Prevention and Management of Aquatic Invasive Plants in Texas

Total Page:16

File Type:pdf, Size:1020Kb

Prevention and Management of Aquatic Invasive Plants in Texas PREVENTION AND MANAGEMENT OF AQUATIC INVASIVE PLANTS IN TEXAS A Thesis by ELIZABETH ANGELIKA EDGERTON Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Michael Masser Committee Members, William Grant Allen Knutson Head of Department, Michael Masser December 2014 Major Subject: Wildlife and Fisheries Sciences Copyright 2014 Elizabeth A. Edgerton ABSTRACT Determining which non-native aquatic plants have the greatest potential to invade a new area and prohibiting those species prior to their introduction is the key to preventing future injurious invasions. Once introduced however, prioritization and effective control is important to managing infestations. This study focused on identifying potential new aquatic invasive plant species and prioritizing existing infestations in Texas, via two aquatic plant models. An aquatic plant risk assessment was the first model. While other risk assessments of this type currently exist, a model suited to the varied environmental conditions in the State of Texas was not available. In addition, many existing models cover large geographic areas, leading to decreased accuracy on a more localized scale. This new model, referred to as the Texas Aquatic Plant Risk Assessment, was based on previous aquatic plant risk assessment and serves as a pre-entry screening tool for testing non-native plant species and identifying those which are likely to be invasive and should therefore be excluded. The model uses a series of weighted questions to give a score to each plant species tested; the higher the score, the more likely the plant is to be invasive in the State of Texas. We tested the model against 100 known non-native species within the state and subsequently ran a series of statistical tests on the results to determine the model’s accuracy and find the best threshold to separate major invaders from minor and non-invaders. When model results were compared to known species invasiveness and a threshold of 50 was set between high risk major invaders and non-invaders, 100%, 87%, ii and 94% accuracy was achieved in classifying major invaders, minor invaders, and non- invaders, respectively. Other, more precautionary thresholds were also explored during analysis. The second model, the Lake Conroe Invasion Model, simulates growth and senescence of hydrilla in Lake Conroe, and the plant’s response to control efforts using grass carp (Ctenopharyngodon idella). The model was developed using reported data from previous hydrilla infestations and control attempts at Lake Conroe, and serves as a prototype for future simulated invasion modeling. A series of simulations were run to calibrate the model, based on previously reported data, and to demonstrate the model’s use. Results from the simulations accurately reflected reported growth and senescence rates of hydrilla within the lake; growth rates for grass carp in the model were also comparable to rates reported in the literature. Simulations of various management strategies showed that increasing numbers of grass carp were needed to control a hydrilla infestation as the time lag between initial hydrilla invasion and stocking of grass carp increased. However, the number of grass carp needed to control an infestation decreased as the amount of time allowed for control increased. In addition grass carp mortality rates may be significantly impacted by grass carp stocking rates relative to the number of vegetated hectares. If smaller stocking rates are preferred in order to avoid removing all aquatic vegetation from the lake, higher mortality rates likely need to be accounted for as increased mortality due to a decreased predator to prey ratio may occur. iii ACKNOWLEDGEMENTS I would like to thank my committee chair Dr. Masser, and his wife Julie Masser, for welcoming me into their home when I first arrived to Texas A&M, for mentoring me over these past two years, encouraging me to make the many useful professional connections that I have made, and for being understanding when I decided to spend a summer traveling to the other side of the world and back half way through my thesis work. I would also like to thank my committee members; Dr. Grant