Parts of a Steamboat Designed by the UALR Office of Communications

Total Page:16

File Type:pdf, Size:1020Kb

Parts of a Steamboat Designed by the UALR Office of Communications Parts of a steamboat Designed by the UALR Office of Communications Roof Bell - positioned close to the pilot house and CENTER FOR ARKANSAS HISTORY AND CULTURE used by the captain or pilot to communicate with the engineer room below on the hurricane deck. UNIVERSITY OF ARKANSAS AT LITTLE ROCK Stacks - a vertical pipe, open at Mast - a vertical pole on a ship the top, to vent spent steam from the which supports sails or rigging. boat’s engines into the atmosphere. Pilot House - The small, glassed-in Jack Sta - A mast at the point structure atop the boat from which the of the bow, which is used to captain or pilot steers the vessel. display a ag or banner, and to provide the pilot with a point of reference in navigating the boat. Stern - the back of the ship or boat. Boom - A long pole, used to move heavy weights around the boat or between the boat and shore. A boom Stern Wheel - paddle can also be used to help move the wheel located at the stern of boat o an obstacle or the shore. the ship, used to move the boat through the water. Stage - A large, heavy platform, usually swung out from the bow of the Hurricane Deck - The deck above the boat, to allow the boiler deck, usually the uppermost full transfer of passengers deck on the boat. The pilot house is often and cargo between the located on the hurricane deck. boat and the shore. Boiler Deck - The deck above the boilers and the main deck, where most Bow- the front of passenger accommodations are the ship or boat. located — cabins, saloons, etc. Hull - the watertight body of a ship or boat Main Deck - the lowest full deck of a steamboat, the one closest to the water. The main deck is where the boilers, engines and most machinery is located. Identify the parts of a steamboat Designed by the UALR Office of Communications CENTER FOR ARKANSAS HISTORY AND CULTURE UNIVERSITY OF ARKANSAS AT LITTLE ROCK Hull - the watertight bottom of a ship or boat. Boiler Deck - The deck above the boilers and the Stage - A large, heavy platform, usually swung out Roof Bell - positioned close to the pilot house and Bow- the front of the ship or boat. main deck, where most passenger accommodations from the bow of the boat, to allow the transfer of used by the captain or pilot to communicate with the Stern - the back of the ship or boat. are located — cabins, saloons, etc. passengers and cargo between the boat and the shore. engineer room below on the hurricane deck. Mast - a vertical pole on a ship which supports sails Hurricane Deck - The deck above the boiler deck, Boom - A long pole, used to move heavy weights Stacks - a vertical pipe, open at the top, to vent or rigging. usually the uppermost full deck on the boat. The pilot around the boat or between the boat and shore. A spent steam from the boat’s engines into the house is often located on the hurricane deck. boom can also be used to help move the boat o an atmosphere. Main Deck - the lowest full deck of a steamboat, obstacle or the shore. the one closest to the water. The main deck is where Jack Sta - A mast at the point of the bow, which is Stern Wheel - paddle wheel located at the stern the boilers, engines and most machinery is located. used to display a ag or banner, and to provide the Pilot House - The small, glassed-in structure atop of the ship, used to move the boat through the water. pilot with a point of reference in navigating the boat. the boat from which the captain or pilot steers the vessel. .
