: 8 UT .# -

F = L'.I;,b I I] = 0.950 P = 2.lQU I U = 1.085

TOTAL 4 APR 2080 TOTAL 29 SEP 2080 13- 1 li:2! UT 138 I 1:50 UT

.. -

,

F = ?.33CI I U = 1.351

PRRTIRL 25 MAR 208 1 PENUMBRAL 18 SEP 2081 1'43 I 0:19 UT

P = 0 953 I u =-0.151

PARTIAL 13 FEB 208 PENUMBRRL 8 RUG 2082 120 I 1q:LLq UT

P = 1.021 I u = 0.019

TOTRL 2 FEB 2083 TOTRL 29 JUL 2083 125 I 18:24 UT 130 I 1: 3 UT ..

F = 2.266 ' U = 1.211

74 TOTAL 22 JAN 2084 PARTIAL 17 JUL 2084 115 I 23:lO UT 1liO ..I 1G:56 UT e i 5 PENUMBfiAL 10 JAN 2085 PENUMBRAL 8 JUN 208 1-5 I 22:30 LT ! 12 I 2:15 UT ' ..

P = I.n!'l I IJ =-0. 1138

PENUMBRAL 1 DEC 2085 ~ PENUMBFihL 7 JUL 2085 1 lib 6 86 UT

F = 0 665 I U =-0 390 P = 0.523 I U =-O.UY2 I

I PARTIAL 28 MAY 2086 PRRTIRL 20 NOV 2086 1I !2? I 12:Ul UT /-?L 127 I 20:17 UT I I

p = 1.393 I U = 0.992 1 f = 1.875 I U = 0.82U

TOTAL 17 MAY 2087 TOTAL 10 NOV 2087 132 I 15:53 UT 137 I 12: 3 UT ! I 1 --

I P d.553 U = I.4GO I

75 PARTIAL 5 MAY 2088 PARTIAL 30 OCT 2088 17 I 1G:lil UT 0 -

c - c ..

P = 195 I U = 0.106 P = 1 20i I U = 0.188

PENUMBRAL 26 MAR 2089 PENUMBRAL 19 SEP 2089 I lil I 22: 8 UT

-

,'1

I P = P EC9 ' U =-0.162 P = 0.816 U =-0.269

TGTAL 15 MAR 2090 TOTAL 8 SEP 2090 124 I 23:116 UT 129 I 22:49 UT

- 0 '--.

P = 2.191 I U = 1.207 P = 2 1113 I U = 1.01-13

TDTAL 5 MRR 2091 TOTAL 29 RUG 2091 139 I 0:35 UT

P = 2.278 ' U = 1.288 P = 2.30G I U = 1.2U0

PEGUMBRAL 23 FEB 2092 PENUMBRRL 19 JUL 2092 144 0 -

I ,',,'

I P = b.963 ' U =-0.074 P = u.087 U =-0.893

76 I ENUhBSAL 17 RUG 2092 PENUMBRAL 12 JAN 2093 1 IC I 17:57 UT

I.

- --

F = 3,782 I U =-0.3110 P = 0.938 I u =-o.o71

PARTIAL 1 JRN 2094 PGRTIRL 8 JUL 2093 126 I 16:57 UT i

F = 2.012 = fl 892 P = 1.1152 U = 0.U93 U

TOTAL 28 JUN 2094 TOTAL 21 DEC 2094 196 1 13:53 UT

P = 2 539 I U = 1 1167 P = 2.812 I U : 1.829

PRilTlAL 17 JUN 2095 PARTIQL 11 DEC 2095 l4G I 6:12 UT

--

P = I 275 I U = C1 P = l.LL87 I U = 0.451 262

b PENUMBRAL 7 MRY 2096 PENUMBRRL 6 JUN 2096 113 151 I 2:41 UT a -

//:-

p = 3.557 I U =-0.5112

77 PENUrlBRAL 31 OCT 2096 1.3 I 11:27 UT

PARTIAL 26 APR 2097 TOTAL 21 OCT 2097 I 12:15 UT lLi3 I 1:28 IIT

- / u ..

F 1 9’7 I u = ll.3tI7 - 7 2.DY1 I u = 1.015

TOTAL 10 OCT 2098 .%e I 3:17 UT

-7

F = 2 409 ’ u = 1 329

PRRTIRL 5 APR 2099 14? I 8:28 UT

- , ,‘

P = I. U = 0.173

00 FIFTY YEAR CANON OF LUNAR ECLIPSES: 1986 - 2035

SECTION 3 - ECLIPSE PATHS AND WORLD MAPS: 1986 - 2035 TOTRL LUNRR ECLIPSE - 24 RPR 1986

N CONTAC'TS MID = 12:42.6 UT I P1 = 10: 4.6 UT PMRG = 2.1869 u1 = 11: 2.7 UT u2 = 12:lO.l UT U3 = 13:1U.7 UT U4 = 14:22.3 UT PU = 15:20.U UT

RY.IS =-Of3731 RA = 1Y" 6"30:3 F1 = 1P30Y7 DEC =- 13: 12'19:'O F2 = OP76YO I SD = 16'34."0 S HP = 1' O'Y8:'O

SRR3S 131 [32/721 JD = 2YU65Y5.030 AT = 55.1 s

i- i- a i

-110

- 80 1

81

PF~CEDINGPAGE BLANK NOT FIW TOTFlL LUNFlR ECLIPSE - 17 OCT 1986

N CONTACTS I110 = 19:17.9 UY I P1 = 16:19.5 UT PPIAI; = 2. 3266 U1 = 17:29.0 UT IJMFII; = 1.2501 U2 = 18:YO.Y UT GRIM8 = 0.3189 pu u3 = 19: 55.0 UT 7- -.--. uu = 21: 6.6 UT PU = 22: 16.3 UT

-W

', / ', '-. ,'/' .. . - ,- PENUMBRFl MO0N = 0:2967 RR = IH28'U6.'9 = 1:2227 DEC = 9'37'14 :'7 = OP677G I SD = 15' 12 ."6 S HP On55'Y9:'I

S9F;dS 136 118/721 JD = 2YYG721.305 AT = 55.3 S

LI a 3 -t t- o i

82 PIEYOMBRFIL LUNFlR ECLIPSE - 1U RPR 1987

N CONTACTS MID = 2: 18.9 UT I P1 = 0:lQ.Y UT FMRG = 0.8023 PU = Y:18.0 UT UMqG =-0.226 1 GFlMMFI =-1.1365 PENUMBRR

I

MOON

rlxrs =-I f0995 RR = 13H25n23?5 F! = 1.02583 DEC =-lo' -8'55."7 SD = 15'UQ."1 F? = Of7166 I s HP = 0'58' 3."3

SFIROS 141 1221731 JD 2YUG899.597 AT = 55.6 '3 to

W

!2.J

-IIG

- 80 1 80 120 60 0 -60 -120 -180 LONG I TtiDE

83 PENUMBRRL LUNQR ECLIPSE - 7 OCT 1987

N CONTACTS MID = 4: 1.5 UT Pll I P1 = 1:52.5 UT PMRG = 1.0115 PI = 6:lO.O UT UMFlG =-0.00'43 GFIMMA = 1.0190

'. / f&-;;.. f&-;;.. 1 ?IC'-. ' 7-. / / I E- I I l \ CI t \ \ \

'\\ /' // \ '\ \/" P E NUMB R FI M00N Axis = 1"Ol~ RR = OHY7nlI?3 F1 = 1.'2753 DEC = 6' 9'13.7 F2 = 0.'7313 I SD = 16' 4."1 S HP = 0°58'58:'1

SRROS 146 I 9/72] JD = 2Y47075.668 AT = 55.9 S

84 PRRTIFlt LUNRR ECLIPSE - 3 MFlR 1988

N CONTACTS MID 16:12.7 UT I P1 = 13:43.8 UT PMRG = 1.1172 P1 U1 = 16: 8.7 UT UMRG = 0.0030 U4 = 16:17.5 UT PI = 18:LJ2.1 UT GFlMMR = 0.9885

-W

0 t

RXIS = 0:8927 F1 = 111965 F2 = OP6480 I S

SFlRClS 113 162/711 JD 2447224.176 AT = 56.1 S

85 PQRTIFIL LUNRR ECLIPSE - 27 RUG 1988

CON T AC 'I S MID = 11: 4.5 UT Pi = 8:51.6 UT PMAG = 1.2530 u1 = 10: 7.7 UT UMRG = 0.2976 U4 = 12: 1.8 UT GQMMA PENUMBR4 PU = 13:17.7 UT /-- L...

--w

u t

-MOON FIX I S =-0 P888 1 RFI = 22"26'40:3 F1 = 1.'33135 DEC =-IO~YILYl~I F2 = 0'7753 I SD = 16'Y3:'7 S HP 1' I '23i.6

SQROS 118 151/75) JD 2447400.962 AT = 56.4 S

86 TOTFlL LUNFlR ECLIPSE - 20 FEB 1989

N CBNTAClS MID = 15:35.3 UT I P1 = 12:29.7 UT U1 UT PMfiG = 2.3917 = 13:U3.4 UT UMRS = 1.2794 U2 = 14:55.8 U3 = 16:15.2 UT GFIMMR UT UT

(D

0 cc 15 a

0

-MODN RFI = 10" 16"24:5 RXIS = 0.02661 F1 = 1f2013 DEC = 11° 0'28:'6 SD = 14'49:'9 F2 = 0."6514 I S HP 0°54'25."9

SFIRClS 123 (51/731 JD = 2447578.150 AT = 56.7 S

07 TOTFlL LUNFlR ECLIPSE - 17 RUG 1989

MID = 3: 8.2 UT N CONTACTS I P1 = 0:22.8 UT PMRG = 2.5956 u1 = 3:20.6 UT UMRG = 1.6OY2 u2 2:19.9 UT GFII.1MFI =-Om lY89 PENUMBRR U3 = 3:56.6 UT ,,-/------. U4 = Y:55.8 UT 5:53.5 UT . P

E- -w

\

1------' I- MOON RXlS =-O.@lY81 RA = 21nY6"17?Y Fi = 1!2835 DEC =-I 3°35'27:'5 F2 = OP7Y63 I SD = l6'15:'3 S HP = 0°59'39."3 SftRBS 128 139/71) JD = 2YLl7755.631 AT = 57.0 S

w n 3 I- TOTRL LUNRR ECLIPSE - 9 FEB 1990

N CONT RCT S MID = 19:ll.l UT I PI = 16:lg.Y UT PMRG = 2.1447 U1 = 17:28.3 UT UMRG = 1.0797 U2 = 18:Ug.l UT U3 = 19:32.5 UT GRflMA =-O.'41Y9 PENUMBRR _I--- UII 20:53.5 UT I .'.., /' PU 22: 2.6 UT /, \.. '\

0 t

MOBN

FIXIS =-0?39UO RR = 9"32' 1.57 F1 = 1.'245@ DEC = 111' 12'35:-8 F2 = 0.36939 I SD = 15 ' 3 1 ."5 S HP = 0°56'58:'5

I I 5FIRCl5 133 [25/711 JD = 2tl47932.300 AT = 57.3 5 80

-80 1

89 PQRTIQL LUNFlR ECLIPSE - 6 RUG 1990

N CONTFICTS MID 1Y:12.3 UT I P1 11:29.3 UT PM3G = 1.7256 U1 = 12:YU.O UT UMAG = 0.6813 PU UU = 15:qO.Y UT GRMMR = 0.6376 A PI = 16:55.0 UT

E-

'. 1- /' PENUMBRQ M00N RXJS = OP600G RFI = 21" U"21sY F1 = 1p2299 DEC =- 16' -6'48:'Y F2 = 0.06937 I SD = 15 ' 24 ."1 S HP = 0°56'31:'6

SRROS 138 L28/831 JD 2YU8110.093 AT = 57.6 S

90 PEMUMBRRL LUNFlR ECLIPSE - 30 JRN 1991

N CON1 AClS M!D = 5:58.6 UT I P1 3:57.6 UT PMFlG = G.9057 PU 7:59.2 UT UMFIG =-0.1055 PENUMBRQ GFIMklFI =- 1.07511

FILI s F1 F2

SFIRCIS 1113 L17/731 JD = 2U48286.750 AT = 58.0 5

10

- 80 1 LONGITUDE

91 PENUMBRFIL LUNRR ECLIPSE - 27 JUN 1991 I --

N CONTACTS MID 3: 111.7 UT I P1 = 1:46.Y UT P!IFIG = 0.3391 Pll = Y:Y3.2 UT UMRG =-0.752 1 CRMYFI =-1.4062 PENUMBRR /---I

MOON AXIS =- 1 P264S RA = 18" 22" 33.53 F1 = lPl860 DEC = - 2Y 35' 59 :'7 F2 = OPSSll I SD = 1 11 Y 2 ."Y S HP = 0°53'58:'6

SFiROS 110 (70/721 JD = 244843U.636 AT = 58.3 S

92 PENUMBRFIL LUNFlR ECLIPSE - 26 JUL 1991

N CLIINTRCTS MID 18: 7.8 UT PI 16:47.5 UT PMAG = 0.2797 PU = 19:27.8 UT UMRG BO67 A =-0. GRMMR = 1.4372

W

MODN

RFI = 20n20n27.59 nXiS = 1.02996 F1 = 1.31911 DE C = - 1 8: 1 1 '57 ."7 SD = 14'47."1 F2 = OP6556 I S HP = 0°54'15."6

SGRCIS 148 [ 2/71] JD = 24Y846Y.256 AT = 58.3 S

80

1

UO

W n 3 +o c t- U -I

-40

0 LONGITUDE

93 PFlRTIFlL LUNRR ECLIPSE - 21 DEC 1991

UT UT UT UT

/ /'

\-.-----.-//' PENUPBRA HODN RXIS = 0.'9876 RFI = 5H56n15:4 F1 = 1:31Y9 DEC = 2U025'1Y:'9 F2 = 0.'7622 I SD = 16'38.''0 S HP = lo I' 2:'6

SfiROS 115 1561721 JD 2448611.940 AT = 58.6 S

94 PFIRTKRL LUNRR ECLIPSE - 15 JUN 1992

N CONTAClS MID 4:57.0 UT I P1 2: 8.9 UT PMFlG = 1.7525 U1 = 3:26.6 UT UMRG = 0.687'4 UU = 6:27.U UT PU = 7:U5.1 UT GFlMMFl =-0.6287 PENUMERA

HO0N

HXjS =-O.O5798 Rfl = 17" 35'29:6 F1 = 1.02093 0E C = - 2 3 e 5 3 '5 3 :'I SD = 1 5 ' '4 ."7 F2 = OP67qO I S HP = On 55'20."3

SFlROS 120 [57/8U1 JD = 2448788.707

I

1

LONGITUDE

95 TOTRL LUNFlR ECLIPSE - 9 DEC 1992

N CONTACTS FIIU = 23:UU.O UT I P1 = 20:55.2 UT PMW = 2. 3173 U1 = 21:59.2 UT UMAG = i.2763 U2 23: 6.6 UT GRMMFI = 0.31113 U3 0:21.5 UT UU = 1:28.9 UT PU = 2:32.8 UT

w

MODN FXIS = OP3C59 RR = 5" 8'35.53 F1 = 1:2€99 DEC = 23'113' 9."2 F2 = Of7176 I SD = 15 ' 54 ."8 S HP = Oo58'2U:'2

SflhOS 125 [Y7/721 JD 2YU8966.490 AT = 59.4 S

96 N CONTACTS MID = 13: 0.Y UT I P1 = 10:10.6 UT PF1Ari = 2.5782 u1 = 11:ll.O UT UMRG = 1.5669 u2 12:12.0 UT U3 = 13:Ll8.8 UT GRYME = 0.1639 u4 = 14:LlS.Q UT /------._ --. PU = 15:50.U UT

/" \\,

60 - cn w u5 - I- 3 z 30 - E W z- I u [r 15 - a

0-

\

RXlS = OP1594 RR = 16"50n13:2 F1 = 112609 DEC ~-22~18'38.''3 F2 = OP72Y9 I SD = 15 ' 54 ."G S HP = 0'58'21:'Y

SRRBS 130 (331721 JD 24Y9143.043 AT = 59.7 S

LONGITL'DE

97 TOTFlL LUNRR ECLIPSE - 29 NOV 1993

MID = 6:26.0 UT N CONTRCTS I P1 = 3:26.9 UT PilflS = 2.1893 u1 = Y:U0.2 UT UMAG = 1.0920 U2 = 6: 2.3 UT GRMM9 =- 0.3995 U3 = 6:U9.9 UT PENUMBRC? __--- -\_ .__ UY = 8:12.0 UT ,/' '\ PY = 9:25.1 UT / \\

UMBRfl "\

c

z c 30 -w --

-MOON FIXIS =-0.'3683 RA = 4"21n OP7 F1 = 1.'2171 DEC = 2Ia 7' 9:'3 F2 = Ol'S658 I SD = 1 5 ' 4 ."4 S HP 0°55'19:'3

SRROS 135 (22/711 JD 2YY9320.769 AT = 60.1 S

LiJ n 3

98 BFlRTIFlL LUNRR ECLIPSE - 25 MRY 199111

N CBNT RCTS 3: 30. Y UT I P1 1:17.9 UT = 1.2188 U1 = 2:37.5 UT = 0.2489 U4 = Y:23.2 UT Pll = 5:LJ2.8 UT = 0.8934

6t -

cn u 95 - I- 3 z 30 - -W x I u K 15 - CL

0-

\ \.. /' \

'-\----__ " MOON PENUMBRR1 = OP90711 RR = 16" 7n 9.'9 = 1.53053 DEC =- 1 9L59'22:'0 = 16'36.I'q = 017684 I SD S HP = lo 0'56."9

