Mineralogical and Elemental Trends in the Stibnite Hill Mine Sanders County Montana

Total Page:16

File Type:pdf, Size:1020Kb

Mineralogical and Elemental Trends in the Stibnite Hill Mine Sanders County Montana University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1977 Mineralogical and elemental trends in the Stibnite Hill Mine Sanders County Montana William A. Bratney The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Bratney, William A., "Mineralogical and elemental trends in the Stibnite Hill Mine Sanders County Montana" (1977). Graduate Student Theses, Dissertations, & Professional Papers. 8123. https://scholarworks.umt.edu/etd/8123 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. MINERALOGICAL AND -ELEMENTAL TRENDS IN THE STIBNITE HILL MINE SANDERS COUNTY, MONTANA by William A. Bratney B.S., The University of Iowa, 1973 Presented in partial fulfillment of the requirements for the degree of Master of Science UNIVERSITY OF MONTANA 1977 Approved by: Chairman, BoarcWof Examiner lean. Graduate School Date UMl Number: EP38924 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT OwMTtation Publishing UMl EP38924 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code uesf ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 -1346 ABSTRACT Bratney, William A., M. S., 1977 Geology Mineralogical and Elemental Trends in the Stibnite Hill Mine, Sanders County, Montana Chairman: Dr. Ian M. Lange The mineralization studied in the Stibnite Hill Mine consists of abundant stibnite and quartz superimposed on an earlier, minor arseno- pyrite, sphalerite, and pyrite mineral assemblage. Trace amounts of chalcopyrite exsolved from sphalerite, and realgar associated with arsenic-saturated stibnite were also observed. Forty-nine samples of stibnite collected from 17 vein exposures in the Babbit Vein were anal­ yzed by atomic absorption spectrophotometry for their content of the major non-stoichiometric elements— arsenic, iron, zinc, lead, and copper. The variability shown by the results obtained for the individual ele­ ments and the total metals supports an earlier suggestion that stibnite may be a valuable indicator of subtle changes in low temperature, anti­ mony-rich, aqueous alkaline sulfide solutions. The lead values were most abundant in the older workings of the mine, closest to the pre­ sumed source of the antimony mineralization within the Thompson Pass Fault. The trend established for the total metals values was similar to that of lead, in that both decreased along the strike of the vein to the northeast. Zinc was most abundant in the central portions of the deposit. Copper, iron, and arsenic increased along strike. The total metals values varied from about 1500 ppm to about 11,800 ppm. This trace element zonation pattern (lead--zinc--copper--iron--arsenic) may be related to the relative stabilities of the trace metal complexes in alkaline sulfide solutions, and hence may indicate the source of the mineralization. Sulfide complexes of lead have been shown to have only a very limited solubility in this type of ore solution. Thus, it is not surprising that it is most abundant closest to the presumed source. Zinc and copper form more stable sulfide complexes than lead, and were deposited most rapidly farther from the source. Iron is known to form stable complexes in the presence of abundant sulfide ion, and although there is a great deal of overlap between the different trace elements, it seems to have been deposited most abundantly even further from the Thompson Pass Fault than copper or zinc. Arsenic is known to form very stable sulfide complexes, and is found in greatest amounts farthest from the source. Thus, this explanation of the trace metals distribu­ tion indicates that the most likely direction of ore solution trans­ port was to the northeast. Application of these findings may prove to be a valuable tool in the development of this property and other stib- nite-bearing mineral deposits. i i ACKNOWLEDGMENTS Many individuals have materially aided the author during the course of this investigation. Special appreciation is given to Mr. John C. Lawrence and the staff of United States Antimony Corporation for in itially proposing a trace element study of this type, and for valuable assistance during sampling. Many thanks are extended to Dr. Jack P. Wehrenberg for his interest through­ out the study, and for his many helpful suggestions concerning both the mineralogical development of the deposit and the in­ terpretation of the geochemical data. Dr. Wayne P. VanMeter offered many helpful comments during the atomic absorption analysis of the stibnite separates, and also made valuable suggestions regarding the trace element zonation patterns. Pedro Marin, John Robinson, Elmer Palmer, and Edward Houser helped during sampling and provided a great deal of encouragement during the study. Dr. Ian M. Lange, in his capacity as thesis director, was involved in all aspects of the investigation. Finally, special appreciation is given to my loving wife, Joni, for her understanding and moral support, which made the completion of this thesis possible. 111 TABLE OF CONTENTS Page ABSTRACT....................................................................................................1i ACKNOWLEDGMENTS.................................................................................