Recommended publications
  • 1850 Pro Tiller
    1850 Pro Tiller Specs Colors GENERAL 1850 PRO TILLER STANDARD Overall Length 18' 6" 5.64 m Summit White base w/Black Metallic accent & Tan interior Boat/Motor/Trailer Length 21' 5" 6.53 m Summit White base w/Blue Flame Boat/Motor/Trailer Width 8' 6" 2.59 m Metallic accent & Tan interior Summit White base w/Red Flame Boat/Motor/Trailer Height 5' 10" 1.78 m Metallic accent & Tan interior Beam 94'' 239 cm Summit White base w/Storm Blue Metallic accent & Tan interior Chine width 78'' 198 cm Summit White base w/Silver Metallic Max. Depth 41'' 104 cm accent & Gray interior Max cockpit depth 22" 56 cm Silver Metallic base w/Black Metallic accent & Gray interior Transom Height 25'' 64 cm Silver Metallic base w/Blue Flame Deadrise 12° Metallic accent & Gray interior Weight (Boat only, dry) 1,375# 624 kg Silver Metallic base w/Red Flame Metallic accent & Gray interior Max. Weight Capacity 1,650# 749 kg Silver Metallic base w/Storm Blue Max. Person Weight Capacity 6 Metallic accent & Gray interior Max. HP Capacity 90 Fuel Capacity 32 gal. 122 L OPTIONAL Mad Fish graphics HULL Shock Effect Wrap Aluminum gauge bottom 0.100" Aluminum gauge sides 0.090'' Aluminum gauge transom 0.125'' Features CONSOLE/INSTRUMENTATION Command console, w/lockable storage & electronics compartment, w/pull-out tray, lockable storage drawer, tackle storage, drink holders (2), gauges, rocker switches & 12V power outlet Fuel gauge Tachometer & voltmeter standard w/pre-rig Master power switch Horn FLOORING Carpet, 16 oz. marine-grade, w/Limited Lifetime Warranty treated panel
    [Show full text]
  • An Analytical Approach to the Question of a Clock Change
    An Analytical Approach to the Question of a Clock Change by Samuel Halpern One of the ongoing arguments that continues to be brought up is the question of whether or not clocks on Titanic were put back some time before the accident took place Sunday night, April 14, 1912. Some of the deck crew, awakened by the accident at 11:40 p.m. ship’s time, thought that it was close to the time that they were due to take their watch on deck, which would be at 12 o’clock. Despite Boatswain’s Mate Albert Haines, who was awake and on duty at the time, testifying that “The right time, without putting the clock back, was 20 minutes to 12,” there are some that try to argue that a 24 minute clock adjustment had already taken place, and the time of the accident on an unadjusted clock still keeping April 14th time would have been 4 minutes past 12. The underlying question that would resolve this issue is the run time from noon Sunday to the time of the accident. If the run time from noon to the time of the accident was 11 hours 40 minutes, then no clock change had yet taken place, and the time of collision was 11:40 p.m. in unadjusted hours. If the run time was more than 12 hours, then there was a clock change of some 23 or 24 minutes, and the time of collision was 11:40 p.m. in adjusted hours. It really is that simple. So how do we determine the actual run time from the available evidence that does not have to rely on subjective estimates such as time intervals or other measures that people may have perceived? The answer is to take an analytical approach to the problem using the taffrail log mileage data offered by quartermasters George Rowe and Robert Hichens at the inquiries.
    [Show full text]
  • An Orientation for Getting a Navy 44 Underway
    Departure and return procedure for the Navy 44 • Once again, the Boat Information Book for the United States Naval Academy Navy 44 Sailing Training Craft is the final authority. • Please do not change this presentation without my permission. • Please do not duplicate and distribute this presentation without the permission of the Naval Academy Sailing Training Officer • Comments welcomed!! “Welcome aboard crew. Tami, you have the helm. If you’d be so kind, take us out.” When we came aboard, we all pitched in to ready the boat to sail. We all knew what to do and we went to work. • The VHF was tuned to 82A and the speakers were set to “both”. • The engine log book & hernia box were retrieved from the Cutter Shed. • The halyards were brought back to the bail at the base of the mast, but we left the dockside spinnaker halyard firmly tensioned on deck so boarding crew could use it to aid boarding. • The sail and wheel covers were removed and stored below. • The reef lines were attached and laid out on deck. • The five winch handles were placed in their proper holders. • The engine was checked: fuel level, fuel lines open, bilge level/condition, alternator belt tension, antifreeze level, oil and transmission level, RACOR filter, raw water intake set in the flow position, engine hours. This was all entered into the log book. • Sails were inventoried. We use the PESO system. We store sails in the forward compartment with port even, starboard odd. •The AC main was de-energized at the circuit panel.