5FlROS 140 (2Y/B03 JD = 2YS9ll97.647 AT = 60.5 S 8C

UG w n 3 -t-0 k a -J

-110

- 80 1

99 PEYUMBRFIL LUNFlR ECLIPSE - 18 NOV 199U

CONT AC7 S MID = 6:43.9 UT P1 = Y:25.7 UT PMRG = 0.9077 PU = 9: 2.2 UT UMRG =-0.21Y8 GRMMR =-lalOY9

w

-M00N RXYS =-0.G593G RFI = 3'311'' 2.56 F1 = 1.'1934 OEC = 18O 11 '52."3 F2 = Of6Y33 i SD = 111'Y2."2 S HP = 0°53'57:'7

JD = 2YY967Y.781 AT = 60.8 S

LBNGITUDE

100 PRRTIFIC LUNFlR ECLIPSE - 15 RPR 1995

N CONTACTS MID = 12:18.1 UT I P1 = 10: 7.9 UT PMRG = 1.1089 U1 = ll:YO.8 UT UMRG = 0.1172 U4 12:55.1 UT PENiJMaRA PU 14:28.0 UT GFlMMFl =-0.9593

E-

-MOON RXIS =-O.O9521 RA = 13"31'50?7 F1 = 1.029119 DEC =-I OL37'U 1 .Y F2 = 0.07528 I SD = 16'231'9 S HP 1' 0'10:'g

SFlRClS 112 [6Y/723 JD = 24Y9823.013 AT = 61.1 S

101

f-L - i-F-l PENUMBRFIL LUNRR ECLIPSE - 8 OCT 1995

MID = 16: 4.1 Ul N CONTACTS I UT PMRG = 0.8511 p1 = 13:57.8 UT UMRG =-0.2063 PU 18:lO.O GAMMR = 1.1179

-w

0x2s = 1.00557 F1 = If23611 F2 = OP6921 s HP = 0°56'40:'2

SRROS 117 (51/721 JD = 2449999.170 AT = 61.5 S

102 TOTFlL LUNFIR ECLIPSE - U FIPR 1996

N C(IINTAC1 S MID 0: 9.8 U1 I P1 = 21: 15.5 UT PMAG = 2.U327 U1 = 22:20.7 UT UMRG = 1.38Y8 U2 = 23:26.3 UT U3 = 0:53.0 UT GFIMMR =-0.2533 PENUMBRR --c------. UU = 1:58.8 UT ,/' \ PU 3: 3.8 UT

w

-MOON RX!S =-0P2Y11 RFI = 12"53' 9sY Fi = 1.021139 DEC = -5'57' -3."7 F2 = OP7002 I SD = 15'33."9 S HP = 0'57' 7:'s

SFlRClfj 122 [55/751 JD 2450177.507 AT = 61.9 S 83

-I-0 I- a J

- 80 1

103 TOTRL LUNRR ECLIPSE - 27 SEP 1996

N CONTRCTS MID = 2:54.3 UT I P1 = 0: 12.2 UT PMAG = 2.2UU1 U1 = 1:12.1 UT UMRG = 1.21152 U2 2:19.1 UT GFlMMQ 29.2 UT 36.Y UT 36.Y UT

Lo w u5

PENUMBRfi HODN FIXIS = 0.‘3Y14 RA = On 15‘18:1 = F1 1,‘2888 DEC = 2O 1’36:’8 F2 = OP7Y62 I SD = 16 1 7 :‘a S HP = 0°59’Y8:’Y

SAROS 127 (41/723 JD 2Y 50353.622 AT = 62.2 S

w n

104 PFlRTIFlL LUNQR ECLIPSE - 24 MRR 1997

CONTACTS MiD = 4:39.Y UT P1 = 1:qO.S UT PMAG = 2.025U U1 = 2:57.6 UT LIMRG = 0.9240 U4 = 6:21.5 UT P4 = 7:38.Y UT GQMMR = 0.4899

PENUMBRq MOON

HXIS = OP4452 RA = 12"13"Y2~0 F1 = 1:2005 DEC = -lo 0'-4:'2 F2 = 0."6551 I SD = 14' 51 :'3 S HP = 0°54'31."3

SRROS 132 I29/71) JD = 2450531.695 AT = 62.6 S

7, c CU

w [3 3 +o #.- #.- I- a 1

-110

- 80 1

105 TOTFlL LUNFlR ECLIPSE - 16 SEP 1997

N CONTACTS MID = 18:Y6.6 UT I P1 = 16:ll.O UT PMRG = 2.1665 U1 = 17: 8.0 UT UMFlG = 1.1968 U2 18:15.6 UT GRMMR =-0.3768 PENUMBRA U3 = 19:18.0 UT ,,/------\ UY = 20:25.Y UT = 21:22.Y UT

/' UMBRR '\

-w

.'. .'.

MOON

FIXIS ~-0P3857 RFl = 23"38"10.'6 F1 = 1.'3155 DEC = -2'Y6'Y1:'2 F2 = 0.'77115 I SD = 16' YY ."2 s HP = lo 1'25."

SFIROS 137 I27/811 JD = 2Y50708.283 AT = 63.0 S SO

-110

- a0 1

106 PENUMBRRL LUNRR ECLIPSE - 13 MRR 1998

M!D = PMRG UMRG GRMMA

0 t

,'...... 1.- /" PEFIUMBRQ I MODN i RQ = llH33n20P5 I AXIS = 1P0794 F1 = DEC = 4' 2'58."8 I lPlUY9 F2 = 0.06477 I SD = 14'45.q'0 S HP 0'5q' 8:'1

SARClS 142 1171'741 JD 2Y50885.681 AT = 63.4 S 80

w I n 3 +o- I- a -I

- 110

- 80 1

107 PENUMBRFIL LUNRR ECLIPSE - 8 RUG 1998

CON T AC 'I S MID = 2:24.9 UT P1 = 1:32.1 UT PMaG = 0.1458 PU = 3:17.7 UT lJMRG [email protected] GRMMR = 1.4876

--w

\ \.. '.. ... \\ PENUMBRA MOBN RX!S = 1.04579 RFI = 21" 10" 4.'Y F1 = 1."2687 DE C = - 1 Y 4 8 - 1 :'3 F2 = Of7324 I SO = 16 ' 1 ."4 S HP 0°58'Y8:'5

SRROS 109 172/731 JD = 2451033.601 AT = 63.7 S

W

108 N CONTACTS HID = 11:lO.l UT I P1 = 9: 14.3 UT PMAG = 0.8371 Pll = 13: 6.2 UT UMRG =-C.1488 PENUMBRFl GRMMFI =-1.1058 n

-w

MODN

FIXIS =-l."llOll 1-1 1 Y RFI = 23" In6.'0 F1 = 1:2948 DEC -7:29'-7:'7 SD = 16'25."0 F2 = 0.07553 I S HP = I' 0'15:'l

SRRClS 147 [ 8/71) JD 2451062.966 AT = 63.7 S

-110

- 80 1 LONGITUDE

109 PErlUMBRRL LUNFIR ECLIPSE - 31 JRN 1999

N CONTACTS MID = 16: 17.5 UT I P1 = 111: 4.Y UT PMRG = 1.0282 PU = 18:30.3 UT UMRG =-0.0209 GRMMR =- 1.01 91 PENUMBRA

w

0 t

RXTS P3 F1 = 1."2616 DEC = 16' 211 '30."2 F2 = 017097 I SD = 1 5 ' Y 7 ."O S HP = 0°57'55:'6

SRROS 1111 (58/71) JD = 2Y51210.180 AT = 611.0 S 80

w n 3 -+o t- E -J

- 40

-80 1 80 120 60 0 -60 -120 -180 LONGITUDE

110 PFIRTIFIL LUNFlR ECLIPSE - 28 JUL 1999

N CONT RC'I S MiD = 11:33.7 UT I P1 = 8:56.1 UT F'M9G = 1.4600 U1 10:21.9 UT LiM9G = 0.4016 U4 = 12:US.U UT P4 = 111:ll.l UT = 0.7863 PU

\

PENUMBRA MOON

RX!S = OP7300 RFI = 20H28n49E3 F1 = 1p2157 DEC =- 18: 18 ' -3:'l SD = 15 ' 10 :'7 F2 = 0~6801 I S HP 0"55'Y2:'5

SFiROS 119 [61/83) JD = 2451387.982 AT = 64.4 5

111 TOTFIL LLZNFlR ECLIPSE - 21 JFIN 2000

MID Y:Y3.5 LIT N CONTACTS I P1 = 2: 2.7 UT PilAG = 2.3312 U1 = 3: 1.3 UT UllRC = 1.3302 U2 = Y: 4.Y UT CFlMMFl =-On 2957 PENUMBRR U3 = 5:22.Y UT 25.6 UT 2Y.3 UT

-MOON RFI = 8” 10n23?9 DEC = 19’Y5’29:’7 I SD = 16’33.’’7 S HP = lo O’YG.’’8

SHROS 12Y [Y 8/74] JD = 2Y5156Y.698 AT = 6Y.8 S

-I- I- C 1

112 TOTFlL LUNFlR ECLIPSE - 16 JUL 2000

N CONTAClS MID = 13:55.5 UT I P1 = 10:46.Y UT PhRG = 2.8636 U1 = 11:57.0 UT Ut1FIG = 1.7731 U2 = 13: 1.8 UT U3 = 14:Y9.2 UT GRMMA = 0.0301 U4 = 15:SU.l UT P'4 = 17: '4.7 UT

6o F

\ / i \\ ,/' I' 1.\-../-- PENUMBRR -MOON RXIS = OP0271 Rfl = 19H44n54:1 F1 = lPl868 0 E C - 2 I 1 3 25 ."3 F% = 0.06518 I SD = 1U'Y3."2 S HP = 0'54' 1."2

SRROS 129 137/711 JD = 2Y51742.081 AT = 65.2 S 80

uti w n 3 -+e l- a -I

-4a

- 80 1 80 120 60 0 -60 -120 -180 LONGITUDE

113 TOTRL LUNFlR ECLIPSE - 9 JRN 2001

N CONTACTS MID = 20:20.6 UT I P1 = 17:Y3.Y UT PMAG = 2.1867 U1 = 18:Ul.g UT UYAG = 1.1944 U2 = 19:Y9.6 UT U3 = 20:51.6 UT GRMMFI = 0.3720 /----. U4 = 21:59.2 UT P4 = 22:57.7 UT

HO0N

RXIS = OP3804 RR = 7"25' 7.59 F1 = 1."3203 DEC = 22'22'YG:'S F2 = 0.07673 I SD = 16'q3."0 s HP = lo 1'21.*'1

SFIROS 13Y (261731 JD 2451919.348 AT = 65.6 S

- 80 180 120 60 0 -60 -120 -180 LONGITUDE

114 YRRTIFIL LUNFlR ECLIPSE - 5 JUL 2001

CONT AC 1S MID = 111:55.3 UT PI = 12:10.7 UT PMAG = 1.5733 u1 = 13:35.1 UT liMQG = 0.U995 UU = 16: 15.3 UT Pll = 17:39.9 UT GAMMR =-0.7288

-W

u .--_ [r 15 (I 0 t

MOON RXiS =-0.'6660 RFI = 18H59n1G.S6 F1 = 1.02006 0 E C = - 2 3 '2 U '2 0 ."3 F2 = OP6658 I SD = 14 ' 56 ."6 S HP = Oo54'50.''11

SAROS 139 I22/821 JD = 2U52096.122 AT = 66.0 S

W n 3

- 80 1 LONGITUDE

115 PENUMBRFIL LUNFlR ECLIPSE - 30 DEC 2001

N CONTACTS MID = 10:29.3 UT I P1 8:25.4 UT FMAG = 0.93813 Pll = 12:33.2 UT UMRG =-0.1!0!4 PU GAMMR

P E NUMBR 9 MOON RXlS = 1P0583 RF1 = 6"38" 726 F1 = 1.'2833 DEC 2Y0 12'19:'l F2 = OP7303 SD = 16' 7.Y HP = 0°59'10:'2

SARClS 111Y [15/711 JD = 2Y52273.938 AT = 66.3 S

LONGITLDE

116 PENUMBRFIL LUNRR ECLIPSE - 26 MFIY 2002

MID = UT PMAG UT UMRG GHMMQ

0 t

'\ ,\ /' '. \.\-----' / PENUMBRR MOON

RXIS = lPl:509 RFI = 16"13"52P1 F1 = 1.32763 DEC =-20"-1'35.''6 SD = 16' F2 = OP7395 I 8:'5 s HP = O059'l4."5

SRROS 111 166/711 JD 2452421.003 AT = 66.7 S ao

-110

- 80 1 0 LONG I TUDE

117 PENUMBFiFlL LUNQR ECLIPSE - 24 JUN 2002

N CONTACTS MTD = 21:27.1 U'I I P1 = 20: 18.6 UT PM?G = 0.2347 PU 22:35.2 UT UM?G =-0,7872

+ TJ-;-TU MOON =- 1 :38? 1 RFI = 18" 13'25.59 l:2?l8? DEC =-2Y'Y7'-5;'1 = Of7132 I"'" SO = 15'Y2."3 S HP = 0'57'38:'Y

SHROS 1119 [ 2/72) JD = 2Y52U50.395 AT = 66.7 S

-80 1

118 PENUMBRRL LUNRR ECLIPSE - 20 NOV 2002

CONTAC z MID 1:46.5 UT P1 = 23:32.1 UT PMFlG = 0.8862 PU = u: 1.3 UT UMRG =-0.2219 GRMMR =-1.1127 PENUMBRQ -1, \ \ \ UMBRR \

-w

u 15 (I

RXIS =-l.O0139 F1 = 1."2057 F2 = Of655U

SRROS 116 (57/731 JD = 2Y52598.575 AT = 67.0 S

80

J

-110

- 80 1

119 TOTRL LUNRR ECLIPSE - 16 MFIY 2003

MiU = 3:LJO.l UT CONTACTS P1 = 1: 5.3 UT PHHG = 2,0996 u1 = 2: 2.7 UT UMFIC; = 1.1335 u2 = 3:lQ.O UT GfiMMFI = 0.i1i23 = Y: 6.5 UT = 5:17.6 UT = 6:lS.D UT

-w

RXIS = 0:,4212 RFI = 15"30nY3~0 F1 = 1.3118 DEC =-18°35'31 :'7 F2 = 0.G7739 I SD = 16'Y2:'2 S HP = lo 1'18:'l

SHROS 121 [55/841 JD = 2Y 52775.65Y AT = 67.4 S

120 CONTACTS MI9 = 1:18.5 UT P1 = 22: 15.0 UT PMAG = 2.3401 U1 = 23:32.U UT UMRG = 1.0221 U2 = 1: 6.9 UT U3 = 3:30.5 UT GRMMA =-0.4320 PENUMBRR u4 = 3: 4.7 UT ,/------A, P4 = 4:22.1 UT

-W

--.2.

MOON

RXIS ~-0P3892 RR = 2"55"37.SO F1 -. 1.01945 DEC = 16'19'Y8:'Y F2 -- OPSYSS I SD = 14 ' 43 ."8 s HP 0'54' 3:'6

SRRClS 126 [Y5/72) JD = 2Y52952.555 AT = 67.8 S

-40

-80 1

121 TClTFIL LUNFIR ECLIPSE - 4 MFIY 2004

N CONTACTS MID = 20:30.2 UT I P1 17:50.6 UT PIIAG = 2.2877 U1 = 18:Y8.1 UT UMRG = 1.3033 U2 = 19:51.8 UT : 8.2 UT :12.2 UT : 9.6 UT

MODN

=-O."3167 RFI = lYHY8"25~1 = 113019 DEC =-16L32'22."5 = 0.07627 I SD = 16'32."0 S HP = lo O'YO:'8

SRRClS 131 [33/721 JD = 2Y53130.355 AT = 68.2 S 80

P1

- 80 1 0 L8NG I TUDE

122 TdTRL LUNFlR ECLIPSE - 28 OCT 2OOU

MID = UT UT PMRS UT UMRG UT GRMMR UT UT

\ /' \\ ,' \ \/' PENUMBRR -HOBN

fixis = oP2655 RR = 2" 10'32P6 F1 = 1.2262 DEC 13'26'29."3 SD = 15' 15."1 F2 = 0.06788 I S HP Oo55'58:'4 I SRROS 136 I19/721 JD 2453306.629 AT = 68.6 S I 80

W

!2J

-SO 1

123 PENUMBRFIL LUNFlR ECLIPSE - 24 FlPR 2005

N CONTFlCTS MID = 9:5U.8 UT I PI = 7:Y9.6 UT FMaG = 0.890U PU = 11:59.6 UT UMFIG =-0.1384 GRMMR =- 1.0886 PENUMBRR

/' UMBRA \

E-

/' .;;;IC

MOON =- 1 ."OY 97 RA = lYH 6"23:1 = 1."25118 DEC =- 13:54'32:'9 = Of71112 I SD = 15'Y6."0 s HP = Oo57'51.''8

1111 [23/731 JD = 245348Y.91Y AT = 69.0 S 90

-40

- 80 180 120 60 0 -60 -120 -180 LONGITUDE

124 PRRTIRL LUNRR ECLIPSE - 17 OCT 2005

CBNT ACT S P1 = 9:51.2 UT U1 = ll:3U.O UT U4 = 12:31.7 UT Pll = lll:lU.9 UT

6o F

0 t

MOON

RA = lH27n54:l QX!S = 0.09656 DEC = 10°15' 0."9 F1 = 1P2792 SD = 16' 6."9 F2 = 0:'73311 I S HP = 0'59' 8:'7

SARDS 1116 [10/721 JD = 2453661.003 AT = 69.11 5

125 PENUMBRFIL LUNFlR ECLIPSE - 14 MFlR 2006

N CONT AC 1 MID = 23:47.Y UT S I P1 = 21:21.6 UT PMAG = 1.0565 PU = 2: 13.7 UT UMRG =-0.0558 GAMMA = 1.0210

,/ .--.A

-w

0 t

/ '' ,/' I 1. / .----_-/ PENUMBRA MOON AXIS = 0.'9211 RFI = 11nYOnYl~3 F1 = 1.'13Y& DEC = 3' 5'18."0 F2 = 0.'6479 I SD = 1 4 ' Y 5 ."1 S HP = 0'511' 8."3