ü i LIST OF TABLES .................................................................................... LIST OF FIGURES ................................................................................ CHAPTER I. INTRODUCTION ......................................................................... 1 Purpose ............................................................................ 2 II.. REGIONAL AND MINE GEOLOGY................................................ 6 Stratigraphy ................................................................... 6 Regional Structure ....................................................... 8 Mine Geology ........................................................................ 9 III. ANALYTICAL METHODS ............................................................ 12 IV. MINERALOGY AND PARAGENESIS OF THE STIBNITE HILL ORE..................................................................19 Arsenopyrite ................................................................... 21 Chalcopyrite ................................................................... 23 P y rite ...................................................................................24 Quartz...................................................................................25 R e a lg a r...............................................................................26 Sphalerite.......................................................................... 27 S tib n ite ...............................................................................30 i V TABLE OF CONTENTS (Continued) CHAPTER Page Paragenetic Sequence ............................................ 32 Secondary Antimony Minerals .............................. 33 V. SUBSTITUTIONS IN STIBNITE ....................................... 41 VI. RESULTS OF THE STIBNITE ANALYSES............................. 50 Lead................................................................................ 55 Copper...................................................... 56 A rs e n ic ....................................................................... 69 Ir o n ................................................................................ 72 Z in c ................................................................................ 75 Total M etals............................................................... 78 VII. DISCUSSION......................................................................... 82 VIII. CONCLUSIONS.................................................................... 98 REFERENCES CITED ........................................................................ 102 APPENDIX A MINERALOGICAL DATA AND SAMPLE LOCATIONS . 108 APPENDIX B PHOTOMICROGRAPHS OFTHE STIBNITE HILL ORE 115 LIST OF TABLES Table Page 1. Generalized Mineral Separation Procedures .... 14 2. Operating Parameters for the Varian AA-6D Atomic Absorption Spectrophotometer ......................... 18 3. Primary Mineralogy of the Stibnite Hill Mine . 20 4. Bulk Compositions of Sphalerites Determined by X-Ray Di ffractometry ......................... 29 5. Paragenetic Sequence of Mineral Deposition in the Stibnite Hill M ine....................................................34 6. Secondary Antimony Minerals ........................................... 36 7. Analyses of Stibnites from the Stibnite Hill M ine.....................................................................................51 8. Elemental Variations
Recommended publications
  • Stibnite Gold Project
    STIBNITE GOLD PROJECT PAYETTE & BOISE NATIONAL FORESTS INTERMOUNTAIN REGION August 22, 2018 STIBNITE MINING DISTRICT, PAYETTE NATIONAL FOREST, KRASSEL RANGER DISTRICT Regarding Locatable Minerals , 36 CFR 228, Subpart A: requires the Forest Service to: "Where conflicting interests Respond to a mining plan, evaluate that plan must be reconciled, the Consider requirements to minimize adverse effects to the extent feasible question shall always be Comply with applicable laws, regulations and answered from the stand- standards for environmental protection point of the greatest good of Assure appropriate reclamation Further respond by following National Environmental the greatest number in the Policy Act (NEPA) processes. long run." - James Wilson, Secretary Per 36 CFR 228.4, the Forest Service is required to take of Agriculture, 1905 in a letter to Gifford action to ensure that “operations are conducted so as, Pinchot, 1st Chief of the Forest Service. where feasible, to minimize adverse environmental impacts on National Forest surface resources. 1 Table of Contents Project Context STIBNITE GOLD Project Location 4 Mining History at Stibnite 5 PROJECT Who is Midas Gold 6 Stibnite Plan of Operations PAYETTE & BOISE NATIONAL Proposed Mining Plan of FOREST - INTERMOUNTAIN REGION Operations 7 Open Pit Mining 8 Anadromous Fish - Tunnel 9 Inventoried Roadless Areas - Why is this project of interest to many Access and Powerline 10 people and organizations? Facilities During Mining Operations 10 5 million recoverable ounces of gold x
    [Show full text]
  • Characterization of Sulfide Minerals from Gabbroic and Ultramafic Rocks by Electron Microscopy1 D.J