for all of his time, effort, and patience in designing a brand new simulated model, and Dr. Knutson for his guidance throughout the course of this research. Thanks also go to Dr. DeWitt for providing very much needed statistical analysis insight and to Dr. Rose for all of her help in designing and programming the simulated model. I want to also extend my gratitude to the United States Geological Survey and the W.G. Mills Memorial Endowment which provided the funding for this study, and to everyone at Texas Water Resources Institute for taking my under their wing and being ever-willing to assist me when I was in need. Special thanks goes to Lucas Gregory for mentoring me through this entire process, for being a very useful sounding board and voice of reason, and for allowing me to take every opportunity to travel to conferences and gain useful experience that will benefit me in my future career endeavors. Special thanks go to my friends and family who have always been there to love and support me through all of the stress, and for always being willing to help me move from city to city over the years (inevitably during the worst of the Texas summer iv weather). Finally, extra special thanks go to Elizabeth McCarthy who has been there for me through every minute of this adventure, constantly encouraging me and reminding me that everything will work out in the end, even when I wasn’t sure it would. v NOMENCLATURE AIP Aquatic Invasive Plants ANOVA Analysis of Variance AWRA Australian Weed Risk Assessment DA Discriminant Analysis LDA Linear Discriminant Analysis LOOCV Leave One Out Cross Validation MANOVA Multivariate Analysis of Variance NLPCA Non-linear Principal Component Analysis NZAqWRA New Zealand Aquatic Weed Risk Assessment NZWRA New Zealand Weed Risk Assessment PC Principal Component PCA Principal Component Analysis TXAqPRA Texas Aquatic Plant Risk Assessment USAqWRA United States Aquatic Weed Risk Assessment vi TABLE OF CONTENTS Page ABSTRACT…………………………………………………………………….. ii ACKNOWLEDGEMENTS……………………….……………………………. iv NOMENCLATURE…………………………………………………………….. vi TABLE OF CONTENTS………………………………………………………... vii LIST OF FIGURES……………………………………………………………… ix LIST OF TABLES………………………………………………………………. x CHAPTER I INTRODUCTION AND LITERATURE REVIEW……………… 1 Defining Non-native Species…………………………………….. 2 Aquatic Invasive Plants………………………………………….. 6 Pathways………………………………………………………..... 7 Impacts…………………………………………………………... 15 Removal and Control Techniques……………………………….. 19 Modeling Aquatic Invasive Plants………………………………. 23 CHAPTER II ADAPTING AN AQUATIC PLANT RISK ASSESSMENT FOR THE STATE OF TEXAS………………………………………………….. 29 Materials and Methods……………………………………………. 29 Results…………………………………………………………….. 36 Discussion…………………………………………………………. 42 CHAPTER III SIMULATING AQUATIC PLANT INVASION AND MANAGEMENT IN A RIVERINE RESERVOIR……………………………….. 47 Model Overview…………………………………………………… 47 Model Description…………………………………………………. 47 Model Calibration and Evaluation…………………………………. 50 Simulations of Hydrilla Invasion and Management……………….. 55 Discussion…………………………………………………………. 60 CHAPTER IV CONCLUSIONS…………………………………………………. 63 vii Page REFERENCES……………………………………………………………………. 65 APPENDIX A…………………………………………………………………… 123 APPENDIX B……………………………………………………………………. 234 viii LIST OF FIGURES FIGURE Page 1 Summary scores by invasive status for raw data where blanks were treated as zeroes……………………………………. 37 2 Canonical ordination of 100 plant species based on 40 imputed question responses…………………………………………. 39 3 Conceptual model representing the growth and senescence of hydrilla, the growth and mortality of grass carp, and the consumption of hydrilla by grass carp…………………………. 49 4 Calibration simulation results…………………………………………... 51 5 Evaluation simulation results……………………………………………. 53 6 Results of simulations exploring the effect of increased grass carp mortality…………………………………………… 55 7 Diagrammatic representation of the two sets of simulations demonstrating use of the model…………………………………………. 56 8 Results from set one of the demonstration simulations…………………. 58 9 Results from set two of the demonstration simulations…………………. 59 ix LIST OF TABLES TABLE Page 1 Confusion matrices detailing DA and LOOCV classification success................................................................ 41 2 Lake Conroe grass carp stocking information for 2006 and 2007…….. 