SARDS 113 163/711 JD = 2Y53809.Y92 AT = 69.7 S

126 PFlRTIFlL LUNFlR ECLIPSE - 7 SEP 2006

N CONT RClS MID = 18:51.2 UT I P1 = 16:42.4 UT PMAG = 1.1579 U1 = 18: 5.3 UT UMFlG = 0.1897 UII = 19:37.7 UT PENUMBRA PU = 21: 0.4 UT GRMYFI =-0.9261 ,/------/ 1

-W

MOBN

FIXIS =-O.O9U72 RA = 23" 6"35.'5 F1 = 1."3139 DEC = -6L411'25:'7 SD = 1 6 ' Y 3 ."3 F2 = 0.07742 I S HP = lo 1'221'3

SHROS 118 I52/751 JD = 2U53986.286 AT = 70.1 S 80

-40

- 80 1 TOTFlL LUNFIR ECLIPSE - 3 MFlR 2007

N CONTACTS MID = 23:20.8 UT I P1 = 20: 16.3 UT PMAG = 2.3452 U1 21:29.9 UT UMAG = 1.2375 U2 22:43.9 UT GRMMR = 0.3374 U3 = 23:58.1 UT

M(30N

RXIS = OF2883 RA = 10"57"52>2 F1 = 1:2020 OEC = 6'56' 0."7 F2 = 0.06535 I SD = 14 ' 5 1 ."3 S HP = O'SU'31:'I

SRRBS 123 (52/731 JD = 245Y163.474 AT = 70.5 S

w n 3 -I- I- U -I

128 TO'TFIL LUNRR ECLIPSE - 28 RUG 2007

N CONTRCTS MID 10:37.2 UT I P1 7:52.0 UT PMAG = 2.U778 U1 = 8:50.8 UT UMRG = 1.U815 u2 = 9:51.9 UT U3 = 11:22.8 UT GRMMR =-0.21115 PENUMBRR /- UU = 12:23.9 UT PU = 13:22.5 UT

60 -

Cn w - I- 3 z r( 30 - -W E I 0 u: !5 - U

0-

MOON

RXlS =-0?2126 RFI = 22" 26'50PY F1 = 1.'2812 DEC = -9'57'18."5 F2 = 0.07429 I SD = 16 ' 12 ."5 S HP = 0@59'29."2

SRRBS 128 (40/711 JD = 2YSq3Y0.9113 AT = 70.9 S

80 120 60 0 -60 -120 -180 LONGITUDE

129 TBTHL LUNFlR ECLIPSE - 21 FEB 2008

N CONTACTS IIID = 3:25.9 UT I P1 = 0:34.7 UT PMRG = 2.1707 U1 = 1:42.6 UT u:.IFI[; = 1.1110 U2 = 3: 0.3 UT GAMMFI =-On 3993 PENUMBRR U3 = 3:Sl.O UT U4 = 5: 8.9 UT /------\.., PU 6:17.2 UT /' '\ / \

-MO8N RXlS =-0?3802 RR = 10HlllnY8.SY

F1 L- 1:'21173 DEC = 10'28' 7."7 F2 = Of6973 I SD = 15 ' 34 ."2 S HP = 0'57' 8:'5

SRROS 133 126/711 JD = 2Y5Y517 6UY AT = 71.3 S

w ci 3

180 120 60 0 -60 -120 -180 LONG I TCDE

130 PFlRTIFlL LUNRR ECLIPSE - 16 RUG 2008

N CONT F(C7 S MID = 21:lO.O UT I P1 = 18:22.8 UT PMAG = 1.8620 U1 = 19:35.I UT UMRG = 0.8124 UI = 22:YY.U UT PY PI = 23:57.0 UT GRMMA

I

w u5 I- 3 30

\ / /

\'\ \'\ /' _---' PENUMBRR MOON

AXIS = 0!5303 RA = 21"Y5"41?8 F1 = 1P2273 DEC =- 12'55'29."0 F2 = OP690l I SD = 15'21.111 S HP = 0°56'20:'6

SARDS 138 (291831 JD = 2Y54695.383 AT = 71.8 S

- uu 180 3 20 60 0 -60 -120 -180 LONGITUDE

131 PENUMBRQL LUNFlR ECLIPSE - 9 FEB 2009

N CONTACTS MID = 1Y:38.1 UT I P1 = 12:36.5 UT PMAG = 0.92YLi PI = 16:39.Y UT UMAG =-0.0830 PENUMBRA G'IMMFI =- 1 a 06112 ---- . / '-1 ,/ \ /' / \

W

MOON

FIX1 S =- i .'OS82 RR = 9H31nY2P0 FI = 1:30011 DEC = 13'31'37:'Y F2 = OP7Y93 I SD = 16 ' 24 :'8 S HP = loO'IU:2

SHROS 143 I18/731 JD = 2Y5Y872.111 AT = 72.2 80

W n 3

-110

-80 1

132 PENUMBRQL LUNFlR ECLIPSE - 7 JUL 2009

N CONTAClS M!D = 9:38.5 UT I P1 = 8:33.1 UT P4 = PMRG = 0.1825 10:UU.2 UT UMRG =-0.9081:

GFlMMFl =-1.'4915 PENUMBRQ

I

0-t

MOON

fiXIS =-li)31119 RFl = 19l 8' 820 F1 = l."l862 DEC =-23"51'37:'7 SD = F2 = 0!6513 I 1'4''42."6 S HP = 0°53'59.''3

SRRBS 110 (71/721 JD = 2455019.903 AT = 72.5 S

133 PENUMBRFIL LUNRR ECLIPSE - 6 RUG 2009

N CON T RC T S MTD = 0:39.0 UT P1 = 23: 0.8 UT PMqG = 0.11276 PU = 2:16.9 UT UMgG =-0.66 17 GilMHFl = 1.3575

E- -w

L: t --..- .

- 1 GiGBFrA -MOON RXIS = 1."2259 RFI = 21" 2"YG;2 Fl = 1P1902 DEC =- 1 S23G32:'Y F2 = Of65Yr I HPso = Oo5U'11:'Y1u'Y5:'9 S

SHROS 1118 I 3/71] JD = 2Y 550Y 9.528 AT = 72.6 S

L'J CJ 3

134 PRRTIQL LUNRR ECLIPSE - 31 OEC 2009

N CONTACTS MID = 19:22.5 UT I P1 = 17: 15.1 UT UT PMGG = 1.0808 U1 = 18:51.9 UMFlG = 0.0820 Ull = 19:53.5 UT u1 A Pll = 21:30.1 UT GflMYFI =

0 t

\ .. -.-. /' 1 - M00N FEhUMBRA - RXlS = OE9920 RC1 = 6"YSM22P3 Fi = 113:3S DEC = 24' 1'101'2 SD = 16'36."6 F2 = OP7606 I S HP = 1' 0'57."6

SfiRBS !I5 157/721 JD = 2455197.308 AT = 72.9 S

135 PRRTIRL LGNQR ECLIPSE - 26 JUN 2010

N CON1 ACTS MID = 11:38.3 UT I P1 = 8 55.3 UT PMAG = 1.6033 u1 = 10 16.Y UT UM9G = 0,5112u u4 = 13 0.3 UT GRMMFl =-Om7090 P4 = 14 PENUMBRR 21.5 UT

,/----- ‘1 /’ \

L I 0 L-

M(30N FiXiS =-0:6557 RA = 18“21”11~7 F1 = 1:2i18 DEC =-2Y0 O’-G.’’S F2 = 0.‘5768 I SD= 15’7:’3 S HP = 0°55‘29:‘7

SFlRBS 120 158/841 JD 2Y55373.986 AT = 73.3 s

n 3

136 TOTQL LUNFlR ECLIPSE - 21 OEC 2010

N CONTACTS MIL1 = 8:16.8 UT I P1 = 5:27.Ll UT PF(A;; = 2. 3054 U1 = 6:32.0 UT UVR!i = 1. 2614 U2 = 7:40.2 UT U3 = 8:53.5 UT GRllMR = 0.3213 uu = 10: 1.7 UT PU 11: 6.1 UT

E W

/ 1'

L/,"PENUMBRA M00N Rfl = SH57"17.S2 DEC = 23'4U'U7:'5 I SD = 15 ' 52 ."1 S HP = Oo58'14."3

SAPOS 125 (U8/721 JD 2Y55551.8UG AT = 73.7 '3

137 TOTFIL LUNRR ECLIPSE - 15 JUN 2011

N CONTACTS MID = 20:12.5 U1 I P1 = 17:22.8 UT PilRG = 2.7117 U1 18:22.3 UT UMRG = 1.7050 U2 = 19:21.9 UT GRMMR = 0.0899 U3 = 21: 3.1 UT UU = 22: 2.6 UT PU = 23: 2.3 UT ,/ /' "\\

PENUMBRR M00N

AXIS = 0:0877 RFI = 17"35'32:2 F1 = 1.@2638 DEC =-23O 13'5 1 ."O F2 = OP7285 SD = 15'57."2 HP 0'58'33:'O

SFlRClS 130 [3Y/721 JD = 2455728.3Y3 AT = 7Y.1 S 80

-40

180 120 60 0 -60 -120 -180 LONGITUDE

138 TOTFlL LUNFlR ECLIPSE - 10 DEC 2011

N CONTAC'IS MID 111:31.6 UT I P1 = 11:31.5 UT PMAG = 2.2120 U1 = 12:LJS.l UT UMRG = 1.1105 U2 = 111: 5.6 UT U3 1U:57.7 UT GRMMR =-0.3883 PENUMBRA U11 16:18.3 UT Pll = 17:31.7 UT

MOBN

= .'8 R X 1 S =- 0 P 35 7 1 RR 5" 8"33 F1 = 1721511 DEC = 22'33'13 ."O SD = 15' 2 F2 = 0.06632 I ."11 S HP = 0°55'11 ."7 t SRROS 135 (23/711 JD 21155906.106 AT = 7Y.6 S 80

-80 1

139 PRRTIRL LUNRR ECLIPSE - 11 JUN 2012

N CONTACTS MID = 11: 3.1 U1 I P1 = 8:46.3 UT PMRG = 1.3U29 u1 = 9:59.3 UT UM9G = 0.3760 UU = 12: 6.9 UT GRMMA = 0.8250 PU 13:19.9 UT

- 30 E 0 IT 15 (I 'Iot

MQ0N

nx1s = 0.08391 Rfl = 16H51n37.S6 F1 = 1P3064 DEC =-21'39'55:'8 F2 = 0.'7704 I SD = 16'37."9 S HP 1' I' 2:'2

SaROS 1110 [25/801 JD = 24 56082.961 AT = 75.0 S

140 PENUMBRQL LUNRR ECLIPSE - 28 NOV 2012

N CONTACTS MID = 1?1:32.8 UT I P1 = 12:12.4 UT PU = 16:53.3 UT PMRG = 0.9417 UM!?G =-0.1831 GRMMR =-1.0870 PENUMBRR

RR = uH20n ~0 RXlS =-O.O9775 DEC = 20°27'Y4.''3 F1 = 1r19YO SD = 14'42."2 F2 = OP61127 I S HP 0°53'57."7 AT = 75.4 S SRROS 1115 111/711 JD = 2456260.107

W 0 3 -I- l- a -I

141

, PRRTIFIL LUNRR ECLIPSE - 25 RPR 2013

N CONTACTS MID = 20: 7.4 UT I PI = 18: 1.5 UT PMAG = 1.0118 U1 = 19:52.U UT UMFIG = 0.0205 U4 = 20:22.3 UT GFIMYFI =-1.0121 PENUMBRR---_ PU = 22:13.2 UT /---1 / '\,

E- -w

t 0 I ..

MOON

RR = lYH12"51~4 F1 = 1p2915 DEC =- 1 4 '25'34 .*'O F2 = 0.G7510 I SD = 16'21.''4 S HP = lo 0' 1:'7

SflROS 112 (65/721 JD = 2456408.339 AT = 75.8 5

142 PENUMBRFIL LUNRR ECLIPSE - 25 MFIY 2013

CONTACTS MID U: 9.9 UT P1 = 3:43.8 UT PU = Y:36.3 UT PMRG = 0.0403 UMFIG =-0.9279 GRMMA = 1.5352

/'

/--- c- --w

\ \ \ ,/' '. /' '-\___---/ /' MOON PENUMBRR RFI = 16H 9' 9.'9 FIXIS = 1.05621 DEC =-19~"4'Y5."0 FI = 1."3572 SD = 16 ' 38 ."2 F2 = 0.07703 I S HP = lo I' 3:'s

SARDS 150 ( 1/71] JD = 2456U37.67U AT = 75.8 S

143 PENUMBRRL LUNFlR ECLIPSE - 18 OCT 2013

MID = 23:SO. 1 U1 N CONTACTS I P1 = 21:48.0 UT PMAG = 0.7908 PY Pll = 1:51.8 UT UMRG =-0.2666 GFlMMA = 1.1507

I -w 0

U

0

FlXl s = lPO9Ol RA = F1 = 1P2Y02 9:s DEC = 0' 1i.Y F2 = O.'69Y3 ID I SD = 15'29."3 S HP 0°56'50:'7 SARDS 117 (52172) JD = 2Y5658Y.ll9Y AT = 76.2 S

w 0

144 TOTFlL LUNFlR ECLIPSE - 15 RPR 2014

N CONTACTS MID = 7:45.5 U1 I P1 = Y:51.7 UT = 5:57.6 UT PMRG = 2.311110 U1 U2 = 7: 6.0 UT UHQG = 1.2959 u3 a:2u.8 UT GFIMMi4 =-0.3016 PENUMBRFl uu 9:33.3 UT 39.2 UT

H(30N

AXIS ~-0P2862 RR = 13"33'21:1 DEC =- 10' -2'59."Y F1 = 1.02399 SD = 15'30."9 F2 = 0.06979 I S HP = 0°56'56."5

SRROS 122 [56/751 JD 2Y56762.824 AT = 76.6 5

145 TOTRL LUNRR ECLIPSE - 8 OCT 20111

N CBNT FICT S MID = 10:54.4 U1 I P1 = 8: 13.7 UT PMRG = 2.1710 U1 = 9:lU.l UT UMQG = 1.1717 U2 = 10:24.3 UT GRMM4 = 0.3825 u3 11 : 24.1 UT uu = 12 : 311.6 UT P4 = 13 :35.1 UT

6o c

w

"t0

\ / ,, \ ,'

PENUMBR9 MOBN

OXIS = 0.'3823 RR = O"55" 7.'1 F1 = If2923 DEC = 6' 18'25:'9 F2 = 0.'7481 I SD = 16 20 ."3 S HP = 0°59'57:'9

SFlROS 127 LY2/721 JD = 2456938.955 80

W n 3

&oCI + a -I

-110

- 80 1 LONGITUDE

146 TOTFlL LUNRR ECLIPSE - 4 RPR 2015

N CONTAClS MID = 12: 0.1 UT I P1 = 8:59.4 UT

PMRG := 2.1052 U1 = 10:15.3 UT UMRG = 1.0053 U2 = 11:56.0 UT U3 = 12: U.6 UT GRMMR = 0.4461 U4 = 13:45.2 UT 0.8 Ul

-w

/ '\. /' I------PENUMBRR MOON

RXiS = OPYOLlG RR = 12H53n29:7 F1 = 1,'1982 DEC = -5O-17'19."8 F2 = OPSSllll I SD = lY'll9:'9 S HP = Oo54'25.''9 SRROS 132 (30/711 JD = 2457117.001 AT = 77.5 S

W n 3

-80 1

147 TOTQL LUNRR ECLIPSE - 28 SEP 2015

MID = 2:47.0 U1 N CON1 ACTS I p1 = 0:lO.l UT PMAG = 2.25i13 U1 = 3: 6.6 UT UMRC = 1.2820 U2 = 2: 10.7 UT GRMMR =-0.3297 PENUHBRR .- .- U3 = 3:23.5 UT UL4 4:27.5 UT pL4 = 5:2U.O UT

--w V LT 15

0 '.

4x1s =-0 :3376 RFI = On 17'33.55 F1 1P3166 DEC = 1'32' 2:'9 F2 = 0.J77Y0 I SD = 16'44."5 S HP = 1' 1 '26."5

SRROS 137 (28/811 JD 2457293.617 AT = 77.9 S

148 PENJMBRRL LUNFlFI ECLIPSE - 23 MFlR 2016

UT UT

-MOON Rfl = 12” 13n18.s5 RXIS = 1P0470 DEC = 0L18L20.“8 F1 = 1.‘1950 SD = 111‘116:‘O F2 = O.”S149S I S HP = Oo5U’11:’6

JD = 211571170.992 AT = 78.3 S

-4G

- 80 1

149 PENUMBRRL LUNFlR ECLIPSE - 18 RUG 2016

MID = 9:42.4 UT CCINTFICTS P1 9:25.6 UT PMAG = 0.0166 PU 9:59.2 UT llMFlG =-0.9925 GRMIIFI = 1.5594

/’

-w

u t

\ /’ \. /’ “Ll” P E h U M 3 R FI MOBN RXIS = 1P5234 RFI = 2IH5On57?5 Fl = 1.‘2660 DEC =- 1 I ‘24’59:’8 F2 = 027.287 I SD = 15’58.’’11 s HP = 0°58’37:‘2 SRRBS 109 I73/731 JD 2Y57618.905 AT = 78.7 S

150 PENUMBRFlL LUNFlR ECLIPSE - 16 SEP 2016

CONTACTS MID = 18:54.2 UT P1 = 16:52.7 UT PU = UT PMAG = 0.9329 20:56.0 UMAG =-0.0580 PENUMBRR GflMMR =-1.0550

.'. % &$., / i 6. $::[v, 6o E E-d / --. -w u IT 15 U 0 -.'. \ '. '.