    Blackman, D.K., Ildefonse, B., John, B.E., Ohara, Y., Miller, D.J., MacLeod, C.J., and the Expedition 304/305 Scientists Proceedings of the Integrated Ocean Drilling Program, Volume 304/305 Data report: characterization of sulfide minerals from gabbroic and ultramafic rocks by electron microscopy1 D.J. Miller,2 T. Eisenbach,2 and Z.P. Luo3 Chapter contents Abstract Abstract . 1 This objective of this research was to investigate the potential of using transmission electron microscopy (TEM) to determine sul- Introduction . 1 fide mineral speciation in gabbroic rocks from Atlantis Massif, the Geologic background . 2 site of Integrated Ocean Drilling Program Expedition 304/305. Method development . 2 The method takes advantage of TEM analysis techniques and Results . 2 proved successful in sulfide mineral identification. TEM can pro- Discussion . 3 vide imaging of the sample morphology, crystal structure through Acknowledgments. 4 the electron diffraction, and chemical compositional information References . 4 through X-ray energy dispersive spectroscopy. Electron probe mi- Figures . 5 croanalysis was also used to determine the chemical composition. Table . 11 Introduction Integrated Ocean Drilling Program (IODP) Expedition 304/305 at Atlantis Massif, 30°N on the Mid-Atlantic Ridge (MAR) (Fig. F1) comprised a coordinated, dual-expedition drilling program aimed at investigating oceanic core complex (OCC) formation and the exposure of ultramafic rocks in young oceanic lithosphere. One of the scientific objectives of this drilling program is to investigate the role of magmatism in the development of OCCs. Whereas precruise submersible and geophysical surveys suggested the po- tential of recovering substantial amounts of serpentinized perido- tite and possibly fresh residual mantle, coring on the central dome of the massif returned a 1.4 km thick section of plutonic mafic rock with only a thin (<150 m) interval of ultramafic or near-ultramafic composition rocks of indeterminate origin.
    [Show full text]
  • The Krásno Sn-W Ore District Near Horní Slavkov: Mining History, Geological and Mineralogical Characteristics
    Journal of the Czech Geological Society 51/12(2006) 3 The Krásno Sn-W ore district near Horní Slavkov: mining history, geological and mineralogical characteristics Sn-W rudní revír Krásno u Horního Slavkova historie tìby, geologická a mineralogická charakteristika (47 figs, 1 tab) PAVEL BERAN1 JIØÍ SEJKORA2 1 Regional Museum Sokolov, Zámecká 1, Sokolov, CZ-356 00, Czech Republic 2 Department of Mineralogy and Petrology, National Museum, Václavské nám. 68, Prague 1, CZ-115 79, Czech Republic The tin-tungsten Krásno ore district near Horní Slavkov (Slavkovský les area, western Bohemia) belongs to the most important areas of ancient mining in the Czech Republic. The exceptionally rich and variable mineral associations, and the high number of mineral species, make this area one of the most remarkable mineralogical localities on a worldwide scale. The present paper reviews the data on geological setting of the ore district, individual ore deposits and mining history. Horní Slavkov and Krásno were known as a rich source of exquisite quality mineral specimens stored in numerous museum collections throughout Europe. The old museum specimens are often known under the German locality names of Schlaggenwald (= Horní Slavkov) and Schönfeld (=Krásno). The megascopic properties and paragenetic position of selected mineral classics are reviewed which include arsenopyrite, fluorapatite, fluorite, hübnerite, chalcopyrite, carpholite, cassiterite, quartz, molybdenite, rhodochrosite, sphalerite, topaz and scheelite. Key words: Sn-W ores; tin-tungsten mineralization; mining history; ore geology; mineralogy; Slavkovský les; Krásno, Horní Slavkov ore district; Czech Republic. Introduction valleys dissected parts of the area. In the ore district area, the detailed surface morphology is modified by large de- In the mining history of Central Europe, Bohemia and pressions caused by the collapse of old underground Moravia are known as important source of gold, silver, workings and by extensive dumps.
    [Show full text]
  • LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, and COBALT ARSENIDE and SULFIDE ORE FORMATION Nicholas Allin
    Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2019 EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION Nicholas Allin Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geotechnical Engineering Commons EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION by Nicholas C. Allin A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Geoscience: Geology Option Montana Technological University 2019 ii Abstract Experiments were conducted to determine the relative rates of reduction of aqueous sulfate and aqueous arsenite (As(OH)3,aq) using foils of copper, nickel, or cobalt as the reductant, at temperatures of 150ºC to 300ºC. At the highest temperature of 300°C, very limited sulfate reduction was observed with cobalt foil, but sulfate was reduced to sulfide by copper foil (precipitation of Cu2S (chalcocite)) and partly reduced by nickel foil (precipitation of NiS2 (vaesite) + NiSO4·xH2O). In the 300ºC arsenite reduction experiments, Cu3As (domeykite), Ni5As2, or CoAs (langisite) formed. In experiments where both sulfate and arsenite were present, some produced minerals were sulfarsenides, which contained both sulfide and arsenide, i.e. cobaltite (CoAsS). These experiments also produced large (~10 µm along longest axis) euhedral crystals of metal-sulfide that were either imbedded or grown upon a matrix of fine-grained metal-arsenides, or, in the case of cobalt, metal-sulfarsenide. Some experimental results did not show clear mineral formation, but instead demonstrated metal-arsenic alloying at the foil edges.