52 x CHAPTER I INTRODUCTION AND LITERATURE REVIEW Plants, animals, and other biota have been transported and allowed to establish in areas outside their native range since ancient times. Records dating back to the Akkadian Empire, circa 2300 BCE, discuss in great detail the exotic monkeys, elephants, and other animals that roamed the capitol city of Agade (1). Exotic flora was also commonly found in the pleasure gardens of ancient kings and other royals throughout early times. The garden of Ramat Rahel, which existed in Israel throughout the seventh to fourth centuries BCE, contained various non-native plant species like citron from India, cedar from Lebanon, and Persian walnut (2). Exotic species during those times were valued for their medicinal and aesthetic values, used as a way to demonstrate status for the upper class, and were often given as gifts from visitors to the royals (1, 2). When the Europeans first arrived
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • QQR 7 Information Pack
    7th Quinquennial Review of Schedules 5 and 8 of the Wildlife and Countryside Act (1981) Information Pack (version 2.21) 14 May 2021 1 Version 2.2: Four reptiles and two seals removed from the EPS list (Annex 1); one EPS amphibian and two EPS reptiles that are all Endangered removed from Annex 2 – these species were included in Version 2 and/or 2.1 in error. See Annex 1 and Annex 2 for further information. 1. Introduction Every five years, the country nature conservation bodies (Natural England, Natural Resources Wales and NatureScot), working jointly through the UK Joint Nature Conservation Committee (JNCC), review Schedules 5 and 8 of the Wildlife and Countryside Act (WCA) 1981. The review will provide recommendations to the Secretary of State for the Environment, Food and Rural Affairs and to Ministers for the Environment in the Scottish Government and Welsh Government for changes to these schedules2. This is known as the Quinquennial Review (QQR). As part of the QQR, stakeholders are provided with the opportunity to propose changes to the species on the schedules. This Information Pack has been produced for the 7th QQR (QQR 7). It is important to note that this QQR differs from previous ones. The Information Pack explains the new selection criteria, provides a timetable, and explains the process to be used by stakeholders. Contact details of the QQR Inter-agency Group who are managing QQR 7, are listed in Section 5. In addition, the Information Pack provides details of how to complete the online survey through which stakeholders propose new species for inclusion on, or removal of existing species from Schedules 5 and 8, or propose a change to how species are protected on the schedules.
    [Show full text]
  • Pond Plants PAGE 1
    Pond Plants PAGE 1 Please check for seasonality and availability by giving us a call, e-mailing or visiting the Nursery. Ponds create peaceful and relaxing environments that help cool the air on a hot summer’s day. A place to relax, be inspired, or to entertain family and friends. A range of plants will give you the right balance for crystal clear water, creating a habitat for a variety of creatures such as fish, frogs and even dragonflies. Your own mini ecosystem in the backyard. Water gardens can be large or small. They can be a real feature in a beautiful glazed pot, on a balcony or a versatile way of bringing inspiration and tranquility into the renter’s garden. No need to weed, mulch or compost. Apart from some seasonal maintenance and the occasional water top up, all you need to do is sit back, relax, and enjoy the peace of your own backyard water feature. N - Denotes Native Plant E - Denotes Evergreen D - Denotes Deciduous SD - Denotes Semi Deciduous Waterlilies nymphaea - Hardy – not available in winter Prefers to grow in 45cm of water or up to 1.8m deep. Will tolerate some shade for part of the day, but requires 5 hours of sun for best flowering results. Comes in apricot, pink, red, white and yellow. Dies down in winter. Lotus – Nelumbo nucifera (N) – pink - available from October to March Submerged Aquatic plants Aponogeton distachyos - Water Hawthorn – avail winter An attractive plant with white perfumed flowers and dark green strap-like floating leaves. It loves the cold & is good for winter coverage.