MOON

AXIS =-1POS69 RFI = 23"YOM27;3 F1 = 1:'2932 DEC = -3:15'37."2 SD = 16'22."8 F2 = 0.07522 I S HP = 1' 0' G."8

SARO5 1117 [ 91111 JD 2457648.289 AT = 18.7 5

80

ue w L3 3 -+o P a J

- 40

- 80 1

151 PENUMBRFIL LUNQR ECLIPSE - 11 FEB 2017

C ONT FIC 1 S M1D = 0:43.7 U1 Pl = 22:31.9 UT PMilG = 1.0111 PU = 2:55.3 UT UMRG =-0.0302 GQMMR =-1.0254 PENUMBRA

--w

HODN RXIS =-0."9927 W RR = 9"38"22:5 F1 = 1726qO DEC = 13' 3'10:'8 F2 = OP7130 I SD = 15'Y9."8 S HP 0'58' 5:'6

SRRCIS 11Y [59/711 JD 2457795.531 AT = 79.1 S 80

40 w 0 3 -I- 0 t- a: 1

-40

- 80 1

152 PFlRTIFlL LUNFlR ECLIPSE - 7 RUG 2017

N CONTACTS MID = 18:20.3 UT I P1 = 15:47.7 UT PMAG = 1.31U5 U1 17:22.1 UT UMRG = 0.2515 UU = 19:lB.U UT PU 20:52.7 UT GRMMR = 0.8668 w-- --.

P E NUMBR R MOON

RXIS = OP8024 RR = 21" 10'53:l F1 = 1.02133 DEC =-15"5'17.'*7 SD = 15' 8."1 F2 = 0.06770 I S HP = 0°55'32:'7

SRRBS 119 (62183) JD 2Y57973.265 AT = 79.5 S 80

w n 3 c 0 c( k U 1

-40

- 80 1 TOTFlL LUNFlR ECLIPSE - 31 JRN 2018

N CON T AC S MID = 13:29.6 UT 1 I P1 = 10:49.Y UT PMRG = 2.3196 U1 = 11:47.7 UT UKQG = 1.3214 U2 = 12:51.0 UT GFIYMFI =-0.30 12 U3 = 14: 8.1 UT UU = 15:ll.Y UT ,/' \'\, PU = 16 9.9 UT

MOON

FIXIS =-Of3056 RFI = 8"56" 429 F1 = 1.03117 DEC 16°59'115:'3 F2 = 027597 I SD = 16'35."2 S HP = lo 0'52:'5

SFIROS 1211 IY9/7Y) JD = 2458150.063 AT = 80.0 S

1 0

-10

- 80 1 80 120 60 0 -60 -120 -180 LONGITUDE

154 TOTRL LUNFlR ECLIPSE - 27 JUL 2018

N CONTACTS IIID 20:21.5 UT I P1 17:12.7 UT PMAG = 2.7056 U1 18:23.8 UT UMRG = 1.6137 U2 = 19:29.6 UT U3 = 21:13.5 UT GRMM9 = 0.1166 UU = 22: 19.3 UT PU = 23:30.U UT

RXIS = O.ClO49 FIR = 20'28'18.52 F1 = 1:'lesG DEC =- 18'58' 11 ."5 = 14'42."7 F2 = 0."6511 I SD S HP = 0°53'59:'7

SRROS 129 [38/71) JD = 2458327.3Yg

UO

W 0 3 t-0 +- (I -I

-90

-80 1

155 TOTFlL LUNFlR ECLIPSE - 21 JFlN 2019

N CONT RCT S MID = 5:12.1 UT I P1 = 2:3U.7 UT PMAG = 2.1931 U1 = 3:33.2 UT UMAG = 1.2005 U2 U:U0.7 UT GFlMMFl = 0.3586 U3 5:Y3.6 UT UU = 6:51.0 UT PU = 7:Y9.5 UT

uI

KI:/ 15 a:

0

1-1PENUMSRR M00N FIXIS = 0.03766 RA = 8"12"28:6 F1 = 1:3392 DEC = 2O020'1U:'3 F2 = 0.07666 I SD = 16'U2."1 S HP = 1' 1'17."9

SFlROS 134 I27/731 JD = 2Y5850U.718 AT = 80.9 S

156 PRRTIRL LUNFlR ECLIPSE - 16 JUL 2019

CBNT ACT S M!D = 18:Y1.7 UT 20: 1.1 UT PMRG 22: 60.0 UT llMRG 0: 19.u UT GFlMMR

-W

0 15

0

-HO0N RXlS -;-0P5892 RR = 19"YUn 0:3 F1 := 1.02029 DEC =-21"2'53:'6 SD = 14'58."7 F2 = OP6679 I S HP = Oo5Y'58:'2

SRROS 139 (23/821 JD = 2U58681.397 AT = 81.3 5

157 PENUMBRFIL LUNFlR ECLIPSE - 10 JFlN 2020

N CONT FICTS M!D = 19: 9.8 UT I P1 = 17: 5.Y IJT PM9G = 0.9208 PU = 23:1U.3 LII1'1 UMRG =-0.11@9

/ // m i ._----- I- I- I c- 1 E- I -W u .\-"1 -_e-

(I \ 0 t \ \

\ UMBRQ

MOON

AXIS = lP0550 RR = 7"26"Y5?7 F1 1:28@6 DEC = 23' 0' 3:'s F2 = 0.07276 I SD= 16'U:'8 S HP = 0'59' 0.3

SARClS 1 YY I1 6/71] JD = 24 58859.299 AT = 81.8 S

w n 3

158 5 JUN 2020

N CON1RCT S M!D = 19:211.9 UT I P1 P1 = 17:43.3 UT Pll = 21: 6.4 UT PMAG =: 0.5936 UMRG =-0.399u GFIMMR

-W

0 K 15 U

0

M00N

RFI = 16H58n25?5 FIXIS = 1'32283 DEC =-21'27' -9i-2 F1 = 1.02788 SD = 16' 11 ."4 F2 = 0'37Y29 I S HP = 0°59'25."1

SRRBS 111 [67/711 JD = 2459006.310 AT = 82.1 S

60

uo w 0 3 -+o k U -I

-110

- 80 0 1 LONGITUDE

159 PENUMBRFIL LUNRR ECLIPSE - 5 JUL 2020

CONTACTS MID = Y:29.8 UT P1 = 3: 4.2 UT PMAG = 0.3796 PU = 5:55.2 UT UMRG =-0.6385

0 t

\ /

M00N FiXJS =-1?31Y8 RFI = 18"5gn12?5 F1 = 1.'2515 MID DE C = - 2 Y ' - 3' 1 6 ."8 F2 = 0.O7167 I SD = 15'Y5."6 ti HP = Oo57'50:'Y

SRRCIS 1119 [ 3/72] JD = 2Y59035.688 AT = 82.2 S

w a 3 k-

160 PENUMbRFlL LUNFlR ECLIPSE - 30 NOV 2020

CONT AClS M’ID = 9:q2.6 U1 P1 = 7:29.8 UT PMAG = 0.85U8 PU 11:55.7 UT UMFIG =-0.2575 GFlMMR =-1.1309

MO0N

FIXIS =-l.O0288 RFI = Y’28’4GB5 F1 = 1.02047 DEC 20DU4’Y6:’1 = 14 ‘ 52 .“Y F2 = 0.06532 I SD S HP = Oo5U’35:’3

SRRBS 116 [5e/733 Ji) = 2459183.906 AT = 82.6 S

161 TOTQL LUNQR ECLIPSE - 26 MRY 2021

MID = 11:18.5 UT UT PMAG = 1.9790 UMRG = 1.0155 UT UT GFlYMR = 0.4773 UT UT UT

MODN RYIS = 0.'4879 RFI = 16"llln37E7 F1 = 1.'3119 DEC =-2OKUllL15:2 F2 = 0.G7751 I SD = 16'42."8 S HP = lo 1'20.3

SilRO5 121 156/841 JD = 2459360.972 AT = 83.0 S

162 PaRTIFlb LUNRR ECLIPSE - 19 NOV 2021

N CON1ACl S MID = 9: 2.7 UT I P1 = 6: 0.0 UT PMHG = 2.098U U1 = 7:18.1 UT LiMRG = 0.9786 U4 = 10:47.4 UT PU 12: 5.5 UT GAMMR =-O.U552 PENUMSRA .. / '\

-W ---_--

--.I----- MOON

AXIS =-004104 RR = 3HYOM24?7 F1 = 1.03358 DEC = 19' 9'15."2 F2 = OPSll56 I SD = 1 u ' 44 :'5 S HP = 0'54' G."O

SARDS 126 [Y6/72) JD = 2Y59537.878 AT = 83.5 S 80

- 80 1 80 120 60 0 -60 -120 - 180 LONGITUDE

163 TOTFlt LUNFlR ECLIPSE - 16 MFIY 2022

C ONT AC 1 S MID = Y:11.3 UT N I P1 = 1:30.3 UT PMAG = 2.3973 U1 = 2:27.1 UT UYRG = 1.4193 U2 = 3:28.3 UT GRMMFI =-Om 2533 PENUMBRR u3 = U:5U.1 UT

//- UY = 5:55.3 UT ,/ PU 6:52.2 UT ,

w

fI X I S = - 0 P 25 56 RFI = 15"31n27.S7 FI = 1,'29,01 DEC =-19'19'YO.''6 F2 = OP7612 I SD = 16'29."9 S HP = ID 0'33"'l

SRROS 131 (3Y/721 JD 2Y59715.675 AT = 83.9 S

LONG I TUGE

164 TOTRL LUNRR ECLIPSE - 8 NOV 2022

N CONT FIC'I S MID = 10:58.9 UT I P1 = 8: 0.2 UT U1 = 9: 8.U UT PVA; = 2.4401 U2 = 10:15.8 UT UMRS = 1.3635 u3 11:u1.7 UT GRMMA = 0.2571 u4 = 12: 49.2 UT P4 = 13: 57.7 UT

-W

.

', ,/ \\. ,/' '.. . I ------.I PENUMBRA -MOON RR = 2H53HY8.s0 AXlS = OT2405 DEC = 16'551' 6:'q FI = 1p2296 SD = 15'171'7 F2 = 0."6807 I S HP 0'56' 7:'8 i AT = 8U.U S I S;IROS 136 [20/721 JD 2459891.959 6G

-40

- 89 1

I 165 PENUMBRFIL LUNFlR ECLIPSE -

MID = 17:22.7 UT CONTACTS P1 = 15:11.7 UT PM3G = 0.9889 PU = 19:33.Y UT UMFIG =-0.04 05 GfIMMfI =-1.0351

E-

RXIS =-0?99Y7 F1 = 1.‘2508 F2 = OP7llG

1

166 PRRTIRL LUNFlR ECLIPSE - 28 OCT 2023

N CONTRClS MID = 20:13.8 UT I P1 = 17:59.’4 UT U1 = 19:311.1 UT PMRG = 1.1432 UU = 20:52.8 UT UMRG = 0.1273 UU PU = 22:27.8 UT GRMMR = 0.9473

60

30

15

0 t

RXlS = 0’9363 F1 = 1.”2829 F2 = 0.07355

JD = 24602‘46.34U AT = 85.3 S SRRBS 146 [11/721 PENUMBRRL LUNRR ECLIPSE - 25 MRR 2021.1

M!D = 7:12.6 UT CONTFICTS PI Y:50.9 UT PMAG = 0.9821 = UT UMRG =-0.1278 PU 9:3U.7 GRMMR = 1.0609

-w

MOON RFI = 12"2DnYl~2 - l.lJJl DEC = -1'12'-5:'6 F2 = Of6479 I SD = 14'44:'3 S HP = 0'54' 5:'Y

SFIROS 113 164/711 JD 2Y60394.801 AT = 85.7 S

168 PRRTIFIL LUNRR ECLIPSE - 18 SEP 2024

N CONTRCTS MID = 2:LlII.o UT I P1 = 0:39.2 UT PMRG = 1.0622 u1 = 2:12.0 UT UII = 3:16.5 UT PU = 4:49.2 UT

-W

MODN

FlXIS =-1."0009 RFI = 23"46' 6.'0 F1 = 1."31Y1 DEC = -2'35'26:'9 I SD = 16'Y2."8 F2 = 0:7729 U s HP = IC 1'2O:'U

SFlRClS 118 (53/751 JD = 2Y60571.615 AT = 86.2 S

80

uo

W n 3 -+o a 1

-110

- 80 I

169 TOTFlL LUNQR ECLIPSE - 1U MFlR 2025

N CONTACTS MID = 6:58.5 UT I PI = 3:55.U UT PMRG = 2.2858 U1 = 5: 9.0 UT UMRG = 1.1831 U2 = 6:25.6 UT U3 = 7:31.9 UT GRMMR = 0.3481-1 P1 UU = 8:U8.1 UT PU = 10: 1.8 UT

-w

HBBN

= 01'3171 RQ = 11" 38'22.'9 1.2029 DEC = 2°U005U."7 = OPSS59 I SD = 1Uq52.''8 S HP = O051-1'36:'8

123 [53/73) JD = 2Y60748.792 AT = 86.6 5

w n 3

170 TOTFlL LUNRR ECLIPSE - 7 SEP 2025

CONT RCT S MID = 18:ll.S UT P1 15:26.5 UT PMAG = 2.36911 U1 = 16:26.U UT U!IFIG = 1.3676 U2 = 17:30.2 UT PENUMBRA U3 = 18:53.2 UT GAMMA =-0.2751 U4 19:56.7 UT / -,-, P11 = 20:56.5 UT /

-W

AXIS =-0P2719 RR = 23" 6"YO;3 F1 = l?2791 DEC = -6' 0'-8."8 F2 = 0.073911 I SD = 16' 9."8 S HP Oo59'19."l

SARDS 128 (41/71) JD = 2460926.259 AT = 87.1 S

80

40 w n 3 -+a U -1

-40

- 80 1 80 120 60 0 -60 -120 -180 LONGITUDE

171 TOTQL LUNRR ECLIPSE - 3 MRR 2026

N CONTRCTS MID = 1 I: 33.Y Ul I P1 = 8:U2.3 UT PMRG = 2.2095 u1 = 9:Y9.3 UT UMRG 3.5 UT GRMMR 2.8 UT 17.3 UT 24. u UT

60 r

MOON

FIXIS =-OF3596 RR = 10"56"14~9 F1 = 1p2495 DEC = 6'24' 5:'S F2 = OP7009 I SD = 15'37."0 S HP = 0°57'18:'7

SRRO5 133 I27/711 JD = 2Y6!102.983 AT = 87.6 5

172 PFIRTIFlk LUNRR ECLIPSE - 28 RUG 2026

N CONTRC'TS HID = Y:12.6 UT I P1 = 1:21.8 UT PMAG = 1.9900 U1 2:33.0 UT UMFIG = 0.93U7 U4 = 5:52.0 UT PI 7: 3.2 UT GRMMR 0,4965

RXIS = OP46Y8 RR = 22"26" 623 F1 = 1?22Y8 DEC = -9'18'-3:'5 F2 = OP6865 I SD = 15 ' 1 8 .q'2 S HP = 0'56' 9."9

SRROS 138 (30/831 JD = 2461280.676 AT = 88.0 S

-80 1 SO 120 60 0 -60 -120 -180 LONGITUDE

173 PENUMBRAL LUNRR ECLIPSE - 20 FEB 2027

MID = 23:12.6 UT N CONT AC 1 S I P1 = 21: 9.9 UT PMRG = 0.9515 PI = 1:lI.q UT LlMQG =-0.05 1 G

E-

-MOON RXI 5 =- 1 ."osYI RA = 10"14"23~6 F1 = 1.'3019 DEC = 9'I7'16."3 F2 = 0.07519 W I SD = 16'26."8 s HP = 1' 0'21."5

SAR85 1113 [19/731 JD = 2Y61I57.468 AT = 88.5 S

174 PENUMBRRL LUNRR ECLIPSE - 18 JUL 2027

N CONTACTS MID = 16: 2.7 US I P1 = 15:37.6 UT PU = 16:28.0 UT PMAG = 0.0279 UMAG =- 1.0629 GQMMA =-1.5757

6o F -- E-

MOON

RFI = 19" 52'57:2 AX1 s =-IYU182 DEC =-22'"0'2'4."8 F1 = 111866 SD = 1U'Y3.''0 F2 = 0."6515 I S .HP = 0' 54' 0:'6

AT = 88.9 S SARDS 110 I72/721 JD = 2461605.170 80

UO

W n 3

- 80 0 1 LONGITUDE

175 PENUMBRFIL LUNRR ECLIPSE - 17 RUG 2027

CONTACTS MID = 7: 13.Y UT N PI = 5:21.1 UT PMAG = 0.5713 PU = 9: 5.3 UT UMRG =-0.5211 GFIMMFl = 1.2800

/ /' / / -.' / I"------Z i i -w

I\ . \ UMBRA '\ , ', /

i ,/" 1.. '-_.-_ //' PENUMBRA HODN FlXlS = lF15YG RR = 21"43"58?7 F1 = 1P1897 DEC =-I 2L241Y0."Y F2 = 0.'6526 I SD = 14 u4 ."9 S HP 0'54' 7."7

SRRBS 1118 I Y/71) JD = 2Y6163Y.802 AT = 89.0 S 8C

E - 80 1 0

176 PFIRTIFIL LUNRR ECLIPSE - 12 JFlN 2028

N CONT RCT S MID 11:12.7 UT I P1 = 2: 5.5 UT u1 = 3:uu.o UT PMAG = 1.0722 = 4:Y1.8 UT UMFlG = 0.0720 UU u1 A PU = 6:20.1 UT GRMMR

c- --w

MOON PENUMBRA RFI = 7H33n52.S9 RXIs = 0.09957 F1 = 1P3120 DEC = 22°Y1'18:'0 SD = 16 ' 35 .*'1 F21 = 0!759! I S HP = 1' 0'52:'O

