The (Homo)Morphism Concept: Didactic Transposition, Meta-Discourse and Thematisation Thomas Hausberger
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mathematical Structure of the Aesthetic
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 June 2017 doi:10.20944/preprints201706.0055.v1 Peer-reviewed version available at Philosophies 2017, 2, 14; doi:10.3390/philosophies2030014 Article A New Kind of Aesthetics – The Mathematical Structure of the Aesthetic Akihiro Kubota 1,*, Hirokazu Hori 2, Makoto Naruse 3 and Fuminori Akiba 4 1 Art and Media Course, Department of Information Design, Tama Art University, 2-1723 Yarimizu, Hachioji, Tokyo 192-0394, Japan; [email protected] 2 Interdisciplinary Graduate School, University of Yamanashi, 4-3-11 Takeda, Kofu,Yamanashi 400-8511, Japan; [email protected] 3 Network System Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795, Japan; [email protected] 4 Philosophy of Information Group, Department of Systems and Social Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-42-679-5634 Abstract: This paper proposes a new approach to investigation into the aesthetics. Specifically, it argues that it is possible to explain the aesthetic and its underlying dynamic relations with axiomatic structure (the octahedral axiom derived category) based on contemporary mathematics – namely, category theory – and through this argument suggests the possibility for discussion about the mathematical structure of the aesthetic. If there was a way to describe the structure of aesthetics with the language of mathematical structures and mathematical axioms – a language completely devoid of arbitrariness – then we would make possible a synthetical argument about the essential human activity of “the aesthetics”, and we would also gain a new method and viewpoint on the philosophy and meaning of the act of creating a work of art and artistic activities. -
Structure” of Physics: a Case Study∗ (Journal of Philosophy 106 (2009): 57–88)
The “Structure” of Physics: A Case Study∗ (Journal of Philosophy 106 (2009): 57–88) Jill North We are used to talking about the “structure” posited by a given theory of physics. We say that relativity is a theory about spacetime structure. Special relativity posits one spacetime structure; different models of general relativity posit different spacetime structures. We also talk of the “existence” of these structures. Special relativity says that the world’s spacetime structure is Minkowskian: it posits that this spacetime structure exists. Understanding structure in this sense seems important for understand- ing what physics is telling us about the world. But it is not immediately obvious just what this structure is, or what we mean by the existence of one structure, rather than another. The idea of mathematical structure is relatively straightforward. There is geometric structure, topological structure, algebraic structure, and so forth. Mathematical structure tells us how abstract mathematical objects t together to form different types of mathematical spaces. Insofar as we understand mathematical objects, we can understand mathematical structure. Of course, what to say about the nature of mathematical objects is not easy. But there seems to be no further problem for understanding mathematical structure. ∗For comments and discussion, I am extremely grateful to David Albert, Frank Arntzenius, Gordon Belot, Josh Brown, Adam Elga, Branden Fitelson, Peter Forrest, Hans Halvorson, Oliver Davis Johns, James Ladyman, David Malament, Oliver Pooley, Brad Skow, TedSider, Rich Thomason, Jason Turner, Dmitri Tymoczko, the philosophy faculty at Yale, audience members at The University of Michigan in fall 2006, and in 2007 at the Paci c APA, the Joint Session of the Aristotelian Society and Mind Association, and the Bellingham Summer Philosophy Conference. -
Group Theory