    [Show full text]
  • Gyneceum Apokarpní, Plodolistů Mnoho Na Prodlouženém Květním Lůžku
    Magnoliaceae – šácholánovité Oddělení: Angiospermae (Magnoliophyta) Bazální krytosemenné Magnoliidy Řád: Magnoliales Čeleď: Magnoliaceae Magnoliaceae – šácholánovité • Stromy nebo keře (vždyzelené nebo opadavé) Liriodendron tulipifera Magnolia x soulangeana wihort.uwex.edu floralimages.co.uk Magnoliaceae – šácholánovité •Listy jednoduché, střídavé, s opadavými palisty Magnolia x soulangeana Liriodendron tulipifera everettj.people.cofc.edu wihort.uwex.edu Magnoliaceae – šácholánovité •Květy jednotlivé, většinou oboupohlavné, spirální •Květní obaly nerozlišené, tvoří okvětí Magnolia stellata Magnolia x soulangeana wihort.uwex.edu hcp4.net everettj.people.cofc.edu Liriodendron tulipifera floralimages.co.uk semillista.com Magnoliaceae – šácholánovité •Tyčinek mnoho, většinou lupenitých (krátká a tlustá nitka) •Gyneceum apokarpní, plodolistů mnoho na prodlouženém květním lůžku Liriodendron tulipifera nitky tyčinky pestíky semillista.com semillista.com Magnoliaceae – šácholánovité •Plod měchýřek (Magnolia), nažka (Liriodendron), tvoří šišticovitá souplodí •častá kantarogamie (opylení brouky) Magnolia grandiflora Liriodendron tulipifera commons.wikimedia.org Primulaceae (prvosenkovité) Oddělení: Angiospermae (Magnoliophyta) Dvouděložné (Dicots) Pravé dvouděložné (Eudicots) Asteridy Řád: Ericales Čeleď: Primulaceae Primulaceae – prvosenkovité • Převážně suchozemské byliny, vzácně vodní rostliny okolík květů • Listy střídavé, vstřícné nebo v přízemní růžici většinou jednoduché, u vodních složené bez palistů • Květy jednotlivé nebo v květenstvích
    [Show full text]
  • List of UK BAP Priority Vascular Plant Species (2007)
    UK Biodiversity Action Plan List of UK BAP Priority Vascular Plant Species (2007) For more information about the UK Biodiversity Action Plan (UK BAP) visit https://jncc.gov.uk/our-work/uk-bap/ List of UK BAP Priority Vascular Plant Species A list of UK BAP priority vascular plant species, created between 1995 and 1999, and subsequently updated in response to the Species and Habitats Review Report, published in 2007, is provided in the table below. The table also provides details of the species' occurrences in the four UK countries, and describes whether the species was an 'original' species (on the original list created between 1995 and 1999), or was added following the 2007 review. All original species were provided with Species Action Plans (SAPs), species statements, or are included within grouped plans or statements, whereas there are no published plans for the species added in 2007. Scientific names and commonly used synonyms derive from the Nameserver facility of the UK Species Dictionary, which is managed by the Natural History Museum. Scientific name Common Taxon England Scotland Wales Northern Original UK name Ireland BAP species? Aceras Man Orchid vascular Y N N N anthropophorum plant Adonis annua Pheasant's- vascular Y U N N eye plant Ajuga chamaepitys Ground-pine vascular Y N N N plant Ajuga pyramidalis Pyramidal vascular Y Y N Y Bugle plant Alchemilla acutiloba a Lady's- vascular Y Y N N mantle plant Alchemilla micans vascular Y Y N N plant Alchemilla minima Alchemilla vascular Y N N N Yes – SAP plant Alchemilla monticola vascular Y N N N plant Alchemilla vascular Y N N N subcrenata plant Alisma gramineum Ribbon- vascular Y N N N Yes – SAP leaved Water- plant plantain Apium repens Creeping vascular Y N N N Yes – SAP Marshwort plant Arabis glabra Tower vascular Y N N N Yes – SAP Mustard plant Arenaria norvegica Arctic vascular N Y N N subsp.
    [Show full text]
  • Invasive Alien Plants an Ecological Appraisal for the Indian Subcontinent
    Invasive Alien Plants An Ecological Appraisal for the Indian Subcontinent EDITED BY I.R. BHATT, J.S. SINGH, S.P. SINGH, R.S. TRIPATHI AND R.K. KOHL! 019eas Invasive Alien Plants An Ecological Appraisal for the Indian Subcontinent FSC ...wesc.org MIX Paper from responsible sources `FSC C013604 CABI INVASIVE SPECIES SERIES Invasive species are plants, animals or microorganisms not native to an ecosystem, whose introduction has threatened biodiversity, food security, health or economic development. Many ecosystems are affected by invasive species and they pose one of the biggest threats to biodiversity worldwide. Globalization through increased trade, transport, travel and tour- ism will inevitably increase the intentional or accidental introduction of organisms to new environments, and it is widely predicted that climate change will further increase the threat posed by invasive species. To help control and mitigate the effects of invasive species, scien- tists need access to information that not only provides an overview of and background to the field, but also keeps them up to date with the latest research findings. This series addresses all topics relating to invasive species, including biosecurity surveil- lance, mapping and modelling, economics of invasive species and species interactions in plant invasions. Aimed at researchers, upper-level students and policy makers, titles in the series provide international coverage of topics related to invasive species, including both a synthesis of facts and discussions of future research perspectives and possible solutions. Titles Available 1.Invasive Alien Plants : An Ecological Appraisal for the Indian Subcontinent Edited by J.R. Bhatt, J.S. Singh, R.S. Tripathi, S.P.