SGRLIIS 115 (58/72) JD = 2461782.677 AT = 89.U 5

177 PRRTIQL LUNRR ECLIPSE - 6 JUL 2028

CONTACTS MID = 18:lg.Y UT N I P1 = 15:LJ2.2 UT PM2G = 1.4526 U1 = 17: 8.2 UT UMFlG = 0.39Y5 UU 19:30.8 UT GFlMMFl =-0.7902 PU = 20:56.9 UT PENUMBRQ -.. /I------

CL

0 t

HO0N QXl S =-0 "7329 RFI = 19" 6"36.'9 F1 = lnq21Y5 DEC =-23:17'15:9 F2 = 0.06796 I SD = 15' 9."9 S HP = Oo55'39.''Y

SGRBS 120 159/8Y1 JD = 2461959 265 AT = 89.9 S

178 TOTRL LUNFIR ECLIPSE - 31 DEC 2028

CONTAClS MID = l6:51.7 UT P1 = 111: 1.8 UT PFlAG = 2.3001 U1 = 15: 6.9 UT UMRG = 1.2516 U2 = 16:15.7 UT U3 = 17:28.0 UT GRMMR = 0.3257 UU = 18:36.7 UT P4 = 19:Y1.6 UT

_-__---- -W

PENUMBRFl MOON

RXIS = 0.03152 RR = 6"Y6" 8P3 F1 = 1P264G DEC = 23O 19'37:'l F2 = OP7llG I SD = 15'119."Y s HP = 0'58' 11.3

SRROS 125 (491721 JD 2462137.20Y AT = 90.3 S 80

10 w n 3 -+o F a --I

-110

- 80 1

179 TOTFlL LUNRR ECLIPSE - 26 JUN 2029

CONTACTS MID = 3:21.9 UT P1 = 0:32.6 UT PMAG = 2.8515 U1 = 1:33.6 UT UMRG = 1.8Y88 U2 = 2:3C.Y UT GFIYMA = 0.0126 U3 = 4:13.3 UT

/f- -I., UU = 5:12.1 UT / PU 6:11.2 UT /' \

W

[r 15 (I

0

,\\ \ , / -1.- /" PENUMBRFl t400N

RXIS = OP0123 RR = 18"21n 2:s F1 = 12669 DEC =-23'20' -6:'Y F2 = 0.'7320 I SD = 16' O."Y S HP = Oo58'YU.''7

SRROS 130 [35/721 JD = 2Y62313.6Yl AT = 90.8 S

- 80 I

180 TOTFlL LUNFlR ECLIPSE - 20 OEC 2029

N CONTACTS MID 22:U1.6 UT I P1 = 19:40.6 UT = 20:5I.5 UT PMAG = 2.2268 U1 U2 = Ul UMRG = 1.1217 22: 1U.3 U3 = 23: 8.8 UT GRMMR =-Om 3812 PENUMBRA UI 0:28.7 UT /I---'\ PI = 1:U2.5 Ul / \

RXIS =-0P3Y99 Fl = 1.32137 F2 = 0.06609 I S

SRROS 135 (2U/713 JD 2q62I91.447

181 LUNFlR ECLIPSE - 17 MFIY 2030

MID 11:35.3 UT CONTACTS PI = 11:35.3 UT PMAG =-0.3285 U1 = 11:35.3 UT UMRG =- 1.2925 U2 = 11:35.3 UT U3 = 11:35.3 UT UU = 11:35.3 UT PI = 11:35.3 UT

E- -w

I 0 t

N(30N

FIX1 s =- 1 P7758 RFI = 15“36”13:3 F1 = 1.’3137 DEC =-21’ -9’21 :‘1 F2 = Of7759 SD = 16 ‘ UU .“I HP I’ 1’25:’O MiD SFIRClS 135 [24/711 JD 2Y 62638.98Y AT = 91.7 S

0

182 PRRTIRL LUNRR ECLIPSE - 15 JUN 2030

N CONTAClS MID = 18:33.0 UT I P1 16:12.2 UT U1 = 17:20.3 UT PM,JG = 1.U725 U!-I = 19:U5.7 UT UMFlG = 0.5080 PU = 20:53.9 UT GFlMMFl = t

E

-MODN Rfl = 17H36nY6.51 OXIS = 0.07576 DEC =-22'33"45~'3 F1 = 1P307q SD = 16 ' 39 ."2 F2 = 0!7721 I S HP = lo I' 7:'l

SRROS 1110 L26/801 JD = 2462668.27Y AT = 91.8 S

183 9 OEC 2030

CClNTACTS MID = 22:27.3 UT P1 = 20: 5.2 UT PMAG = 0.9677 PU = O:U9.3 UT UMRG =-0.1588 GAMMFl =-1,0733 PENUMBRR

/-- /I

6G c

-w ------___

0 t

MID RR = 5"-HBDN 7'19PO RXIS =-0P9653 F1 = 1,'394lG DEC = 21°55' 2."6 F2 = 006Y24 SD = 1 II ' Y 2 ."3 SI HP 0°53'58:'1

SFlROS 1115 [12/711 JD = 2Y628Y5.437 AT = 92.3 S

W n

184 PENUMBRRL LUNFIR ECLIPSE - 7 MRY 2031

N CONTACTS HID = 3:50.5 UT I P1 1:Y9.7 UT PU 5:51.2 UT PMAG = 0.9067 UMFlG =-0.08U7 PENUMBRR GRMMR =- 1,069U 7-

60 -

LD w u5 - I- 3 Z - r( 30 r I u [r 15 - U

G-

FIXIS =-1P0669 W RFl = lYn5Yn58P0 F1 = 112889 DEC =- 17'Y7'29.''1 SD = 16 ' 1 8 ."7 F2 = OP7Y90 I S HP = 0'59'52:'O

SRROS 112 166/721 JD = 2U62993.661 AT = 92.7 S 80

110 w n 3 -+o I- U 1

-40

- 80 1 PENUMBRFIL LUNRR ECLIPSE - 30 OCT 2031

N CONTACTS MID = 7:45.1 UT I P1 = 5:Y6.7 UT PMAG = 0.7420 Pll = 9:Y3.2 UT !JMRG =-0.3152 GRMMFl = 1.1773

E- --w

\ \ 1-J/ PENUMBRA N00N

0x1s = 1Pi187 RA = 2" 16'19P7 F1 = 1.02qYO DEC = lUoY9'52.''5 F2 = 0.06965 I SD = 15'32."2 S HP = 0'57' 1:'3

117 (53/721 JD 2U63169.824 AT = 93.2 S 80

UG

0

-40

- 80 180 120 60 0 -120 -180 LONGITUDE

186 TOTRL LUNRR ECLIPSE - 25 RPR 2032

N CBNT ACT S MID 15:13.3 UT I P1 12:20.1 UT U1 = 13:27.2 UT PVRG = 2.21-151 U2 = 1U:39.9 UT UMRG = 1.1956 U3 15:116.U UT GRMMR =-Om3556 PENUMBRR UU = 16:59.3 UT PU = 18: 6.2 UT

/

6o r v1 w

oc 15 'L 'L

MOON

RXlS =-O.O336'4 RR = 1Y" 111''18?5 1'1 = 1.02560 DEC =-13'50'-5.''5 SD = 15'27."9 ~2 = 0.06955 I S HP O'56'Y5.''1-1

S;QRBS 122 I57/751 JD = 2Y63348.135

-90

- bO 1

187 TOTRL LUNFlR ECLIPSE - 18 OCT 2032

N CONTACTS MID = 1 - 9: 2.1 UT I P1 = 16:22.7 UT PMFIG = 2.1082 U1 = 17:23.5 UT UMRG = 1. I084 U2 = 18:37.8 UT GAMMR = 0.Y169 U3 = 19:26.0 UT PU uu = 20:uo.u UT Pll 21: Y1.5 UT

i

0 t

/ PENUMBRR M00N AXIS = OP4176 RFI = 1"35"117:8 F1 = 1.02558 DEC 10°25'28:'1 F2 = Of7Y98 I SD = 16'22."8 S HP = lo 0' 7:'O

SFIROS 127 [43/721 JD 2Y6352Y.29Q

-110

- 80 1

188 TOTRL LUNRR ECLIPSE - 111 RPR 2033

N CONT ilC1S MID = 19:12.3 UT I P1 = 16: 9.8 UT U1 17:2U.U UT PMRG = 2.1971 U2 18:U7.Y UT UMRG = 1.0988 U3 = 19:37.5 UT GAMMFl = 0.3955 U4 = 21: 0.3 UT 22: 111.8 UT

,/'

-W

U: 15 U

0

PENUMBRA MOBN

Rfl = 13" 33'37.'2 FIXIS = 0.03582 DEC = -9523'-8."2 F1 = 1.01959 SD = lUq48."5 F2 = 0.06538 I S HP = 0°54'20:'9

SFlROS 132 L31/711 JD = 2U63702.301

189 TOTQL LUNRR ECLIPSE - 8 OCT 2033

MID = UT P F: A 1; UT UKRI; UT GFlMMH UT UT UT

RXlS =-0P2959 RR = OH57"22?7 F1 = 1.03376 DEC = SuU8'35.''U F2 = '7733 I SD = 16'UU:'6 S HP = 1' 1'27.''1

SRFICJS 137 I?9/8II JD 2Y63878.956 AT = 95.2 S

w R 3

190 N CONTACTS MID = 19: 5.G UT I P1 = 16:SO.Y UT PU = 21:20.6 UT PMSG = 0.8805 UMQG =-0.2231 GFlMMR = 1.13U5

6c F

-W

MOON

RFI = 12"53' 5."3 EX15 = 1:'0078 DEC -Y0-35'41:'6 F1 = 1.01353 SD = 14'47:'l F2 = OP65lll I s HP = On5Y'15."6

AT = 95.7 S SFlRClS 1112 (19/711) JD 246Y056.297

W c3 3 I-- l- a 1

191 PFlRTIFlL LUNFlR ECLIPSE - 28 SEP 20311

MID 2:U6.0 UT N CONTACTS I P1 0:39.9 UT PMAG = 1.0160 U1 = 2:31.6 UT UMRG = 0.0198 U4 = 3: 0.9 UT PENUMBRa PU = Y:52.5 UT

60 r

-w

‘. .. .. ‘.

H(30N FIXIS =-lPOlOS FIR = 0” 19nY9.S9 F-1 = 1P2916 DEC = 1’ 2‘58.”6 F2 = OP7Y90 I SD = 16‘20.‘’Y S HP = Oa59‘5%.”2

SRROS 1Y7 I10/711 JD = 246Y233.616 AT = 96.2 S

w n 3 I-

C( I- a -1

192 PENUMBRFIL LUNFlR ECLIPSE - 22 FEB 2035

N CONT RCT S MID = 9: 4.6 UT I P1 6:54.5 UT PMRG = 0.9908 PU = 1l:lU.U UT UMRG =- 0.0482 GRMMR =-1.0367

F

E- -W

0 t

-M00N FIXIS =-1POCS5 10" 20" U8:2 F1 = 1P2662 9" 13'YU:'O F2 = OP7164 15'52:'5 0" 58' 15:'8

JD = 246U380.879 AT = 96.6 S

80

- 110

- 80 1

193 PRRTIRL LUNRR ECLIPSE - 19 RUG 2035

N CONTACTS MID = 1:10.6 UT I P1 = 22:U3.Y UT PMRG = 1.1768 U1 = 0:33.7 UT UMRG = 0.1089 P 9 u4 = 1:yg.y UT Pll = 3:37.6 UT

-w

MOBN

FIXIS = 0.'8707 RR = 21H51n50.S6 F1 = 1P211i DEC =-12°-l'Y1:'3 F2 = 0.'6739 I SD = 15' 5.Y S HP 0'55'23:'Y

SAR5S 119 163/83) JD 2YSU558.550 AT = 97.1 S

w FIFTY YEAR CANON OF LUNAR ECLIPSES: 1986 - 2035

APPENDIX A - LUNAR ECLIPS.3 GEOMETRY OF LUNAR ECLIPSES

The fundamental basis of the lunar eclipse is the alignment of the Sun, Earth and Moon such that some region of the Moon passes through Earth's shadow. This shadow is composed of two parts: the outer or penumbral shadow and the inner or umbral shadow. From within the penumbra, only part of the Sun is obscured by Earth. In contrast, the dark, central umbra is the shadow of complete or total I eclipse. The Moon's path through Earth's shadow varies considerably from one eclipse to another with the specific geometry directly determining the nature of the eclipse. Lunar eclipses can be characterized as either penumbral or umbral. During a penumbral eclipse, the Moon passes through part of the penumbral shadow but misses the umbral shadow. Such events are relatively unimportant and, in fact, are rarely observable unless at least half of the Moon's diameter is immersed in the shadow. Nevertheless, penumbral eclipses have been included in Fifty Year Canon of Lunar Eclipses for completeness. However, the principle emphasis in this appendix will be on umbral eclipses which are readily observable, even with the unaided eye. They can be classified as either partial or total. If the Moon's path takes some part of it through the central axis of the shadow, then the eclipse is also known as a central eclipse. Since the radius of the umbral shadow always exceeds the Moon's apparent diameter, a central eclipse must also be a total eclipse. As a consequence of its elliptical orbit around Earth, the Moon's distance and semi-diameter vary over the course of a month. From maximum apogee to minimum perigee, the Moon's distance from Earth's center ranges from 406,700 km to 356,400 km. This 12% range in distance corresponds to a variation in the Moon's apparent semi-diameter of 882 to 1006 arc-seconds. Eclipse geometry is further complicated by the fact that Earth's orbit around the Sun is also elliptical. Thus, the Sun's apparent semi- diameter varies from 944 arc-seconds at aphelion to 976 arc-seconds at perihelion. This 3% range in apparent size is. of course, quite indistinguishable to the naked eye. However, it's a critical factor in determining the diameter of Earth's shadow at the point where it crosses the Moon's orbit. The umbra actually extends far beyond the Moon. Its length varies from 1,406.000 km at aphelion to 1,360,000 km at perihelion. The semi-diameter of the umbra at lunar perigee is 2772 (aphelion) to 2805 (perihelion) arc-seconds: at lunar apogee, the semi- diameter ranges from 2307 (aphelion) to 2340 (perihelion) arc-seconds.

I 197 i PRECEDlNG PAGE BLANK NOT flLNTl3 ECLIPSE FREQUENCY. AND RECURRENCE

Having established the preliminary geometry for umbral lunar eclipses, a question immediately arises. Why doesn't a lunar eclipse occur at every Full Moon? Since the Moon cycles through its phases every 29 1/2 days or one synodic month, one would expect an eclipse to occur during each opposition with the Sun. If the Moon's orbit around Earth were in the same plane as Earth's around the Sun, this is precisely what would happen. However, the Moon's orbit is inclined to Earth's at a mean angle of 5"8'. Our planet's natural satellite passes through the ecliptic only twice a month at a pair of points called the nodes (Figure A-1). The rest of the time, the Moon is either above or below the plane of Earth's orbit (i.e. - the ecliptic). Since an eclipse can only occur when the Sun, Earth and Moon lie in the same plane, these conditions are met when Full Moon takes place at one of the nodes. An examination of the geometry of the nodes yields further clues on the subject of eclipse recurrence. Since Earth's shadow and the Moon both subtend significant angles, neither one has to be exactly at the nodes in order to produce an eclipse. If Full Moon occurs while the shadow axis is within 10.9" of a node then an umbral eclipse is possible. However, a total eclipse can only occur if the shadow axis is within 5.2" of a node. The Sun (and Earth's shadow) travels along the ecliptic at about 1" per day and requires 22 days to cross the eclipse zone centered on each node. Full Moon occurs every 29 1/2 days, so it's quite possible that the Sun may pass through the eclipse zone before Full Moon occurs. Naturally, no umbral eclipse takes place under these circumstances. The period during which the Sun is near a node is called an eclipse season and there are two eclipse seasons each year. If the line of nodes were fixed in space, then eclipse seasons would occur six months apart and at the same time each year. Actually, the line of nodes slowly drifts westward at the rate of 19" per year. As a result, eclipse seasons occur every 173.3 days. Two eclipse seasons constitute an eclipse year of 346.6 days. This is 18.6 days short of a lunar year and is equal to the time required by the Sun (and Earth's shadow) to cross the same node twice. Although umbral lunar eclipses are not uncommon, they are actually somewhat rarer than solar eclipses. A detailed examination of eclipse geometry will substantiate this statement. An umbral eclipse is possible only when the Moon is within that section of its orbit inscribed by the exterior tangents of the Sun-Earth rays (Figure A-1). However, the sunward arc of the Moon's orbit is clearly longer than the anti-sunward