    [Show full text]
  • Theoretical Studies on As and Sb Sulfide Molecules
    Mineral Spectroscopy: A Tribute to Roger G. Bums © The Geochemical Society, Special Publication No.5, 1996 Editors: M. D. Dyar, C. McCammon and M. W. Schaefer Theoretical studies on As and Sb sulfide molecules J. A. TOSSELL Department of Chemistry and Biochemistry University of Maryland, College Park, MD 20742, U.S.A. Abstract-Dimorphite (As4S3) and realgar and pararealgar (As4S4) occur as crystalline solids con- taining As4S3 and As4S4 molecules, respectively. Crystalline As2S3 (orpiment) has a layered structure composed of rings of AsS3 triangles, rather than one composed of discrete As4S6 molecules. When orpiment dissolves in concentrated sulfidic solutions the species produced, as characterized by IR and EXAFS, are mononuclear, e.g. ASS3H21, but solubility studies suggest trimeric species in some concentration regimes. Of the antimony sulfides only Sb2S3 (stibnite) has been characterized and its crystal structure does not contain Sb4S6 molecular units. We have used molecular quantum mechanical techniques to calculate the structures, stabilities, vibrational spectra and other properties of As S , 4 3 As4S4, As4S6, As4SIO, Sb4S3, Sb4S4, Sb4S6 and Sb4SlO (as well as S8 and P4S3, for comparison with previous calculations). The calculated structures and vibrational spectra are in good agreement with experiment (after scaling the vibrational frequencies by the standard correction factor of 0.893 for polarized split valence Hartree-Fock self-consistent-field calculations). The calculated geometry of the As4S. isomer recently characterized in pararealgar crystals also agrees well with experiment and is calculated to be about 2.9 kcal/mole less stable than the As4S4 isomer found in realgar. The calculated heats of formation of the arsenic sulfide gas-phase molecules, compared to the elemental cluster molecules As., Sb, and S8, are smaller than the experimental heats of formation for the solid arsenic sulfides, but shown the same trend with oxidation state.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Interpretation of Exploration Geochemical Data for the Mount Katmai Quadrangle and Adjacent Parts of the Afognak and Naknek Quadrangles, Alaska
    Interpretation of Exploration Geochemical Data for the Mount Katmai Quadrangle and Adjacent Parts of the Afognak and Naknek Quadrangles, Alaska By S.E. Church, J.R. Riehle, and R.J. Goldfarb U.S. GEOLOGICAL SURVEY BULLETIN 2020 Descriptive and interpretive supporting data for the mineral resource assessn~entof this Alaska Mineral Resource Assessnzent Program (AMRAP) study area UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For Sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Library of Congress Cataloging-in-PublieatlonData Church, S.E. Interpretation of exploration geochemical data for the Mount Katmai quadrangle and adjacent parts of the Afognak and Nalrnek quadrangles, Alaska 1 by S.E. Church, J.R. Riehle, and R.J. Goldfarb. p. cm. - (U.S. Geological Survey bulletin ;2020) Includes bibliographical references. Supt. of Docs. no. : 119.3 :2020 1. Mines and mineral resources-Alaska. 2. Mining gedogy- Alaska 3. Geochemical prospecting-Alaska I. Riehle, J.R. 11. Goldfarb, R.J. UI. Title. IV. Series. QE75.B9 no. 2020 [TN24.A4] 557.3 5420 93-2012 [553'.09798] CIP CONTENTS Abstract ............................................................................................................................. Introduction......................................................................................................................