Appendix A Group Theory This appendix is a survey of only those topics in group theory that are needed to understand the composition of symmetry transformations and its consequences for fundamental physics. It is intended to be self-contained and covers those topics that are needed to follow the main text. Although in the end this appendix became quite long, a thorough understanding of group theory is possible only by consulting the appropriate literature in addition to this appendix. In order that this book not become too lengthy, proofs of theorems were largely omitted; again I refer to other monographs. From its very title, the book by H. Georgi [211] is the most appropriate if particle physics is the primary focus of interest. The book by G. Costa and G. Fogli [102] is written in the same spirit. Both books also cover the necessary group theory for grand unification ideas. A very comprehensive but also rather dense treatment is given by [428]. Still a classic is [254]; it contains more about the treatment of dynamical symmetries in quantum mechanics. A.1 Basics A.1.1 Definitions: Algebraic Structures From the structureless notion of a set, one can successively generate more and more algebraic structures. Those that play a prominent role in physics are defined in the following. Group A group G is a set with elements gi and an operation ◦ (called group multiplication) with the properties that (i) the operation is closed: gi ◦ g j ∈ G, (ii) a neutral element g0 ∈ G exists such that gi ◦ g0 = g0 ◦ gi = gi , (iii) for every gi exists an −1 ∈ ◦ −1 = = −1 ◦ inverse element gi G such that gi gi g0 gi gi , (iv) the operation is associative: gi ◦ (g j ◦ gk) = (gi ◦ g j ) ◦ gk. -
A Review of Commutative Ring Theory Mathematics Undergraduate Seminar: Toric Varieties
A REVIEW OF COMMUTATIVE RING THEORY MATHEMATICS UNDERGRADUATE SEMINAR: TORIC VARIETIES ADRIANO FERNANDES Contents 1. Basic Definitions and Examples 1 2. Ideals and Quotient Rings 3 3. Properties and Types of Ideals 5 4. C-algebras 7 References 7 1. Basic Definitions and Examples In this first section, I define a ring and give some relevant examples of rings we have encountered before (and might have not thought of as abstract algebraic structures.) I will not cover many of the intermediate structures arising between rings and fields (e.g. integral domains, unique factorization domains, etc.) The interested reader is referred to Dummit and Foote. Definition 1.1 (Rings). The algebraic structure “ring” R is a set with two binary opera- tions + and , respectively named addition and multiplication, satisfying · (R, +) is an abelian group (i.e. a group with commutative addition), • is associative (i.e. a, b, c R, (a b) c = a (b c)) , • and the distributive8 law holds2 (i.e.· a,· b, c ·R, (·a + b) c = a c + b c, a (b + c)= • a b + a c.) 8 2 · · · · · · Moreover, the ring is commutative if multiplication is commutative. The ring has an identity, conventionally denoted 1, if there exists an element 1 R s.t. a R, 1 a = a 1=a. 2 8 2 · ·From now on, all rings considered will be commutative rings (after all, this is a review of commutative ring theory...) Since we will be talking substantially about the complex field C, let us recall the definition of such structure. Definition 1.2 (Fields). -
CLIFFORD ALGEBRAS Property, Then There Is a Unique Isomorphism (V ) (V ) Intertwining the Two Inclusions of V
CHAPTER 2 Clifford algebras 1. Exterior algebras 1.1. Definition. For any vector space V over a field K, let T (V ) = k k k Z T (V ) be the tensor algebra, with T (V ) = V V the k-fold tensor∈ product. The quotient of T (V ) by the two-sided⊗···⊗ ideal (V ) generated byL all v w + w v is the exterior algebra, denoted (V ).I The product in (V ) is usually⊗ denoted⊗ α α , although we will frequently∧ omit the wedge ∧ 1 ∧ 2 sign and just write α1α2. Since (V ) is a graded ideal, the exterior algebra inherits a grading I (V )= k(V ) ∧ ∧ k Z M∈ where k(V ) is the image of T k(V ) under the quotient map. Clearly, 0(V )∧ = K and 1(V ) = V so that we can think of V as a subspace of ∧(V ). We may thus∧ think of (V ) as the associative algebra linearly gener- ated∧ by V , subject to the relations∧ vw + wv = 0. We will write φ = k if φ k(V ). The exterior algebra is commutative | | ∈∧ (in the graded sense). That is, for φ k1 (V ) and φ k2 (V ), 1 ∈∧ 2 ∈∧ [φ , φ ] := φ φ + ( 1)k1k2 φ φ = 0. 1 2 1 2 − 2 1 k If V has finite dimension, with basis e1,...,en, the space (V ) has basis ∧ e = e e I i1 · · · ik for all ordered subsets I = i1,...,ik of 1,...,n . (If k = 0, we put { } k { n } e = 1.) In particular, we see that dim (V )= k , and ∅ ∧ n n dim (V )= = 2n. -
A Natural Transformation of the Spec Functor