198 arc which passes through the umbra. The number of solar and lunar eclipses that occur are proportional to the lengths of these two arcs which is almost 5 to 3. Thus, an average of about 5 out of every 8 eclipses are solar eclipses. This contradicts common experience which tells us that lunar eclipses are seen more frequently than solar eclipses. A selection effect is in operation here because a lunar eclipse can be seen from the entire nighttime hemisphere of Earth, while a solar eclipse is only visible from a small fraction of the daytime hemisphere. In any one calendar year, there are at least two and as many as five solar eclipses. On the other hand, there can be no more than three umbral lunar eclipses per year and it's quite possible to have none at all. Combining both solar and lunar eclipses, it's possible for one calendar year to contain a maximum of seven eclipses. However, they can only occur in the combinations of five solar and two lunar or four solar and three lunar. In either case, the solar eclipses must all be partial. As a point of interest, 1982 happened to be one of the rare years containing seven eclipses. What made it even more remarkable was the fact that all three lunar eclipses were total. This will not happen again until the year 2485 AD. In order to find a periodicity in the mechanics of lunar eclipses, we must search for a commensurability between the synodic month and the eclipse year. Fortunately, 19 eclipse years are almost exactly equal to 223 synodic months: they differ by only 11 hours. The coincidence is all the more remarkable when compared to a period known as the anomalistic month. This is the time required for the Moon to pass from perigee to perigee and is approximately 27 1/2 days. As unlikely as it may seem, 239 anomalistic months are also equal to 223 synodic months to within 6 hours. This fortuitous commensurability results in the famous Saros cycle of 6585 1/3 days or 18 years, 11 days and 8 hours. Any two eclipses separated by one Saros cycle share very similar mechanical characteristics. They occur at nearly the same node with the Moon at the same distance from Earth and at nearly the same time of year. Because the Saros does not contain an integral number of days, its biggest drawback is that subsequent eclipses are visible from different parts of the globe. Although the 1/3 day displacement shifts the hemisphere facing the Moon 120" westward with each cycle, the series I returns to approximately the same hemisphere every 3 Saroses or 56 years and 34 days. Note that because the Saros is slightly longer than 18 years, the eclipses in a series shift forward with respect to the seasons by about two months per century. A Saros series doesn't last indefinitely because the various periods are not perfectly commensurate with one another. In particular, 19

199 eclipse years are 1/2 day longer than the Saros. As a result, the node shifts eastward by about 0.5" with each Saros cycle, A typical Saros series begins when Full Moon occurs about 16.5" east of a node. If the Moon is near its descending node, the Saros number is odd [van den Berg, 19551 and the Moon is south of the ecliptic. Similarly, if the Moon is near its ascending node, the Saros number is even and the Moon is north of the ecliptic. With each succeeding eclipse in a series, the Moon shifts westward with respect to the node and northward (odd Saros) or southward (even Saros) in ecliptic latitude. The first seven to fifteen eclipses in a Saros series are penumbral events as each subsequent Full Moon occurs closer to the node. The penumbral eclipses are followed by ten to twenty partial umbral events of progressively increasing magnitude as the lunar path swings deeper into Earth's shadow. The change in magnitude between successive eclipses varies and is greatest when Earth is near aphelion (early July). Finally, the entire Moon passes through the umbra as we approach the middle of the Saros series. The next twelve to twenty-five eclipses are total, including three or four central eclipses midway through the sequence. The series now wanes as each eclipse retreats further west of the node. The total eclipses in the series are followed by another ten to twenty partial umbral eclipses of decreasing magnitude. Ultimately, the Saros series terminates about 16.5" west of the node after seven to fifteen penumbral eclipses. A typical series lasts thirteen to fourteen centuries and may be comprised of seventy to eighty eclipses of which some forty to fifty-five are umbral. At any one time, there are a number of Saros series in progress. For instance, during the two hundred year period covered in Sections 1 and 2, there are 46 individual series in progress. A complete breakdown of these series including the dates of their first and last members, series duration and number of eclipses by type are included in Table A-1. As can be seen, the actual number of eclipses in each eclipse varies considerably. For comparison, a similar breakdown of all solar eclipse series in progress over the same period is presented in Table A-2. As old series terminate, new ones are always beginning and take their places. Although not as well known as the Saros, the Tritos, the Inex and Meton's Cycle are also useful relationships in eclipse recurrence (Table A-3).

200 Table A-1

SAROS SERIES SUMMARY FOR LUNAR ECLIPSES

SAROS FIRST LAST SERIES NUMBER PENUMBRAL PARTIAL TOTAL SERIES ECLIPSE ECLIPSE DURATION ECLIPSES ECLIPSES ECLIPSES ECLIPSES (Y rs)

102 5 OCT 461 4 APR 1958 1496.5 84 44 13 27 103 24 AUC 454 21 FEB 1951 1496.5 04 41 14 29 108 8 JUL 689 27 AUC 1969 1280.1 72 28 32 12 109 17 JUN 718 18 AUC 2016 1298.1 73 17 39 17 110 28 MAY 747 18 JUL 2027 1280.1 72 16 43 13 111 10 JUN 830 19 JUL 2092 1262.1 71 17 43 11 112 20 MAY 859 12 JUL 2139 1280.1 72 14 43 15 113 29 APR 888 10 JUN 2150 1262.1 71 16 41 14 114 13 MAY 971 22 JUN 2233 1262.1 71 27 31 13 115 21 APR 1000 13 JUN 2280 1280.1 72 18 28 26

116 11 MAR 993 14 MAY 2291 1298.1 73 29 17 27 117 3 APR 1094 26 MAY 2374 1280.1 72 32 15 25 118 2 MAR 1105 17 MAY 2421 1316.2 74 30 16 28 119 3 OCT 917 25 MAR 2396 1478.4 83 41 14 28 120 5 OCT 982 7 APR 2479 1496.5 a4 45 14 25 121 26 SEP 1029 29 MAR 2526 1496.5 84 41 14 29 122 14 AUG 1022 8 NOV 2356 1334.2 75 32 16 28 123 16 AUC 1087 19 OCT 2385 1298.1 73 34 14 25 124 17 AUC 1152 31 OCT 2468 1316.2 74 30 16 28 125 17 JUL 1163 9 SEP 2443 1280.1 72 24 22 26

126 8 JUL 1210 30 AUC 2490 1280.1 72 31 27 14 127 9 JUL 1275 2 SEP 2555 1280.1 72 18 38 16 128 18 JUN 1304 2 AUC 2566 1262.1 71 14 42 15 129 10 JUN 1351 24 JUL 2613 1262.1 71 17 43 11 130 10 JUN 1416 5 AUC 2696 1280.1 72 16 42 14 131 10 MAY 1427 7 JUL 2707 1280.1 72 15 42 15 132 12 MAY 1492 26 JUN 2754 1262.1 71 26 33 12 133 13 MAY 1557 29 JUN 2819 1262.1 71 16 34 21 134 1 APR 1550 8 JUN 2848 1298.1 73 27 19 27 135 13 APR 1615 18 MAY 2877 1262.1 71 31 17 23

136 13 APR 1680 1 JUN 2960 1280.1 72 29 16 27 137 26 NOV 1528 1 MAY 2971 1442.4 81 38 15 28 138 5 OCT 1503 30 MAR 2982 1478.4 83 43 14 26 139 28 NOV 1640 24 APR 3083 1442.4 81 39 15 27 140 5 SEP 1579 29 JAN 3004 1424.3 a0 36 16 28 141 25 AUC 1608 23 OCT 2906 1298.1 73 33 14 26 142 19 SEP 1709 27 NOV 3025 1316.2 74 32 15 27 143 7 AUC 1702 5 OCT 3000 1298.1 73 28 18 27 144 29 JUL 1749 4 SEP 3011 1262.1 71 30 20 21 145 11 AUG 1832 16 SEP 3094 1262.1 71 26 38 15

146 11 JUL 1843 29 AUC 3123 1280.1 72 16 39 17 147 21 JUN 1872 28 JUL 3134 1262.1 71 17 42 12 148 15 JUL 1973 20 AUC 3235 1262.1 71 16 43 12 149 13 JUN 1984 20 JUL 3246 1262.1 71 14 42 16 150 25 MAY 2013 30 JUN 3275 1262.1 71 20 39 12 151 6 JUN 2096 13 JUL 3358 1262.1 71 18 39 14 156 28 OCT 2042 5 APR 3503 1460.4 82 41 14 27

201 Table A-2

SAROS SERIES SUMMARY FOR SOLAR ECLIPSES

SAROS FIRST LAST SERIES NUMBER PARTIAL ANNULAR ANN/TOT TOTAL SERIES ECLIPSE ECLIPSE DURATION ECLIPSES ECLIPSES ECLIPSES ECLIPSES ECLIPSES (Y rs> 108 3 JAN 550 8 APR 1902 1362.2 76 33 20 5 18 111 30 AUC 528 5 JAN 1936 1406.3 79 37 11 14 17 114 23 JUL 651 12 SEP 1931 1280.1 72 26 13 16 17 116 21 JUN 662 12 AUG 1942 1280.1 72 17 14 4 37 116 23 JUN 727 22 JUL 1971 1244.0 70 17 53 0 0 117 24 JUN 792 3 AUC 2054 1262.1 71 15 23 5 28 118 24 MAY 803 15 JUL 2083 1280.1 72 15 15 2 40 119 16 MAY 850 24 JUN 2112 1262.1 71 17 51 1 2 120 27 MAY 933 7 JUL 2195 1262.1 71 16 25 3 27 121 25 APR 944 7 JUN 2206 1262.1 71 16 11 2 42

122 17 APR 991 17 MAY 2236 1244.0 70 28 37 2 3 123 29 APR 1074 31 MAY 2318 1244 .0 70 26 27 3 14 124 6 MAR 1049 11 MAY 2347 1298.1 73 29 0 1 43 125 4 FEE 1060 9 APR 2358 1298.1 73 33 34 2 4 126 10 MAR 1179 3 MAY 2459 1280.1 72 31 28 3 10 127 10 OCT 991 21 MAR 2462 1460.4 82 40 0 0 42 128 29 AUC 984 1 NOV 2282 1298.1 73 33 32 4 4 129 3 OCT 1103 21 FEE 2528 1424.3 80 39 29 3 9 130 20 AUC 1096 26 OCT 2394 1298.1 73 30 0 0 43 131 21 JUL 1107 2 SEP 2369 1262.1 71 30 30 5 6

132 13 AUG 1208 26 SEP 2470 1262.1 71 29 33 2 7 133 13 JUL 1219 6 SEP 2499 1280.1 72 19 6 1 46 134 22 JUN 1248 6 AUC 2610 1262.1 71 17 30 16 8 136 6 JUL 1331 17 AUG 2593 1262.1 71 18 46 2 6 136 14 JUN 1360 30 JUL 2622 1262.1 71 16 6 5 45 137 26 MAY 1389 28 JUN 2633 1244.0 70 15 36 9 10 138 6 JUN 1472 11 JUL 2716 1244.0 70 16 60 1 3 139 17 MAY 1601 3 JUL 2763 1262.1 71 16 0 12 43 140 16 APR 1512 1 JUN 2774 1262.1 71 24 32 4 11 141 19 MAY 1613 13 JUN 2867 1244.0 70 29 41 0 0

142 17 APR 1624 5 JUN 2904 1280.1 72 28 0 1 43 143 25 FEE 1599 23 APR 2897 1298.1 73 31 26 4 12 144 11 APR 1736 6 MAY 2980 1244.0 70 31 39 0 0 145 4 JAN 1639 17 APR 3009 1370.3 77 34 1 1 41 146 19 SEP 1541 29 DEC 2893 1362.2 76 36 24 3 14 147 12 OCT 1624 24 FEE 3049 1424.3 80 40 40 0 0 148 21 SEP 1653 12 DEC 2987 1334.2 75 32 2 1 40 149 21 AUC 1664 28 SEP 2926 1262.1 71 28 23 3 17 150 24 AUC 1729 29 SEP 2991 1262.1 71 31 40 0 0 161 14 AUG 1776 1 OCT 3056 1280.1 72 26 6 1 39

152 26 JUL 1806 20 AUG 3049 1244.0 70 15 22 3 30 153 28 JUL 1870 22 AUC 3114 1244.0 70 21 49 0 0 154 19 JUL 1917 25 AUC 3179 1262.1 71 15 17 2 37 155 17 JUN 1928 24 JUL 3190 1262.1 71 15 20 3 33 166 1 JUL 2011 14 JUL 3237 1226.0 69 17 52 0 0 157 21 JUN 2058 17 JUL 3302 1244.0 70 14 19 3 34 158 20 MAY 2069 16 JUN 3313 1244.0 70 17 16 2 35 164 24 OCT 2098 10 MAR 3523 1424.3 80 37 3 4 36

202 Table A-3

Saros Series Relationships

If an eclipse of Saros series ’X’ Then the second eclipse is followed by another eclipse belongs to Saros series: after a period of:

1 Lunation ( -1 month) X + 38 5 Lunations ( -5 months) x - 33 6 Lunations ( -6 months) x+5 135 Lunations (-11 years - 1 month) X + 1 (Tritos) 223 Lunations (-18 years + 11 days) X (Saros) 235 Lunations (-19 years) X + 10 (Meton’s Cycle) 358 Lunations (-29 years - 20 days) X + 1 (Inex)

(based on a table from Meeus and Mucke [1979])

203 -v - \ \ ,, 4.' \ \

I a

204 ENLARGEMENT OF EARTH’S SHADOW

In 1707. Lahire made a curious observation about Earth’s umbra. In order to accurately predict the duration of a lunar eclipse, he found it necessary to increase the radius of the shadow about 1/41 larger than warranted by geometric considerations. Although the effect is known to be related to layer of dust suspended in Earth’s atmosphere, it is not completely understood since the shadow enlargement seems to vary from one eclipse to the next. For many years, astronomers have accounted for this phenomenon in eclipse predictions by increasing the apparent radius of Earth’s shadow by 1/50. Following this tradition, the Astronomical Almanac defines the geocentric angular radii of Earth’s shadows at the distance of the Moon as: = Om99833 Am penumbral radius: f1 = 1.02 (q + ss + As) umbral radius: f2 = 1.02 (q - ss + AS)

where: rm = Equatorial horizontal parallax of the Moon = Equatorial horizontal parallax of the Moon corrected for Earth’s mean oblateness ss = Geocentric semi-diameter of the Sun rS = Equatorial horizontal parallax of the Sun

Danjon [1951] takes issue with this tradition and points out that the only reasonable way of taking into account the existence of a layer of opaque air surrounding Earth is to increase the planet’s radius by the altitude of the layer. This can be accomplished by proportionally increasing the parallax of the Moon. Furthermore, Danjon argues that the radii of the umbral and penumbral shadows are subject to the same absolute correction and not the same relative correction employed in the traditional definition. Finally, he estimates the thickness of the occulting layer to be 75 km and this would result in an enlargement of Earth’s radius and the Moon’s parallax of about 1/85. Since 1951, the French almanac Connaissance des Temps has adopted Danjon’s definitions of the radii of Earth’s shadows as:

penumbral radius: f1 = 1.01 A1 + ss + xs umbral radius: f2 = 1.01 A1 - ss + As

205 Danjon’s geometric arguments are sound and his definitions have also been used by Meeus and Mucke 119791 in their ambitious work. Unfortunately, the C.d.T. value of 1/100 for the enlargement of Earth’s radius (and the Moon’s parallax) yields a mean umbral enlargement of 0.8% and this does not fit the observations nearly as well as the old 1/50 rule. In an analysis of 57 eclipses covering a period of 150 years, Link [1969] finds a mean shadow enlargement of 2.3%. Furthermore, timings of crater entrances and exits through the umbra during four recent eclipses (Table A-4) closely support the traditional value of 2%. From a physical point of view, there is no abrupt boundary between the umbra and penumbra. The shadow density actually varies continuously as a function of radial distance from the central axis out to the extreme edge of the penumbra. However, the density variation is most rapid near the theoretical edge of the umbra. Kuhl’s [1928] contrast theory demonstrates that the edge of the umbra is perceived at the point of inflexion in the shadow density. This point appears to be connected with a layer of meteoric dust in Earth’s atmosphere at an altitude of about 120-150 km. This net enlargement of Earth’s radius of 1.9% to 2.4% corresponds to an umbral shadow enlargement of 1.5% to 1.9%. in reasonably good agreement with the conventional value.

Table A-4

Umbral Shadow Enlargement From Craters Timings

Crater Crater Date of Ent lances Exits Sky & Telescope Eclipse % Enlargement % Enlargement Reference

30 Jan 1972 1.69 (420) 1.68 (295) Oct 1972, p.264 24 May1975 1.79 (332) 1.61 (232) Oct 1975, p.219 5 Jul 1982 2.02 (538) 2.24 (159) Dec 1982, p.618 30 Dec 1982 1.74 (298) 1.74 ( 90) Apr 1983, p.387

Note: Figures in ’0’ are the number of observations included in each shadow enlargement measurement.

Ideally, the author would like to define the shadow radii using Danjon’s geometry but substituting the 1.01 enlargement factor with a larger value closer to the traditional factor of 1.02. However, this would introduce a third pair of shadow definitions in the current literature

206 which would pr hibit Dmparisons with other eclipse predictions. Furthermore, the accuracy to which the umbral shadow's enlargement can be measured does not warrant the confusion that would be introduced by yet another set of definitions. Although the geometry of Danjon's definitions is correct and far more appealing, the author has chosen to use the traditional definitions of the Astronomical Almanac because they appear to yield more accurate predictions. As a consequence of the different shadow radii definitions, comparisons between Fifty Year Canon of Lunar Eclipses and C.d.T or Canon of lunar Eclipses: -2002 to +2526 will reveal that eclipse magnitudes in the latter two references are smaller by 0.005 for umbral eclipses and 0.026 for penumbral eclipses. Furthermore, it should be noted that in cases of very small penumbral magnitude, the European references will predict no eclipse at all. Whether an eclipse of this type occurs or not is basically of academic interest since such an event is wholely unobservable. Likewise, in cases where this work predicts a total or partial umbral eclipse of small magnitude, the previous references may predict either a partial or penumbral eclipse, respectively. Again the distinction is not critical since the umbra's edge is not sharp and the exact shadow enlargement is unknown. For example, this work predicts a partial eclipse on 3 March 1988 and a penumbral eclipse on 18 August 2016; in contrast, Canon of Lunar Eclipses: -2002 to +2526 predicts a penumbral eclipse on 3 March 1988 and no eclipse on 18 August 2016. Predictions in the Astronomical Almanac should be in close agreement with Fifty Year Canon of Lunar Eclipses. Any discrepencies between the two should reflect real differences in the solar and lunar ephemerides used.