    [Show full text]
  • 40 Common Minerals and Their Uses
    40 Common Minerals and Their Uses Aluminum Beryllium The most abundant metal element in Earth’s Used in the nuclear industry and to crust. Aluminum originates as an oxide called make light, very strong alloys used in the alumina. Bauxite ore is the main source aircraft industry. Beryllium salts are used of aluminum and must be imported from in fluorescent lamps, in X-ray tubes and as Jamaica, Guinea, Brazil, Guyana, etc. Used a deoxidizer in bronze metallurgy. Beryl is in transportation (automobiles), packaging, the gem stones emerald and aquamarine. It building/construction, electrical, machinery is used in computers, telecommunication and other uses. The U.S. was 100 percent products, aerospace and defense import reliant for its aluminum in 2012. applications, appliances and automotive and consumer electronics. Also used in medical Antimony equipment. The U.S. was 10 percent import A native element; antimony metal is reliant in 2012. extracted from stibnite ore and other minerals. Used as a hardening alloy for Chromite lead, especially storage batteries and cable The U.S. consumes about 6 percent of world sheaths; also used in bearing metal, type chromite ore production in various forms metal, solder, collapsible tubes and foil, sheet of imported materials, such as chromite ore, and pipes and semiconductor technology. chromite chemicals, chromium ferroalloys, Antimony is used as a flame retardant, in chromium metal and stainless steel. Used fireworks, and in antimony salts are used in as an alloy and in stainless and heat resisting the rubber, chemical and textile industries, steel products. Used in chemical and as well as medicine and glassmaking.
    [Show full text]
  • ABSTRACTS ACTAS IAGOD 2019 31Ene.Pmd
    SALTA, ARGENTINA 28-31 AUGUST 2018 15th Quadrennial International Association on the Genesis of Ore Deposits Symposium SPONSORS PLATINUM SPONSORS GOLD SPONSORS SILVER SPONSORS BRONZE SPONSORS COPPER SPONSORS Co-sponsored by SALTA, ARGENTINA 28-31 AUGUST 2018 15th Quadrennial International Association on the Genesis of Ore Deposits Symposium SYMPOSIUM PROCEEDINGS SCIENTIFIC COMMITTEE CHAIR Lira Raúl – (University of Córdoba – CONICET, Argentina) MEMBERS Bineli-Betsi Thierry – (Botswana International University of Science and Technology) Chang Zhaoshan – (Colorado School of Mines, USA) Cherkasov Sergey – (Vernadsky State Geological Museum of Russian Academy of Sciences) Cook Nigel – (University of Adelaide, Australia) Gozalvez Martín – (Geological and Mining Survey of Argentina) Guido Diego – (CONICET/Austral Gold S.A, Argentina) Lentz David – (University of New Brunswick, Economic Geology Chair) López Luis – (National Atomic Energy Commission, Argentina) Mao Jingwen – (Chinese Academy of Geological Sciences/Hebei GEO University, China) Meinert Larry – (Consultant) Pons Josefina – (IIPG – University of Río Negro – University of Comahue – CONICET, Argentina) Rubinstein Nora – (IGEBa–University of Buenos Aires – CONICET) Sanematsu Kenzo – (Geological Survey of Japan, AIST) Schutesky Della Giustina Maria Emilia – (University of Brasília, Brasil) Tornos Fernando – (Spanish National Research Council – CSIC) Watanabe Yasushi – (Faculty of International Resource Sciences, Akita University, Japan) EDITED BY Daniel Rastelli, Dolores Álvarez, Noelia
    [Show full text]
  • The Mineralogical Fate of Arsenic During Weathering Of
    THE MINERALOGICAL FATE OF ARSENIC DURING WEATHERING OF SULFIDES IN GOLD-QUARTZ VEINS: A MICROBEAM ANALYTICAL STUDY A Thesis Presented to the faculty of the Department of Geology California State University, Sacramento Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Geology by Tamsen Leigh Burlak SPRING 2012 © 2012 Tamsen Leigh Burlak ALL RIGHTS RESERVED ii THE MINERALOGICAL FATE OF ARSENIC DURING WEATHERING OF SULFIDES IN GOLD-QUARTZ VEINS: A MICROBEAM ANALYTICAL STUDY A Thesis by Tamsen Leigh Burlak Approved by: __________________________________, Committee Chair Dr. Charles Alpers __________________________________, Second Reader Dr. Lisa Hammersley __________________________________, Third Reader Dr. Dave Evans ____________________________ Date iii Student: Tamsen Leigh Burlak I certify that this student has met the requirements for format contained in the University format manual, and that this thesis is suitable for shelving in the Library and credit is to be awarded for the project. _______________________, Graduate Coordinator ___________________ Dr. Dave Evans Date Department of Geology iv Abstract of THE MINERALOGICAL FATE OF ARSENIC DURING WEATHERING OF SULFIDES IN GOLD-QUARTZ VEINS: A MICROBEAM ANALYTICAL STUDY by Tamsen Leigh Burlak Mine waste piles within the historic gold mining site, Empire Mine State Historic Park (EMSHP) in Grass Valley, California, contain various amounts of arsenic and are the current subject of remedial investigations to characterize the arsenic present. In this study, electron microprobe, QEMSCAN (Quantitative Evaluation of Minerals by SCANning electron microscopy), and X-ray absorption spectroscopy (XAS) were used collectively to locate and identify the mineralogical composition of primary and secondary arsenic-bearing minerals at EMSHP.