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 10, 69-91 (1968) A Natural Transformation of the Spec Functor IAN G. CONNELL McGill University, Montreal, Canada Communicated by P. Cohn Received November 28, 1967 The basic functor underlying the Grothendieck algebraic geometry is Spec which assigns a ringed space to each ring1 A; we denote the topological space by spec A and the sheaf of rings by Spec A. We shall define a functor which is both a generalization and a natural transformation of Spec, in a sense made precise below. Our setting is the category Proj, of commutative K-algebras, where k is a fixed ring, and specializations over K which are defined below. A k-algebra is, strictly speaking, a ring homomorphism pA : K -+ A (pa is called the representation or structural homomorphism) and a K-algebra homomorphism is a commutative triangle k of ring homomorphisms. As is customary we simplify this to “A is a K-algebra” and “4 : A -+ B is a K-algebra homomorphism”, when there can be no ambiguity about the p’s. When we refer to K as a K-algebra we mean of course the identity representation. 1. PRIMES AND PLACES Recall the definition of a place $ on the field A with values in the field B (cf. [6], p. 3). It is a ring homomorphism 4 : A, -+ B defined on a subring A, of A with the property that for all X, y E A, xy E A, , x 6 A, =Py E Ker 4. -
Math 250A: Groups, Rings, and Fields. H. W. Lenstra Jr. 1. Prerequisites
Math 250A: Groups, rings, and fields. H. W. Lenstra jr. 1. Prerequisites This section consists of an enumeration of terms from elementary set theory and algebra. You are supposed to be familiar with their definitions and basic properties. Set theory. Sets, subsets, the empty set , operations on sets (union, intersection, ; product), maps, composition of maps, injective maps, surjective maps, bijective maps, the identity map 1X of a set X, inverses of maps. Relations, equivalence relations, equivalence classes, partial and total orderings, the cardinality #X of a set X. The principle of math- ematical induction. Zorn's lemma will be assumed in a number of exercises. Later in the course the terminology and a few basic results from point set topology may come in useful. Group theory. Groups, multiplicative and additive notation, the unit element 1 (or the zero element 0), abelian groups, cyclic groups, the order of a group or of an element, Fermat's little theorem, products of groups, subgroups, generators for subgroups, left cosets aH, right cosets, the coset spaces G=H and H G, the index (G : H), the theorem of n Lagrange, group homomorphisms, isomorphisms, automorphisms, normal subgroups, the factor group G=N and the canonical map G G=N, homomorphism theorems, the Jordan- ! H¨older theorem (see Exercise 1.4), the commutator subgroup [G; G], the center Z(G) (see Exercise 1.12), the group Aut G of automorphisms of G, inner automorphisms. Examples of groups: the group Sym X of permutations of a set X, the symmetric group S = Sym 1; 2; : : : ; n , cycles of permutations, even and odd permutations, the alternating n f g group A , the dihedral group D = (1 2 : : : n); (1 n 1)(2 n 2) : : : , the Klein four group n n h − − i V , the quaternion group Q = 1; i; j; ij (with ii = jj = 1, ji = ij) of order 4 8 { g − − 8, additive groups of rings, the group Gl(n; R) of invertible n n-matrices over a ring R. -
Algebra Homomorphisms and the Functional Calculus
Pacific Journal of Mathematics ALGEBRA HOMOMORPHISMS AND THE FUNCTIONAL CALCULUS MARK PHILLIP THOMAS Vol. 79, No. 1 May 1978 PACIFIC JOURNAL OF MATHEMATICS Vol. 79, No. 1, 1978 ALGEBRA HOMOMORPHISMS AND THE FUNCTIONAL CALCULUS MARC THOMAS Let b be a fixed element of a commutative Banach algebra with unit. Suppose σ(b) has at most countably many connected components. We give necessary and sufficient conditions for b to possess a discontinuous functional calculus. Throughout, let B be a commutative Banach algebra with unit 1 and let rad (B) denote the radical of B. Let b be a fixed element of B. Let έ? denote the LF space of germs of functions analytic in a neighborhood of σ(6). By a functional calculus for b we mean an algebra homomorphism θr from έ? to B such that θ\z) = b and θ\l) = 1. We do not require θr to be continuous. It is well-known that if θ' is continuous, then it is equal to θ, the usual functional calculus obtained by integration around contours i.e., θ{f) = -±τ \ f(t)(f - ]dt for f eέ?, Γ a contour about σ(b) [1, 1.4.8, Theorem 3]. In this paper we investigate the conditions under which a functional calculus & is necessarily continuous, i.e., when θ is the unique functional calculus. In the first section we work with sufficient conditions. If S is any closed subspace of B such that bS Q S, we let D(b, S) denote the largest algebraic subspace of S satisfying (6 — X)D(b, S) = D(b, S)f all λeC. -
What Does a Lie Algebra Know About a Lie Group?