    [Show full text]
  • Sea Kayak Handling Sample Chapter
    10 STERN RUDDERS Stern rudders are used to keep the kayak going in a straight line and make small directional changes when on the move. The stern rudder only works if the kayak is travelling at a reasonable speed, but it has many applications. The most common is when there is a following wind or sea pushing the kayak along at speed. In this situation, forward sweep strokes are not quick enough to have as much effect as the stern rudder. A similar application is when controlling the kayak while surfi ng. A more ‘gentle’ application is when moving in and out of rocks, caves and arches at slower speeds. Here, the stern rudder provides control and keeps the kayak on course in these tight spaces. Low angle stern rudder This is the classic stern rudder and works well to keep the kayak running in a straight line. It is best combined with the push/pull method of turning with a stern rudder (see below). • The kayak must be moving at a reasonable speed. • Fully rotate the body so that both hands are out over the side. • Keep looking forwards. • Place the blade nearest the stern of the kayak in the water as far back as your rotation allows. • The blade face should be parallel to the side of the kayak so that it cuts through the water and you feel no resistance. 54 • The blade should be fully submerged and will act like a rudder, controlling the direction of the kayak. • The front hand should be across the kayak and at a height between your stomach and chest.
    [Show full text]
  • Event Information, Policies, and Agreements
    Bow to Stern Boating Event Information, Policies, and Agreements This document includes: General Information, Policies, Procedures, Agreement Statements, and Waivers For the Following Events: Rental/Charter, ASA Certification/Lesson, Day Camp, and Other Program. Contact Bow to Stern if you have any questions concerning this information. Updated: March 18, 2021 Table of Contents General Information ............................................................................................................................................. 4 Registration ................................................................................................................................................................... 4 What to Bring ................................................................................................................................................................ 4 Overnight Rentals/Charters/Lessons ............................................................................................................................ 4 Captain and Vessel Check-In/Out Procedures ........................................................................................................ 4 Captain Check-In ............................................................................................................................................................ 4 Captain Check-In Times ................................................................................................................................................. 4
    [Show full text]
  • Know About Boating Before You Go Floating
    Know About Boating Before You Go Floating KEY TERMS All-around white light: Navigation light that Gunwale: Upper edge of a boat’s side. is visible in all directions around the boat from Hull: The main body of a boat. 2 miles away. Port: The left side of a boat. Bow: The front part of a boat. Propeller: A device with two or more blades Buoy: An object that floats on the water in that turn quickly and cause a boat to move. a bay, river, lake or other body of water and Sidelights: Red (port side) and green provides information to boats. (starboard side) navigation lights on a boat, Capsize: To turn a craft upside down in visible from 1 mile away. the water. Skipper: The person who commands a boat. Cleat: A wooden or metal fitting on the deck Starboard: The right side of a boat. of a boat. It has two projecting horns around which a rope or line may be tied. Stern: The back part of a boat. OBJECTIVES After completing this lesson, students will be able to: zz Name the main parts of a boat. zz Explain some boating terms. zz Describe some important safety equipment that should be on a boat. zz Demonstrate putting on a life jacket. zz Explain how to board a boat. zz Understand how to balance a boat. zz Explain what to do if a boat capsizes (turns over). MATERIALS, EQUIPMENT AND SUPPLIES zz Poster: Know About Boating Before You Go Floating zz Several Type II and/or Type III life jackets (in the various sizes that would fit the students) zz Mat or tape to create outline of boat zz Chairs (6) zz Watch or clock with a second hand zz Crayons, markers
    [Show full text]
  • Gunwale (Canoe Rails) Repair Guide Wood Gunwale Repair
    Gunwale (Canoe Rails) Repair Guide Wood Gunwale Repair Canoes with fine woodwork are a tradition at Mad River Canoe. The rails, seats and thwarts on your Mad River Canoe are native Vermont straight-grained ash, chosen for its resiliency, strength and aesthetic appearance. Unlike aluminum or plastic materials, white ash will not kink upon impact and cause undue damage to the canoe hull. There are more options involved in repair of wood gunwales than with vinyl or aluminum, making this section a bit longer than the corresponding instructions for other types of rails. Don't let the length of this document intimidate you - here's an overview of this section to help you plan your repair strategy: General Information - Everyone should read this section. Pre-installation preparation - Everyone should read this section. Gunwale replacement instructions - How to replace both rails of your canoe. Replacing Gunwales with inset decks (including complete deck replacement) - If your canoe has inset decks you will likely have to replace them when you replace your rails. The other option is: Short-splicing method to preserve original inset decks when rerailing - You may cut the existing inwales of your canoe to avoid replacing your existing deck. The new inwale must be carefully spliced to the section of existing inwale. Installation of a 4' splicing section - If you have damage to a small section of gunwale, you can splice in a replacement section on the inside, outside or both. General Information Ordering replacement ash gunwales Rails can be ordered from an authorized Mad River dealer. Replacement ash rails are available for all Mad River Canoes.