    [Show full text]
  • Using 2D Gis to Assist 3D Modelling of the Zarshuran Gold Deposit, Iran
    Asadi, Hooshang USING 2D GIS TO ASSIST 3D MODELLING OF THE ZARSHURAN GOLD DEPOSIT, IRAN * Hooshang ASADI HARONI, Edmund SIDES, Kiiza NGONZI International Institute for Aerospace Survey and Earth Sciences (ITC), The Netherlands * Ministry of Higher Education, Tehran, Iran harouni @itc.nl [email protected] Technical Commission Session Themes TC VII-8 KEY WORDS: Spatial data, Integration, Geology, Geophysics, GIS, Data mining, Information extraction ABSTRACT The Zarshuran gold deposit in NW Iran is an area of historic mining for gold and arsenic with considerable potential for discovery of economic gold mineralisation. Geological, geochemical and geophysical data, collected by the Ministry of Mines and Metals were compiled and analysed in a 2-dimensional (2D) GIS. This resulted in the definition of major structural features, and lithological units, that control the gold mineralisation. Spatial modelling and interpretation of the geochemical and geophysical data showed that the mineralization is mainly controlled by chemically-reactive Precambrian carbonates and black shales, extending in a NW-SE direction, and also by NE-SW high angle faults and their intersections with NW-SE structures. The results obtained, from the 2D GIS analysis, were used in the initial phase of the construction and validation of the 3-dimensional (3D) models used for resource estimation. Comparison of the statistical analyses of geochemical data in soils and in drillcore indicated enhanced concentrations of gold in soils at surface, due to residual enrichment. An enrichment relationship was established based on interpretation of the cumulative frequency plots for gold in soil and drillcore samples. Based on this relationship the gold anomalies interpreted from the soil geochemical data were used to infer a resource potential, to a depth of 200m below surface, of 10Mt at an average grade of 0.2 g/t gold.
    [Show full text]
  • Clinocervantite, ~-Sb204, the Natural Monoclinic Polymorph of Cervantite from the Cetine Mine, Siena, Italy
    Eur. J. Mineral. 1999,11,95-100 Clinocervantite, ~-Sb204, the natural monoclinic polymorph of cervantite from the Cetine mine, Siena, Italy RICCARDO BASSO 1, GABRIELLA LUCCHETTI I, LIVIa ZEFIRO 1 and ANDREA PALENZONA 2 IDipartimento di Scienze delia Terra dell'Universita, Corso Europa 26, 1-]6] 32 Genova, Ita]y e-mail: minera]@dister.unige.it 2Dipartimento di Chi mica e Chimica industria]e dell'Universita, Via Dodecaneso 3],1-]6]46 Genova, Ita]y Abstract: Clinocervantite occurs at the Cetine di Cotorniano mine associated with valentinite, tripuhyite, bindheimite and rosiaite. Clinocervantite, appearing generally as aggregates of single prisms elongated along [001] or twinned on {100}, is co]ourless, transparent, with vitreous lustre, biaxial, with the lowest measured ] ] refractive index a,' = .72 and the highest one y' = 2. O. The strongest lines in the powder pattern are dill = 3.244 A and d311 = 2.877 A. The crystal structure, space group C2Ie with a = 12.061(1) A, b = 4.836(1) A, ] e = 5.383( I) A, ~= 04.60( 4)" and Z = 4, has been refined to R = 0.020, confirming the new mineral to be the natural analogue of the synthetic ~-Sb204 already known. The structures of clinocervantite and cervantite may be regarded as built up by stacking layers of nearly identical structure and composition accounting for both polytypism in the Sb204 compound and twinning of the clinocervantite crystals. Key-words: clinocervantite, crystal-structure refinement, cervantite, twinning. Introduction Occurrence, physical properties and chemical composition During the study of rosiaite (Basso et al., 1996), an associated new mineral was found in materia] Clinocervantite occurs in litt]e cavities of a rock from the Cetine mine, central Tuscany, Italy.
    [Show full text]