Crater Timinps During Lunar Eclipses

The enlargement of Earth's umbra can be measured through careful timings of as they enter and exit the shadow. Such observations are best made using a low-power telescope and a clock or watch synchronized with radio time signals. Timings should be made to a precision of 0.1 minute. The basic idea is to record the instant when the most abrupt gradient at the umbra's edge crosses the apparent centre of the crater. In the case of large craters like Tycho and Copernicus, it is recommended that you record the times when the shadow touches the two opposite edges of the crater. The average of these times is equal to the instant of crater bisection. As a planning guide, Table A-5 lists twenty well-defined craters which are recommended for making umbral immersion and emersion timings during lunar eclipses.

t

207 It’s important to be thoroughly familiar with these features before an eclipse in order to prevent confusion and misidentifications. The four umbral contacts with the Moon’s limb can also be used in determining the shadow’s enlargement. However, these events are less distinct and difficult to time accurately. Observers are encouraged to make crater timings and to send their results to Sky and Telescope for analysis.

Table A-5

Lunar Craters for Eclipse Timings

-Crater Latitude Longitude

Aristarchus 23.7N 47.4w Aristoteles 50.2N 17.4E Billy 13.8s 50.1W 28.0s 27.8W Copernicus 9.7N 20.0w 2.8N 17.3E 44.3N 16.3E Goclenius 10.0s 45.OE G rimaldi 5.2s 68.6W Kepler 8.1 N 38.0W Langrenus 8.9s 60.9E Manilius 14.5N 9.1E Menelaus 16.3N 16.OE Plato 51.6N 9.3w Plinius 15.4N 23.7E Proclus 16.1N 46.8E Pytheas 20.5N 20.6W Taruntius 5.6N 46.5E Timocharis 26.7 N 13.1W Tycho 43.3s 11.2w

Danjon Scale of Lunar Eclipse Brightness

The Moon’s appearance during a total lunar eclipse can vary enormously from one eclipse to the next. Obviously, the geometry of the Moon’s path through the umbra plays an important role. Not as apparent is the effect that Earth’s atmosphere has on total eclipses. Although the physical mass of Earth blocks off all direct sunlight from the umbra, the planet’s atmosphere refracts some of the Sun’s rays into

208 the shadow. Earth's atmosphere contains varying amounts of water (clouds, mist, precipitation) and solid particles (meteoric dust, organic debris, volcanic ash). This material significantly filters and attenuates the sunlight before it's refracted into the umbra. For instance, large or frequent volcanic eruptions dumping huge quantities of ash into the atmosphere are often followed by very dark, red eclipses for several years. Extensive cloud cover along Earth's limb also tends to darken the eclipse by blocking sunlight. The French astronomer A. Danjon proposed a useful five point scale for evaluating the visual appearance and brightness of the Moon during total lunar eclipses. 'L' values for various luminosities are as follows:

L = 0 Very dark eclipse. Moon almost invisible, especially at mid-totality.

L = 1 Dark Eclipse, gray or brownish in coloration. Details distinguishable only with difficulty.

L = 2 Dark red or rust-colored eclipse. Very dark in central shadow, while outer edge of umbra is relatively bright.

L = 3 Brick-red eclipse. Umbral shadow often bordered with bright or yellow rim.

L = 4 Very bright orange or copper-red eclipse. Umbral shadow has a bluish, very bright rim.

The assignment of an 'L' value to lunar eclipses is best done with the naked eye, binoculars or a small telescope near the time of mid- totality. It's also useful to examine the Moon's appearance just after the beginning and before the end of totality. The Moon is then near the edge of the shadow and provides an opportunity to assign an 'L' value to the outer umbra. In making any evaluations, one should record both the instrumentation and the time. Also note any variations in color and brightness in different parts of the umbra, as well as the apparent sharpness of the shadow's edge. Pay attention to the visibility of lunar features within the umbra. Notes and sketches made during the eclipse are often invaluable in recalling important details, events and impressions. Meaningful Danjon brightness estimates are not possible during partial lunar eclipses.

209 TIME DETERMINATION

The measurement of time is of fundamental importance to all branches of science, but to none more so than astronomy. In fact, astronomy was born through man's first attempts to measure the passage of time by observing the motions of the Sun and the Moon. It should come as no surprise then. that time reckoning remains intricately entwined with astronomy even today. However, the Sun's apparent motion no longer plays the pivotal role as the ultimate temporal yardstick. It's been known for thousands of years that the length of the solar day is not constant but varies with an annual cycle. What was not known before Kepler's time was that Earth's elliptical orbit about the Sun, coupled with the inclination in the planet's axis were responsible for the periodic variations. Mean Solar Time can be conceptualized as time kept by a fictitious or mean Sun which moves eastward along the celestial equator at the average rate of the true Sun. Greenwich Mean Time (GMT) or Universal Time (UT) is simply Mean Solar Time as measured from Greenwich, England and was used in navigation and surveying for hundreds of years. Unfortunately, this too has fallen by the wayside because Earth does not turn on its axis at a uniform and constant rate. As Earth spins, a tidal friction is imposed on it through the gravitational interaction with the Moon and, to a lesser extent, the Sun. This secular acceleration gradually transfers angular momentum from Earth to the Moon. As Earth loses energy and slows down. the Moon gains this energy and its distance from Earth increases. Although still in its infancy, the technique of lunar laser ranging has shown that the Moon's average distance from Earth is increasing by about four centimeters per year. It should be pointed out that the secular acceleration of the Moon is very poorly known and may not be constant. Careful records for its derivation only go back as far as 100 years or so. Before then, spurious and often incomplete solar eclipse and lunar occultation observations from medieval and ancient manuscripts comprise the data base. In any case, the current value implies an increase in the length of the day by about 0.001 seconds per century. Such a trivially small amount may seem insignificant, but it has very measurable cumulative effects. In one century, Earth loses 45 seconds, while in one millennium, the planet is one and a quarter hours "behind schedule." Earth's rotation on its axis is also subject to short term fluctuations for periods of up to several decades. It is believed that these fluctuations may be due to fluid motions in Earth's core which interact

210 with and disturb the rotation of the mantle. However, climatological changes and variations in sea-level may also play a significant role since they should alter Earth's moment of inertia. Whatever the mechanism is, it is clear that its effects cannot be predicted with the current state of knowledge. A better standard than diurnal rotation for the absolute measurement of time is the use of solar system dynamics. The orbital motions of the planets and of the Moon are predictable to very high accuracy and are directly verifiable through observations. The resulting time is referred to as Ephemeris Time (ET). In 1957, the International Astronomical Union adopted Ephemeris Time as the standard and defined the ephemeris second as 1/31,556,925.9747 of the tropical year 1900 at January 0 at 12 hours Universal Time. The difference between Ephemeris Time and Universal Time (=AT) is obtained through observations of the Moon. The Moon's position is predicted in terms of Ephemeris Time but it is observed with respect to Universal Time. Between 1900 and 1980, the slowing of Earth's rotation on its axis had caused Universal Time to lag 50.54 seconds (=AT) behind Ephemeris Time. Ephemeris Time remained the basis of all time measurements until 1984. With the technological development of the atomic clock, a method of time measurement became available which has a permanence and stability unmatched by even celestial mechanics. The atomic or SI (for Systeme International) second is defined as 9,192,631,770 periods of the radiation corresponding to the transition between two hyperfine levels of the ground state of the Cesium 133 atom. The SI second was carefully chosen to agree as closely as possible to the ephemeris second. .In 1984, the SI second was adopted as the newest time standard and Terrestrial Dynamical Time (TDT) replaced Ephemeris Time. For consistency, the time scale for Terrestrial Dynamical Time was chosen to agree with 1984 Ephemeris Time. Eclipse predictions are now based on Terrestrial Dynamical Time but actual observations are made in Universal Time. Unfortunately, it's impossible to predict how AT (where: AT = TDT-UT) will vary in the future. At best, the current trends can be extrapolated but the resulting values of AT will inevitably diverge from actual observations. As such observations become available, corrections to the eclipse contact times can be calculated as follows:

UT (corrected) = UT (predicted) + (AT1 - AT2)

where: AT1 = table value of AT (in seconds) AT2 = true or observed AT (in seconds)

211 During the period covered by Fifty Year Canon of Lunar Eclipses, corrections to the Moon’s altitude and to the maps of eclipse visibility should be negligible.

212 FIFTY YEAR CANON OF LUNAR ECLIPSES: 1986 - 2035

APPENDIX B - Program MONECL APPENDIX B : Program MONECL

1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012

001 C****PROGRAM : MONECL 002 C****PROGRAM MONECL SEARCHES FOR ALL LUNAR ECLIPSES 003 C****OCCURRING WITHIN A GIVEN DATE INTERVAL. 004 C****THE GENERAL CHARACTERISTICS AND TIMES FOR EACH ECLIPSE ARE 005 C****THEN CALCULATED. 006 C****THE PREDICTED ECLIPSE CHARACTERISTICS ARE STORED IN 007 C****COMMON/ZERO/ WHERE : 008 C**** MONTH,IDAY,IYEAR - CALENDAR DATE OF ECLIPSE. 009 C**** ITYPE - TYPE OF ECLIPSE WHERE : 010 C**** =O - NO ECLIPSE OCCURS. 011 C**** =1 - TOTAL LUNAR ECLIPSE. 012 C**** =2 - PARTIAL LUNAR ECLIPSE. 013 C**** =3 - PENUMBRAL LUNAR ECLIPSE. 014 C**** FJD - JULIAN DATE OF INSTANT OF MIDDLE ECLIPSE. 015 C**** FTIME - TIME (TDT) OF MIDDLE ECLIPSE. 016 C**** GAMMA - DISTANCE OF MOON’S CENTER FROM AXIS OF 017 C**** EARTH’S SHADOW (UNITS OF EARTH RADII). 018 C**** UMAG - UMBRAL MAGNITUDE OF ECLIPSE. 019 C**** (FRACTION OF MOON’S DIAMETER OBSCURED BY UMBRA 020 C**** PMAG - PENUMBRAL MAGNITUDE OF ECLIPSE. 021 C**** (FRACTION OF MOON’S DIAMETER OBSCURED BY PENUM 022 C**** NSAR - SAROS SERIES NUMBER. 023 C**** IRP - RELATIVE POSITION FROM MIDDLE OF SAROS SERIES. 024 C**** LN - LUNATION NUMBER (FROM 1/1/1900). 025 C**** T1,T2,T3 - SEMI-DURATION OF TOTAL, PARTIAL AND 026 C**** PENUMBRAL PHASES (HOURS). 027 C**** CT - CONTACT TIMES (TERRESTRIAL DYNAMICAL TIME). 028 C**** CT(1) ,CT(6) = BEGIN, END PENUMBRAL ECLIPSE. 029 C**** CT (2) ,CT (5) = BEGIN, END PARTIAL ECLIPSE. 030 C**** CT(3) ,CT(4) = BEGIN, END TOTAL ECLIPSE. 03 1 C****WRITTEN BY F. ESPENAK - 26 MAY 1988. 032 C****LAST MODIFIED - 18 JUL 1988. 033 IMPLICIT REAL*8 (A-H, 0-2) 034 CHARACTER*4 MTH (12) 035 CHARACTER*10 KIND (3) 036 COMMON/ZERO/MONTH,IDAY,IYEAR,ITYPE,FJD,FTIME,DEL~A,GAMMA, 037 1 UMAG ,PMAG ,NSAR ,IRP, LN ,T1, T2, T3, CT (6) 038 DATA SVNOD/29.530589DO/,K/O/ 039 DATA KIND/’ TOTAL ’,’ PARTIAL ’ ’ PENUMBRAL’/ 040 DATA MTH/’ JAN’,’ FEB’,’ MAR’,’ APR:,’ MAY’,’ JUN’,’ JUL’,

123456789012345678901234567890123456789012345678901234567890123456789012 1 2 3 4 5 6 7

215 PRECEDING PAGE BLANK NOT FlW 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012

041 1 ’ AUG’,’ SEP’,’ OCT’,’ NOV’,’ DEC’/ 042 C****READ DATE INTERVALS OF ECLIPSE SEARCH. 043 C**** IMl,IDl,IYl - MONTH, DAY AND YEAR OF START OF SEARCH INTERVAL, 044 C**** IM2,ID2,IY2 - MONTH, DAY AND YEAR OF END OF SEARCH INTERVAL. 045 READ(20,lOO) IM1,ID1,IY1,IM2,ID2,IY2 046 100 FORMAT(213,15,213,15) 047 IF(IYl.Eq.O.OR.IY2.Eq.O) GO TO 99 048 C****CONVERT GREGORIAN (CALENDAR) DATES TO JULIAN DATES. 049 CALL JULDAT(DJ1,IW1,ID1,IM1,IYl,O,O,O.O) 050 CALL JULDAT(DJ2,IW2,ID2,IM2,IY2,0,0,0.0) 051 IDAY =ID 1 052 M 0 NTH= IM1 053 IYEAR=IYl 054 FJD=DJl-SYNOD 055 WRITE(6,200) IM1,ID1,IY1,IM2,ID2,IY2 056 200 FORMAT(/lX,’***** LUNAR ECLIPSE SEARCH FROM ’, 057 1 13,’/’,12,’/’,15,’ TO ’,12,’/’,12,’/’,15/) 058 C****CALCULATE THE INSTANT OF FULL MOON SYZYGY AND DETERMINE WHETHER 059 C****AN ECLIPSE IS POSSIBLE. 060 1 XJD=FJD+SYNOD 061 IF(XJD.GT.DJ2) GO TO 99 062 CALL PRELEC (XJD) 063 IF(ITYPE. Eq. 0. AND. DABS (GAMMA) .GT. 1.25) GO TO 1 064 C****PRINT HEADER FOR LUNAR ECLIPSE TABLE. 065 K=K+1 066 IF(M0D (K, 50) . Eq. 1) WRITE(15,210) 067 210 FORMAT(lHl//////55X,’TABLE OF LUNAR ECLIPSES’/// 068 1 70X,’PENUMBRAL’,3X,’UMBRAL’,5X,’MIDDLE’, 069 2 3X,’PARTIAL’,2X,’TOTAL’/ 070 3 lSX,’DATE’,GX,’JULIAN DATE’,5X,’TYPE’,5X,’SAROS’, 071 4 3X,’GAMMA’,3X,’MAGNITUDE’,lX,’MAGNITUDE’,3X,’ECLIPSE’, 072 5 4X,’S.DUR.’,2X,’S.DUR.’/ 073 6 93X, ’(h:m) ’,6X, ’ (m) ’,5X, ’ (m) ’) 074 IF(MOD(K,lO) .Eq.l) WRITE(15,215) 075 215 FORMAT(1X) 076 C****CONVERT TIMES TO OUTPUT FORMAT AND PRINT 077 C****MIDDLE ECLIPSE CIRCUMSTANCES. 078 IHR=IDINT(FTIME+O.5/60.) 079 MIN=IDINT(GO* (FTIME+O. 5/60. -1HR)) 080 ISDT=IDINT (60.0*T1+0.5)

123456789012345678901234567890123456789012345678901234567890123456789012 1 2 3 4 5 6 7 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012

081 ISDP=IDINT (60.0*T2+0.5) 082 WRITE(15,220) IDAY,MTH (MONTH) ,IYEAR, FJD, KIND (ITYPE) ,NSAR, GAMMA, 083 1 PMAG,UMAG,IHR,MIN,ISDP,ISDT 084 220 FORMAT(16X, 12,A4,15,2X, F11.2,2X, A10,16,3 (F9.3,lX) , 085 1 17, ’:’,12,1X,218) 086 GO TO 1 087 C****EXIT PROGRAM MONECL. 088 99 WRITE(6,299) K 089 299 FORMAT(/5X,’***** A TOTAL OF’,I4,’ ECLIPSES WERE PREDICTED FOR ’, 090 1 ’THIS DATE INTERVAL.’/) 091 STOP 092 END

123456789012345678901234567890123456789012345678901234567890123456789012 1 2 3 4 5 6 7

217 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012

001 SUBROUTINE PRELEC(EJD) 002 C****SUBROUTINE PRELEC PREDICTS THE INSTANT OF FULL MOON SYZYGY 003 C****NEAREST TO THE INPUT JULIAN DATE 'EJD'. 004 C****SUBROUTINE PRELEC THEN DETERMINE WHETHER A LUNAR ECLIPSE 005 C****WILL OCCUR AND CALCULATES ITS CHARACTERISTICS. 006 C****BASED ON ALGORITHMS FROM 007 C****"ASTRONOMICAL FORMULAE FOR CALCULATORSn, MEEUS, CH. 32,33. 008 C****THE PREDICTED ECLIPSE CHARACTERISTICS ARE STORED IN 009 C****COMMON/ZERO/ WHERE : 010 C**** MONTH,IDAY,IYEAR - CALENDAR DATE OF ECLIPSE. 011 C**** ITYPE - TYPE OF ECLIPSE WHERE : 012 C**** =O - NO ECLIPSE OCCURS. 013 C**** =1 - TOTAL LUNAR ECLIPSE. 014 C**** =2 - PARTIAL LUNAR ECLIPSE. 015 C**** =3 - PENUMBRAL LUNAR ECLIPSE. 016 C**** FJD - JULIAN DATE OF INSTANT OF MIDDLE ECLIPSE. 017 C**** FTIME - TIME (TDT) OF MIDDLE ECLIPSE. 018 C**** GAMMA - DISTANCE OF MOON'S CENTER FROM AXIS OF 019 C**** EARTH'S SHADOW (UNITS OF EARTH RADII). 020 C**** UMAG - UMBRAL MAGNITUDE OF ECLIPSE. 021 C**** (FRACTION OF MOON'S DIAMETER OBSCURED BY UMBRA 022 C**** PMAG - PENUMBRAL MAGNITUDE OF ECLIPSE. 023 C**** (FRACTION OF MOON'S DIAMETER OBSCURED BY PENUM 024 C**** NSAR - SAROS SERIES NUMBER. 025 C**** IRP - RELATIVE POSITION FROM MIDDLE OF SAROS SERIES. 026 C**** LN - LUNATION NUMBER (FROM 1/1/1900). 027 C**** Tl,T2,T3 - SEMI-DURATION OF TOTAL, PARTIAL AND 028 C**** PENUMBRAL PHASES (HOURS). 029 C**** CT - CONTACT TIMES (TERRESTRIAL DYNAMICAL TIME). 030 C**** CT(1) ,CT(6) = BEGIN, END PENUMBRAL ECLIPSE. 031 C**** CT(2) ,CT(5) = BEGIN, END PARTIAL ECLIPSE. 032 C**** CT(3) ,CT(4) = BEGIN, END TOTAL ECLIPSE. 033 C****WRIlTEN BY F. ESPENAK - 26 MAY 1988. 034 C****LAST MODIFIED - 18 JUL 1988. 035 IMPLICIT REAL*8 (A-H, 0-Z) 036 COMMON/ZERO/MONTH,IDAY,IYEAR,Ir/PE,FJD,FIME,DELTA,GAMMA, 037 1 UMAG ,PMAG ,NSAR ,IRP, LN ,T1, T2, T3, CT (7) 038 DATA SYNOD/29.53058868DO/,DJ0/2415021.065DO/ 039 DATA ZK/0.2725076/,F/0.5/ 040 DATA DTR,RTD/0.017453292519943D0,57.295779513lDO/