    [Show full text]
  • Skilful Vessel Handling
    Skilful Vessel Handling Capt. Øystein Johnsen MNI Buskerud and Vestfold University College March 2014 Manoeuvring of vessels that are held back by an external force This consideration is written in belated wisdom according to the accident of Bourbon Dolphin in April 2007 When manoeuvring a vessel that are held back by an external force and makes little or no speed through the water, the propulsion propellers run up to the maximum, and the highest sideways force might be required against wind, waves and current. The vessel is held back by 1 800 meters of chain and wire, weight of 300 tons. 35 knops wind from SW, waves about 6 meter and 3 knops current heading NE has taken her 840 meters to the east (stb), out of the required line of bearing for the anchor. Bourbon Dolphin running her last anchor. The picture is taken 37 minutes before capsizing. The slip streams tells us that all thrusters are in use and the rudders are set to port. (Photo: Sean Dickson) 2 Lack of form stability I Emil Aall Dahle It is Aall Dahle’s opinion that the whole fleet of AHT/AHTS’s is a misconstruction because the vessels are based on the concept of a supplyship (PSV). The wide open after deck makes the vessels very vulnerable when tilted. When an ordinary vessel are listing an increasingly amount of volume of air filled hull is forced down into the water and create buoyancy – an up righting (rectification) force which counteract the list. Aall Dahle has a doctorate in marine hydrodynamics, has been senior principle engineer in NMD and DNV.
    [Show full text]
  • Selene 45 Classic Explorer
    Tel: +64 9 377 3328 Fax: +64 9 377 3325 info@yachtfindersglobal.co.nz Selene 45 Classic Explorer Description General The Selene 45 is an entirely new Next Year: 2022 Generation Selene. She is the smallest model of the popular and proven Selene Pilothouse Price: $1,254,732 Trawler line. Unlike her predecessor, the galley Additional Charges: None on the Selene 45 is offset to starboard providing Boat Type: Power a more spacious and accommodating salon. The pilothouse settee is L-shaped and also offset to Displacement Hull Type: starboard. There is room for a small helm chair Motoryacht www.yachtfindersglobal.co.nz in... Location: New Boat Engine/Fuel: Diesel Hull Material: GRP Dimensions Engines Length: 45 ft No. of Engines: 1 LOA: 14.76m Cummins or John Engine Brand: Deere Beam: 4.78m Engine(s) HP: 230 Draft: 1.59m Cruising Speed: 9 Knots Displacement: 62,830 lbs Max Speed: 10 Knots Builder / Designer Tankage Builder: Jet Tern Marine Fuel: 3785 Litres Designer: Howard Chen Water: 870 Litres Holding: Yes 1 2 Cook Gelcoat for hull, deck, superstructure & Manship S/S #316 opening portlights non-skid Manship S/S #316 hatches for pilothouse & fwd. Vinylester resin for the first 4 layers lamination stateroom Cymax bi-axis uni-direction stitched roving / mat Diamond/Sea-Glaze Dutch doors for pilothouse P&S, saloon entrance Taiwan Glass mat Taco S/S #316 solid upper & lower dual fender Divinycell core sandwich structure for hull side rails shell above the waterline & superstructure S/S #316 handrail for foredeck & dinghy deck Longitudinal stringers & transverse frames system S/S #316 telescope swim ladder 4 watertight bulkheads ( chain locker, fwd.