WHAT DOES A LIE ALGEBRA KNOW ABOUT A LIE GROUP? HOLLY MANDEL Abstract. We define Lie groups and Lie algebras and show how invariant vector fields on a Lie group form a Lie algebra. We prove that this corre- spondence respects natural maps and discuss conditions under which it is a bijection. Finally, we introduce the exponential map and use it to write the Lie group operation as a function on its Lie algebra. Contents 1. Introduction 1 2. Lie Groups and Lie Algebras 2 3. Invariant Vector Fields 3 4. Induced Homomorphisms 5 5. A General Exponential Map 8 6. The Campbell-Baker-Hausdorff Formula 9 Acknowledgments 10 References 10 1. Introduction Lie groups provide a mathematical description of many naturally-occuring sym- metries. Though they take a variety of shapes, Lie groups are closely linked to linear objects called Lie algebras. In fact, there is a direct correspondence between these two concepts: simply-connected Lie groups are isomorphic exactly when their Lie algebras are isomorphic, and every finite-dimensional real or complex Lie algebra occurs as the Lie algebra of a simply-connected Lie group. To put it another way, a simply-connected Lie group is completely characterized by the small collection n2(n−1) of scalars that determine its Lie bracket, no more than 2 numbers for an n-dimensional Lie group. In this paper, we introduce the basic Lie group-Lie algebra correspondence. We first define the concepts of a Lie group and a Lie algebra and demonstrate how a certain set of functions on a Lie group has a natural Lie algebra structure. -
Model Theory of Fields with Free Operators in Positive Characteristic
MODEL THEORY OF FIELDS WITH FREE OPERATORS IN POSITIVE CHARACTERISTIC OZLEM¨ BEYARSLAN♣, DANIEL MAX HOFFMANN♦, MOSHE KAMENSKY♥, AND PIOTR KOWALSKI♠ Abstract. We give algebraic conditions about a finite commutative algebra B over a field of positive characteristic, which are equivalent to the compan- ionability of the theory of fields with “B-operators” (i.e. the operators coming from homomorphisms into tensor products with B). We show that, in the most interesting case of a local B, these model companions admit quantifier elimination in the “smallest possible” language and they are strictly stable. We also describe the forking relation there. 1. Introduction The aim of this paper is to extend the results from [18] about model theory of “free operators” on fields from the case of characteristic zero to the case of arbitrary characteristics. Throughout the paper we fix a field k, and all algebras and rings considered in this paper are assumed to be commutative with unit. Let us quickly recall the set-up from [18]. For a fixed finite k-algebra B and a field extension k ⊆ K, a B-operator on K (called a D-ring (structure on K) in [18], where D(k)= B) is a k-algebra homomorphism K → K ⊗k B (for a more precise description, see Def. 2.2). For example, a map ∂ : K → K is a k-derivation if and only if the corresponding map 2 2 2 K ∋ x 7→ x + ∂(x)X + X ∈ K[X]/(X )= K ⊗k k[X]/(X ) is a B-operator for B = k[X]/(X2). It is proved in [18] that if char(k) = 0, then a model companion of the theory of B-operators exists and the properties of this model companion are analyzed in [18] as well. -
The Design and Validation of a Group Theory Concept Inventory
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Summer 8-10-2015 The Design and Validation of a Group Theory Concept Inventory Kathleen Mary Melhuish Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Algebra Commons, Higher Education Commons, and the Science and Mathematics Education Commons Let us know how access to this document benefits ou.y Recommended Citation Melhuish, Kathleen Mary, "The Design and Validation of a Group Theory Concept Inventory" (2015). Dissertations and Theses. Paper 2490. https://doi.org/10.15760/etd.2487 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. The Design and Validation of a Group Theory Concept Inventory by Kathleen Mary Melhuish A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Education Dissertation Committee: Sean Larsen, Chair John Caughman Samuel Cook Andrea Goforth Portland State University 2015 © 2015 Kathleen Mary Melhuish Abstract Within undergraduate mathematics education, there are few validated instruments designed for large-scale usage. The Group Concept Inventory (GCI) was created as an instrument to evaluate student conceptions related to introductory group theory topics. The inventory was created in three phases: domain analysis, question creation, and field-testing. The domain analysis phase included using an expert protocol to arrive at the topics to be assessed, analyzing curriculum, and reviewing literature. -
Differential Central Simple Algebras and Picard–Vessiot
Differential Central Simple Algebras and Picard–Vessiot Representations Lourdes Juan Department of Mathematics Texas Tech University Lubbock TX 79409 Andy R. Magid Department of Mathematics University of Oklahoma Norman OK 73019 March 7, 2007 Abstract A differential central simple algebra, and in particular a differential matrix algebra, over a differential field K with constants C can be trivial- ized by a Picard–Vessiot (differential Galois) extension E. In the matrix algebra case, there is a correspondence between K algebras trivialized by E and representations of the Galois group of E over K in P GLn(C), which can be interpreted as cocyles equivalent up to coboundaries. 1 Introduction Let K be a differential field with algebraically closed characteristic zero field of constants C and derivation D = DK . By a differential central simple al- gebra (DCSA) over K we mean a pair (A, D) where A is a central simple K algebra and D is a derivation of A extending the derivation D of its center K. Given two such pairs (A1, D1) and (A2, D2), we can form the differential algebra (A1 ⊗ A2, D1 ⊗ D2), where the derivation D1 ⊗ D2 is given by D1 ⊗ 1 + 1 ⊗ D2. Morphisms of DCSA’s over K are K algebra homomorphisms preserving deriva- tions. We denote the isomorphism class of (A, D) by [A, D]. The above tensor product defines a monoid operation on the isomorphism classes (the identity being the class [K, DK ]), and hence we can form the corresponding universal diff group K0 Az(K). (A central simple algebra (CSA) over a field is a special case of Azumaya, or central separable, algebras over rings; Az is an abbre- viation for Azumaya.) The corresponding object for K when derivations are not considered is the familiar K0Az(K) as defined by Bass in [1, Chapter III].