123456789012345678901234567890123456789012345678901234567890123456789012 1 2 3 4 5 6 7

218 1 2 3 4 5 6 7 t 123456789012345678901234567890123456789012345678901234567890123456789012 DATA KSARjKLUN/129,l243/,KBRN/284/,INEX/358/ C****CALCULATE TIME ELLAPSED IN LUNAR MONTHS SINCE FIRST NEW MOON 043 C****OF 1900. (I.E. - 1/1/1900 13:34:05ET) 044 DO 600 I=1,4 045 S=+l .o 046 IF(EJD.LT.DJ0) S=-1.0 I 047 Z=(DABS (EJD-DJO) -S*F*SYNOD) /SYNOD 048 LN=IDINT(S* (Z+0.5)) 049 P=DFLOAT (LN) +F I 050 q=SYNOD*P/36525.DO 051 C****CALCULATE JULIAN DATE OF MEAN PHASE. PJD~2415020.75933DO+29.53058868DO*P+l.l78D-O4*~*~-1.55D-O7*~*~*~ 1 +3.3D-04*DSIN(DTR*(166.56+132.87*q-9.173D-O3*q*q)) 054 C****CALCULATE THE MEAN ANOMALIES OF THE SUN AND MOON. 055 ZM=359.2242D0+29.10535608DO*P-3.33D-O5*q*~-3.47D-O6*~*~*~ 056 XM~306.0253D0+385.81691806D0*P+1.07306D-02*~*~+1.236D-05*~*~*~ ZM=DMOD (ZM ,360. DO) XM=DMOD (XM ,360. DO) C****CALCULATE THE MOON’S ARGUEMENT OF LATITUDE. XF~21.2964D0+390.67050646*P-1.6528D-03*~*~-2.39D-O6*~*~*~ XF=DMOD (XF, 360. DO) C****CALCULATE DATE CORRECTION FOR ECLIPSE TEST. EPC=+ (0.1734-3.93D-04*4) *DSIN (DTR*ZM) +O .0021*DSIN (DTR* (ZM+ZM) ) 1 -0.4068*DSIN(DTR*XM) +0.0161*DSIN (DTR* (XM+XM)) 2 -0.0051*DSIN(DTR* (ZM+XM))-O.O074*DSIN(DTR* (ZM-XM)) 3 -0.0104*DSIN (DTR* (XF+XF) ) IF(1. Eq. 1) EPC=O .O C****CALCULATE INSTANT OF MAXIMUM ECLIPSE. EJD=PJD+EPC 600 CONTINUE C****CALCULATE GREGORIAN DATE. I 072 FJD=E JD 073 CALL CALDAT(FJD,IW,NDAY,IDAY,MONTH,IYEAR, 074 1 IHR,MIN,ISEC,FTIME,FMIN,SEC) 075 C****CALCULATE SHADOW AXIS DISTANCE OF MOON AT MAXIMUM ECLIPSE. 076 S=+5.19595-0.0048*DCOS (DTR*ZM) +O .0020*DCOS (DTR*2. *ZM) 077 1 -O.3283*DCOS (DTR*XM) -0.0060*DCOS (DTR* (ZM+XM) ) 078 2 +0.0041*DCOS(DTR* (ZM-XM)) 079 C=+O. 2070*DSIN(DTR*ZM) +O .0024*DSIN (DTR*2. *ZM) -O.O390*DSIN (DTR*XM) 080 1 +O.O115*DSIN(DTR*2. *XM)-O.O073*DSIN(DTR* (ZM+XM)) 1 1 123456789012345678901234567890123456789012345678901234567890123456789012 1 2 3 4 5 6 7

219 1 2 3 4 5 6 7 i23456789oi23456789oi23456789oi2345678901234567a90~234567a90123456789012

081 2 -0.0067*DSIN (DTR* (ZM-XM)) +O .0117*DSIN (DTR*2. *XF) 082 GAMMA=S*DSIN (DTR*XF) +C * DCOS (DTR*XF) 083 C****CALCULATE THE RADII OF THE UMBRAL AND PENUMBRAL SHADOWS. 084 U=+O .0059+0.0046*DCOS (DTR*ZM) -0.0182*DCOS (DTR*XM) 085 1 +O .0004*DCOS (DTR*2. *XM) -0.0005*DCOS (DTR* (ZM+XM) ) 086 SIG=0.7404-U 087 RHO=1.2847+U 088 C****CALCULATE UMBRAL AND PENUMBRAL ECLIPSE MAGNITUDES. 089 UMAG=O .5* (SIG+ZK-DABS (GAMMA)) /ZK 090 PMAG=O. 5* (RHO+ZK-DABS (GAMMA)) /ZK 091 C****DETERMINE TYPE OF LUNAR ECLIPSE. 092 C**** ITYPE=O - NO ECLIPSE OCCURS. 093 C**** ITYPE=l - TOTAL LUNAR ECLIPSE. 094 C**** ITYPE=2 - PARTIAL LUNAR ECLIPSE. 095 C**** ITYPE=3 - PENUMBRAL LUNAR ECLIPSE. 096 ITYPE=O 097 IF(PMAG.LE.O.0) GO TO 999 098 IF(UMAG . GE . 1.OO) ITYPE=l 099 IF(UMAG.GT.O.O.AND.UMAG.LT.l.0) ITYPE=2 100 IF(UMAG.LT.O.O.AND.PMAG.GT.O.0) ITYPE=3 101 C****CALCULATE THE LUNAR ECLIPSE SEMIDURATIONS. 102 S1 SIG-ZK 103 S2=SIG+ZK 104 S3=RHO+ZK 105 ZN=0.5458+0.0400*DCOS(DTR*XM) 106 Tl=O. OD0 107 T2=0.ODO 108 T3=0.ODO 109 IF(DABS(S1) .GT. DABS (GAMMA)) Tl=DSqRT(Sl*Sl-GAMMA*GAMMA) /ZN 110 IF(DABS (S2) .GT. DABS (GAMMA)) T2=DSqRT(S2*S2-GAMMA*GAMMA) /ZN 111 IF(DABS (S3) .GT. DABS (GAMMA)) T3zDSqRT (SS*SS-GAMMA*GAMMA) /ZN 112 C****CALCULATE ECLIPSE CONTACT TIMES (TDT). 113 DO 610 I=1,6 114 CT(1) =O .O 115 IF(ITYPE.Eq.3.AND.I.GT.l.AND.I.LT.G) GO TO 610 116 IF(ITYPE.EQ.2.AND.I.GT.2.AND.I.LT.5) GO TO 610 117 DT=T3 118 IF(1. GT. 1.AND. I.LT. 6) DT=T2 119 IF(1. GT. 2 .AND. I.LT. 5) DT=T1 120 CTX=FTIME+24.0-DT

123456789012345678901234567890123456789012345678901234567890123456789012 1 2 3 4 5 6 7

220 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 121 IF (I.GT. 3) CTX=FTIME+24.O+DT 122 CT(I)=DMOD(CTX,24.D0) 123 610 CONTINUE 124 C****CALCULATE SAROS NUMBER (KEYED TO LUNAR ECLIPSE OF 16 JUL 2000). 125 L=LN-KLUN 126 I=JISIGN (1,L) IN=INT(FLOAT(Gl*L) /INEX+0.5*I-FLOAT(L) / (12*INEX*INEX)) NSARzKSAR +38* L-22 3 *IN 129 C****CALCULATE RELATIVE POSITION IN SAROS SERIES. I 130 X=-Gl*L+INEX*IN 131 IRP=INT (X-FLOAT (NSAR-KSAR) /12+0.5) 132 C****EXIT SUBROUTINE PRELEC. 133 999 RETURN 134 END 123456789012345678901234567890123456789012345678901234567890123456789012 1 2 3 4 5 6 7

I

i

221 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 001 SUBROUTINE JULDAT(DJ,IW,ID,IM,IY,IHOUR,IMIN,SEC) 002 C****SUBROUTINE JULDAT COMPUTES THE JULIAN DECIMAL DATE (DJ) FROM 003 C****THE GREGORIAN (OR JULIAN) CALENDAR DATE. 004 C****THE GREGORIAN CALENDAR REFORM OCCURRED ON 1582 OCT 15. 005 C****THIS IS 1582 OCT 5 BY THE JULIAN CALENDAR. 006 C****INPUT : ID,IM,IY - DAY,MONTH,YEAR. 007 C**** IHR,IMIN,SEC - HOUR,MINUTE,SECOND. 008 C****OUTPUT : DJ - JULIAN DECIMAL DATE 009 C**** (= 0 FOR B.C. 4713 JAN 1, 12 GMT). 010 C**** IW - DAY OF WEEK (l=SUNDAY), 011 C****REFERENCE : HAASTRONOMICAL FORMULAE FOR CALCULATORSn, MEEUS, P.23. 012 C****WRIllEN BY F. ESPENAK - APRIL 1982. 013 C****LAST MODIFIED - APRIL 1982. 014 REAL*8 DJ,SEC,FRAC,GYR 015 C****CALCULATE DECIMAL DAY FRACTION. 016 FRAC=DFLOAT(IHOUR)/24.+DFLOAT(IMIN)/1440.+SEC/86400. 017 &***CONVERT DATE TO FORMAT YYYY.MMDDdd 018 GYR=DFLOAT(IY) +O .Ol*DFLOAT(IM) +O.OOOl*DFLOAT(ID) +0.0001*FRAC 019 1 +1.OD-O9 020 C****CALCULATE CONVERSION FACTORS. 021 IYO=IY 022 IMO=IM 023 IF(IM.LE.2) IYO=IY-l 024 IF(IM.LE.2) IMO=IM+12 025 IA=IY0/100 026 IB=2-IA+IA/4 027 C****CALCULATE JULIAN DATE. 028 JD=IDINT(365.25DO*IYO) +IDINT(30.6001DO* (IMO+l)) +ID+1720994 029 IF(1Y .LT.O) JD=IDINT(365.25DO*IYO-O .75)+IDINT(30.6001DO* (IMO+l)) 030 1 +ID+1720994 031 IF(GYR.GE.l582.lOl5DO) JD=JD+IB 032 DJ=DFLOAT (JD) +FRAC+O .5DO 033 C****CALCULATE DAY OF WEEK. 034 JD=IDINT(DJ+O .5) 035 IW=JMOD( (JD+1) ,7)+1 036 RETURN 037 END

123456789012345678901234567890123456789012345678901234567890123456789012 1 2 3 4 5 6 7

222 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 001 SUBROUTINE CALDAT(DJ,IW,ND,ID,IM,IY,IHR,IMIN,ISEC,AHR,AMIN,ASEC) 002 C****SUBROUTINE CALDAT CALCULATES THE DAY OF THE WEEK, THE DAY OF 003 C****THE YEAR, THE GREGORIAN (OR JULIAN) CALENDAR DATE AND 004 C****THE UNIVERSAL TIME FROM THE JULIAN DECIMAL DATE. 005 C****THE GREGORIAN CALENDAR REFORM OCCURRED ON 1582 OCT 15. 006 C****THIS IS 1582 OCT 5 BY THE JULIAN CALENDAR. 007 C****INPUT : DJ - JULIAN DECIMAL DATE 008 C**** (= 0 FOR B.C. 4713 JAN 1, 12 GMT). 009 C****OuTPuT : IW - DAY OF THE WEEK (1ZSUNDAY). 010 C**** ND - DAY OF THE YEAR (1 JAN = 1). 011 c**** ID, IM, IY - CALENDAR DAY, MONTH, YEAR. 012 C**** IHR,IMIN,ISEC - INTEGER HOUR,MINUTE,SECOND. 013 C**** AHR,AMIN,ASEC - DECIMAL HOUR,MINUTE,SECOND. 014 C****REFERENCE : "ASTRONOMICAL FORMULAE FOR CALCULATORS", MEEUS, P.23. 015 C****WRITTEN BY F. ESPENAK - APRIL 1982. 016 C****LAST MODIFIED - 22 JULY 1986. 017 REAL*8 DJ,FRAC,AHR,AMIN,ASEC 018 C****CALCULATE INTERGER JULIAN DATE. 019 JD=IDINT (D J+O .5) 020 C****CALCULATE DAY FRACTION. 021 FRAC=D J+O .5-DFLOAT (JD) +l.OD-10 022 C****CALCULATE CONVERSION FACTORS. 023 KA= JD i 024 IF(JD.LT.2299161) GO TO 10 025 IALP=IDINT ( (JD-1867216.25DO) /36524.25DO) 026 KA=JD+l+IALP-IALP/Q 027 10 KB=KA+1524 028 KC=IDINT ( (KB-122.1) /365.2500) 029 KD=IDINT (365.25DO*KC) 030 KE=IDINT( (KB-KD) /30.6001DO) 031 C****CALCULATE THE CALENDAR DAY, MONTH AND YEAR. 032 ID=KB-KD-IDINT(30.6001DO*KE) 033 IM=KE-1 034 IF(KE. GT. 13) IM=KE-13 035 IF(IM . EQ.2 .AND. ID. GT. 28) ID=29 036 IY=KC-4715 037 IF(1M. GT, 2) IY=KC-4716 038 IF(IM.EQ.2.AND.ID.EQ.29.AND.KE.EQ.3) IY=KC-4716 039 C****CALCULATE THE UNIVERSAL TIME FROM THE FRACTIONAL DAY. 040 AHR=FRAC*24.

123456789012345678901234567890123456789012345678901234567890123456789012 1 2 3 4 5 6 7

223 1 2 3 4 5 6 7 123456789012345678901234567890123456789012345678901234567890123456789012 041 IHR=AHR 042 AMIN=(AHR-IHR) *60. 043 IMIN= AM IN 044 ASEC=(AMIN-IMIN) *60. 045 ISEC=ASEC 046 C****CALCULATE THE DAY OF THE WEEK. 047 IW=JMOD ( (JD+1),7) +1 048 C****CALCULATE THE DAY OF THE YEAR. 049 LYR=4*(IY/4) 050 ND= (275*IM)/9-2* ((IM+9) /12) +ID-30 051 IF(1Y .EQ.LYR) ND=(275*IM)/9-((IM+9)/12)+ID-30 052 C WRITE(6,200) IM,ID,IY,JD,IALP,KA,KB,KC,KD,KE 053 200 FORMAT(14,’/’,12,’/’,15,2X,I8,14, 054 1 2X,’KA-E =’,518) 055 RETURN 056 END 123456789012345678901234567890123456789012345678901234567890123456789012 1 2 3 4 5 6 7

224 d

C .-0 u V Q) v) .-C u) C .-0 4 .-0 -0 ? n L .-4 s

U W Z 0 I

u 3 n 4 3 0

I 2 i w

225

t Report Documentation Page

2. Government Accession No. 3. Recipient's Catalog No. NASA RP-1216

5. Report Date March 1989

Fifty Year Canon of I Lunar Eclipses: 1986-2035 6. Performing Organization Code

693 7. Authorls) 8. Performing Organization Report No.

Fred Espenak 4 '3. Work Unit No. I 9. Performing Organization Name and Address 11. Contract or Grant No. NASA/Goddard Space Flight Center Greenbelt, MD 20771 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Reference Publication National Aeronautics and Space Administration 14. Sponsoring Agency tode Washington, D.C. 20546

15. Supplementary Notes

16. Abstract A complete catalog is presented, listing the general circumstances of every lunar eclipse from 1901 through 2100. To compliment this catalog, a set of figures illustrate the basic Moon-shadow geometry and global visibility for every lunar eclipse over the 200 year interval. Focusing in on the next fifty years, 114 detailed diagrams show the Moon's path through Earth's shadow during every eclipse, including contact times at each phase. The accompanying cy1 indrical projection maps of:Earth show regions of hemispheric visibility for all phases. The appendices discuss eclipse geometry, eclipse frequency and recurrence, enlargement of,Earth's shadow, crater timings, eclipse brightness and time determination. Finally, a simple FORTRAN program is provided which can be used to predict the occurrence and general characteristics of: 1unar ecl ipses.

This work is a companion volume to NASA Reference Publication 1178: _.Fifty Year. 1 Canon of:Solar Eclipses: 1986-2035. !

(Suggested by Author(s)) 18. Distribution Statement Lunar Eclipse, Celestial Mechanics, Unclassified-Unlimi ted Ephemeris , Sun, Moon Subject Category 89 11 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price Unclassified 228 A1 1 Unclassified I NASA FORM 1626 OCT 86 1

NASA-Langley, 1989 ~