    [Show full text]
  • After 88 Years - Four-Masted Barque PEKING Back in Her Homeport Hamburg
    Four-masted barque PEKING - shifting Wewelfsfleth to Hamburg - September 2020 After 88 Years - Four-masted Barque PEKING Back In Her Homeport Hamburg Four-masted barque PEKING - shifting Wewelfsfleth to Hamburg - September 2020 On February 25, 1911 - 109 years ago - the four-masted barque PEKING was launched for the Hamburg ship- ping company F. Laeisz at the Blohm & Voss shipyard in Hamburg. The 115-metres long, and 14.40 metres wide cargo sailing ship had no engine, and was robustly constructed for transporting saltpetre from the Chilean coast to European ports. The ship owner’s tradition of naming their ships with words beginning with the letter “P”, as well as these ships’ regular fast voyages, had sailors all over the world call the Laeisz sailing ships “Flying P-Liners”. The PEKING is part of this legendary sailing ship fleet, together with a few other survivors, such as her sister ship PASSAT, the POMMERN and PADUA, the last of the once huge fleet which still is in active service as the sail training ship KRUZENSHTERN. Before she was sold to England in 1932 as stationary training ship and renamed ARETHUSA, the PEKING passed Cape Horn 34 times, which is respected among seafarers because of its often stormy weather. In 1975 the four-master, renamed PEKING, was sold to the USA to become a museum ship near the Brooklyn Bridge in Manhattan. There the old ship quietly rusted away until 2016 due to the lack of maintenance. -Af ter returning to Germany in very poor condition in 2017 with the dock ship COMBI DOCK III, the PEKING was meticulously restored in the Peters Shipyard in Wewelsfleth to the condition she was in as a cargo sailing ship at the end of the 1920s.
    [Show full text]
  • Cornshuckers and San
    INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
    [Show full text]
  • Course Objectives Chapter 2 2. Hull Form and Geometry
    COURSE OBJECTIVES CHAPTER 2 2. HULL FORM AND GEOMETRY 1. Be familiar with ship classifications 2. Explain the difference between aerostatic, hydrostatic, and hydrodynamic support 3. Be familiar with the following types of marine vehicles: displacement ships, catamarans, planing vessels, hydrofoil, hovercraft, SWATH, and submarines 4. Learn Archimedes’ Principle in qualitative and mathematical form 5. Calculate problems using Archimedes’ Principle 6. Read, interpret, and relate the Body Plan, Half-Breadth Plan, and Sheer Plan and identify the lines for each plan 7. Relate the information in a ship's lines plan to a Table of Offsets 8. Be familiar with the following hull form terminology: a. After Perpendicular (AP), Forward Perpendiculars (FP), and midships, b. Length Between Perpendiculars (LPP or LBP) and Length Overall (LOA) c. Keel (K), Depth (D), Draft (T), Mean Draft (Tm), Freeboard and Beam (B) d. Flare, Tumble home and Camber e. Centerline, Baseline and Offset 9. Define and compare the relationship between “centroid” and “center of mass” 10. State the significance and physical location of the center of buoyancy (B) and center of flotation (F); locate these points using LCB, VCB, TCB, TCF, and LCF st 11. Use Simpson’s 1 Rule to calculate the following (given a Table of Offsets): a. Waterplane Area (Awp or WPA) b. Sectional Area (Asect) c. Submerged Volume (∇S) d. Longitudinal Center of Flotation (LCF) 12. Read and use a ship's Curves of Form to find hydrostatic properties and be knowledgeable about each of the properties on the Curves of Form 13. Calculate trim given Taft and Tfwd and understand its physical meaning i 2.1 Introduction to Ships and Naval Engineering Ships are the single most expensive product a nation produces for defense, commerce, research, or nearly any other function.
    [Show full text]