    [Show full text]
  • Luronium Natans
    Luronium natans Status UK Biodiversity Action Plan Priority species. Nationally Scarce. Schedule 8, Wildlife & Countryside Act (1981). IUCN Threat category: Least concern (2005). Taxonomy Magnoliopsida: Alismataceae Scientific names: Luronium natans (L.) Raf. Common names: Floating Water-plantain, Dŵr-lyriad Nofiadwy Luronium natans (Alisma natans L.) is a distinct member of the Water-plantain family, and is the only representative of its genus. Biology & Distribution Luronium is under-recorded due to its generally submerged aquatic habitat, shy flowering, great phenotypic plasticity and similarity to other aquatic plants. The leaves do not tend to be caught on NB. Floating grapnels or get washed ashore and often the easiest leaves are way to find it in water is to dive or use a long hooked usually more blunt than pole. It may also be found easily when exposed in Submerged illustrated seasonal ponds. The species can grow in both isolated leaves clumps or extensive lawns on the bottom of canals, lochs, ponds, etc., in water up to 4 m depth. Figure 1. Luronium natans (from J. Sowerby & J. E. Sowerby Although its stronghold is Wales and the Welsh (1902). English Botany. London) borders, it has been found recently in Cumbria, Scotland and Ireland where it is probably an over- that they have flat leaves). In still or gently flowing looked native rather than a recent arrival; it may well water the submerged rosette leaves are typically c. 5-15 be more widespread still. cm long, strongly flattened, linear-triangular, tapering uniformly from a base c. 4-7 mm wide to a fine acute Identification & Field survey tip.
    [Show full text]
  • Growers Award Program (GAP)
    GGRROOWWEERRSS AAWWAARRDD PPRROOGGRRAAMM ((GGAAPP)) V.6 1 Welcome to the North Jersey Aquarium Society's Growers Award Program (GAP). The purpose of the GAP is to: 1. encourage members to integrate aquatic plants into their filtration and aquascaping 2. recognize the talents and achievements of our members 3. provide a better selection of plants at our auctions Two programs are available to award members, including those who only keep a few types of plants in their aquariums. Any NJAS member in good standing can participate in the programs. The Achievement Program In the Achievement Program, points are awarded for each species propagated, one time only. This is normally done by submitting the propagations for auction. 15 and 20 point plants require a short, written “grower report” of one or more paragraphs to be credited. Members can earn an additional 2.5 points for articles written about aquarium plants submitted to the society’s newsletter, 2.5 points for participating in a panel on plants, and 5 points for presenting a program. Member standings are published on the NJAS website as well as in our newsletter. Plaques are awarded to the member with every new level of achievement. It is the grower's responsibility to see that points have been properly recorded. Suggestions are welcomed. Decisions by the GAP Chair are final. Achievement Level Points Required Other Requirements I Grower 75 propagations in at least 2 categories II Advanced Grower 150 propagations in at least 4 categories to date III Senior Grower 300 propagations in at least
    [Show full text]
  • Low Risk Aquarium and Pond Plants
    Plant Identification Guide Low-risk aquarium and pond plants Planting these in your pond or aquarium is environmentally-friendly. Glossostigma elatinoides, image © Sonia Frimmel. One of the biggest threats to New Zealand’s waterbodies is the establishment and proliferation of weeds. The majority of New Zealand’s current aquatic weeds started out as aquarium and pond plants. To reduce the occurrence of new weeds becoming established in waterbodies this guide has been prepared to encourage the use of aquarium and pond plants that pose minimal risk to waterbodies. Guide prepared by Dr John Clayton, Paula Reeves, Paul Champion and Tracey Edwards, National Centre of Aquatic Biodiversity and Biosecurity, NIWA with funding from the Department of Conservation. The guides will be updated on a regular basis and will be available on the NIWA website: www.niwa.co.nz/ncabb/tools. Key to plant life-forms Sprawling marginal plants. Grow across the ground and out over water. Pond plants Short turf-like plants. Grow in shallow water on the edges of ponds and foreground of aquariums. Includes very small plants (up to 2-3 cm in height). Most species can grow both submerged (usually more erect) and emergent. Pond and aquarium plants Tall emergent plants. Can grow in water depths up to 2 m deep depending on the species. Usually tall reed-like plants but sometimes with broad leaves. Ideal for deeper ponds. Pond plants Free floating plants. These plants grow on the water surface and are not anchored to banks or bottom substrates. Pond and aquarium plants Floating-leaved plants. Water lily-type plants.
    [Show full text]
  • Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
    METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.
    [Show full text]
  • Notes on Cryptocoryne
    Notes on Cryptocoryne BY T. Petch, B.A., B.Sc. WITH FOUR PLATES The genus Cryptocoryne (Araceae) was established by Fischer for the reception of two Indian species, Cryptocoryne spiralis and Crypto- coryne ciliata, which had been described under Ambrosinia by Roxburgh. Additional species were described by Roxburgh, Schott, and other botanists, while in Beccari, Malesia, Engler described eleven new species from Borneo and gave a conspectus of twenty-four known species. In Flora British India, Hooker enumerated sixteen species, and in Flora of Ceylon, five species. The total number of species is now over thirty, confined to the Eastern Tropics. For our knowledge of the structure of the flower we are indebted almost entirely to Griffith, who recorded the results of his examination of fresh specimens of Cryptocoryne ciliata in Trans. Linn. Soc., XX, pp. 263-276. The spadix is small, and it is not easy to determine the details of its structure from dried specimens. Consequently, very little has been added to Griffith's account, and a detailed examination of the living flower is still lacking in the case of the majority of the alleged species. In Ceylon, Cryptocoryne has been considered very rare. Crypto- coryne Thwaitesii Schott, hitherto the best-known species, occurs in the wet low-country in the south-west of the Island. C. Nevillii Trimen was described from a single collection made by Nevill in the Eastern Province. C. Beckettii Thwaites was collected in 1865 in Matale East, and there are two subsequent collections assigned to this species in Herb., Peradeniya. The record of C.
    [Show full text]
  • International Phd PLANT HEALTH TECHNOLOGIES and PROTECTION of AGROECOSYSTEMS XXVII CYCLE 2012-2014 Molecular Characterization Of
    International PhD PLANT HEALTH TECHNOLOGIES AND PROTECTION OF AGROECOSYSTEMS XXVII CYCLE 2012-2014 Molecular characterization of Rhizoctonia spp. isolates and sustainable approaches to control Rhizoctonia diseases in ornamental nursery This thesis is presented for the degree of Doctor of Philosophy by PIETRO TINDARO FORMICA COORDINATOR TUTOR PROF. C. RAPISARDA PROF. G.POLIZZI This work was supported by MIUR project PON01_01611 (SO.PRO.ME.: Sustainable production of Potted Plants in Mediterranea Environment) Contents 1. The genus Rhizoctonia ................................................................................................. 1 1.1. Introduction .......................................................................................................... 1 1.2. Anastomosis group (AG) of Rhizoctonia solani and BNR and molecular analysis . 3 1.3. Systematics of Rhizoctonia species ....................................................................... 7 Genus Thanatephorus [Rhizoctonia s. str.] ...................................................................... 7 Genus Ceratobasidium [binucleate Rhizoctonia (BNR)] .................................................. 9 1.4. Biology .............................................................................................................. 12 1.5. Pathogenicity and hosts....................................................................................... 15 1.5.1. Seed decay .................................................................................................. 15 1.5.2.
    [Show full text]