Math 250A: Groups, Rings, and Fields. H. W. Lenstra Jr. 1. Prerequisites

Total Page:16

File Type:pdf, Size:1020Kb

Math 250A: Groups, Rings, and Fields. H. W. Lenstra Jr. 1. Prerequisites Math 250A: Groups, rings, and fields. H. W. Lenstra jr. 1. Prerequisites This section consists of an enumeration of terms from elementary set theory and algebra. You are supposed to be familiar with their definitions and basic properties. Set theory. Sets, subsets, the empty set , operations on sets (union, intersection, ; product), maps, composition of maps, injective maps, surjective maps, bijective maps, the identity map 1X of a set X, inverses of maps. Relations, equivalence relations, equivalence classes, partial and total orderings, the cardinality #X of a set X. The principle of math- ematical induction. Zorn's lemma will be assumed in a number of exercises. Later in the course the terminology and a few basic results from point set topology may come in useful. Group theory. Groups, multiplicative and additive notation, the unit element 1 (or the zero element 0), abelian groups, cyclic groups, the order of a group or of an element, Fermat's little theorem, products of groups, subgroups, generators for subgroups, left cosets aH, right cosets, the coset spaces G=H and H G, the index (G : H), the theorem of n Lagrange, group homomorphisms, isomorphisms, automorphisms, normal subgroups, the factor group G=N and the canonical map G G=N, homomorphism theorems, the Jordan- ! H¨older theorem (see Exercise 1.4), the commutator subgroup [G; G], the center Z(G) (see Exercise 1.12), the group Aut G of automorphisms of G, inner automorphisms. Examples of groups: the group Sym X of permutations of a set X, the symmetric group S = Sym 1; 2; : : : ; n , cycles of permutations, even and odd permutations, the alternating n f g group A , the dihedral group D = (1 2 : : : n); (1 n 1)(2 n 2) : : : , the Klein four group n n h − − i V , the quaternion group Q = 1; i; j; ij (with ii = jj = 1, ji = ij) of order 4 8 { g − − 8, additive groups of rings, the group Gl(n; R) of invertible n n-matrices over a ring R. × Occasionally the structure theorem of finite abelian groups and finitely generated abelian groups will be assumed known. Ring theory. Rings, subrings, homomorphisms. We adopt the convention that the existence of a unit element 1 is part of the definition of a ring. Likewise, subrings of a ring R are required to contain the unit element of R, and ring homomorphisms are required to map 1 to 1. Products of rings, zero-divisors, units, the group R∗ of units of a ring R. Ideals, operations on ideals (sum, intersection, product), generators for ideals, principal ideals, the factor ring R=a, congruence modulo an ideal. Domains, prime ideals, maximal ideals. Principal ideal rings, unique factorization domains. Examples: the ring Z of integers, the ring Z=nZ of integers modulo n, the zero ring, polynomial rings R[X1; : : : ; Xn], the endomorphism ring End A of an abelian group A (see Exercise 1.23), the ring M(n; R) of n n-matrices over a ring R, the division ring (or skew × field) H of quaternions, the group ring R[G] of a group G over a ring R (see Exercise 1.25), 1 the ring R[[X]] of formal power series over a ring R. (see Exercise 1.26). Field theory. Fields, the field Q(R) of fractions of a domain R, the prime field, the characteristic char k of a field k, algebraic and transcendental elements over a field, alge- α braic and finite extensions, the degree [l : k], the irreducible (or minimum) polynomial fk α of an element α algebraic over k, the isomorphism k(α) ∼= k[X]=fk k[X], splitting fields. Examples: the fields Q, R, and C of rational, real, and complex numbers, respec- tively, the field Fp = Z=pZ (for p prime), finite fields Fq (for q a prime power), the field k(X1; : : : ; Xn) of rational functions in n indeterminates over a field k. 1. Exercises 1.1 (Left axioms). Let G be a set, 1 G an element, i: G G a map, and m: G G G 2 ! × ! another map; instead of m(x; y) we write xy, for x, y G. 2 (a) Suppose that for all x, y, z G one has 2 1x = x; i(x)x = 1; (xy)z = x(yz): Prove that G is a group with multiplication m. (b) Suppose that for all x, y, z G one has 2 x1 = x; i(x)x = 1; (xy)z = x(yz): Does it follow that G is a group with multiplication m? Give a proof or a counterexample. 1.2. Let u, U, v, V be subgroups of a group G. Assume that u is a normal subgroup of U and that v is a normal subgroup of V . Prove that u(U v) is a normal subgroup of \ u(U V ), that (u V )(U v) is a normal subgroup of U V , that (u V )v is a normal \ \ \ \ \ subgroup of (U V )v, and that there are group isomorphisms \ u(U V )= u(U v) = (U V )= (u V )(U v) = (U V )v= (u V )v : \ \ ∼ \ \ \ ∼ \ \ r 1.3. A normal tower of a group G is a sequence (ui)i=0 of subgroups ui of G for which r is a non-negative integer, each ui 1 is a normal subgroup of ui (for 0 < i r), and u0 = 1 , − r t ≤ f g ur = G. A refinement of a normal tower (ui)i=0 is a normal tower (wj)j=0 with the property that there is an increasing map f: 0; 1; 2; : : :; r 0; 1; 2; : : :; t such that for all i one f r g ! sf g has ui = wf(i). Two normal towers (ui)i=0 and (vj)j=0 are called equivalent if there is a bijection g: 1; 2; : : :; r 1; 2; : : : ; s such that for all i one has ui=ui 1 = vg(i)=vg(i) 1. f g ! f g − ∼ − Prove the Schreier refinement theorem: any two normal towers of a group have equivalent refinements. 1.4. A group is called simple if it has exactly two normal subgroups (namely 1 and the r f g group itself). A composition series of a group is a normal tower (ui)i=0 for which every group ui=ui 1 is simple. − 2 (a) Prove the Jordan-H¨older theorem: any two composition series of a group are equivalent. (b) Exhibit a group that does not have a composition series. (c) Classify all simple abelian groups. 1.5. (a) Prove that, up to isomorphism, there are precisely 9 groups of order smaller than 8. Which are they? Formulate the theorems that you use. (b) How many pairwise non-isomorphic groups of order 8 are there? Prove the cor- rectness of your answer. 1.6. Let H, N be groups, and let : H Aut N be a group homomorphism. Instead of ! (h)(x) we shall write hx, for h H, x N. 2 2 (a) Prove that the set N H with the operation × h (x; h) (y; h0) = (x y; hh0) · · is a group. This group is called the semidirect product of H and N (with respect to ), notation: N o H. (b) Prove that N may be viewed as a normal subgroup of N oH, and that (N oH)=N is isomorphic to H. (c) Is the direct product a special case of the semidirect product? 1.7. (a) Let G be a group, let H be a subgroup of G, and let N be a normal subgroup of G. Suppose that the composition of the inclusion H G with the natural map G G=N is ⊂ ! an isomorphism H ∼ G=N. Prove that there is a group homomorphism : H Aut N −! ! such that the map N o H G sending (x; h) to xh is a group isomorphism. ! (b) Let N and N be two normal subgroups of a group G with N N = 1 . Prove 1 2 1 \ 2 f g that for all x N , y N one has xy = yx. 2 1 2 2 1.8. Prove that S is isomorphic to V o S with respect to some isomorphism : S 4 4 3 3 ! Aut V4. 1.9. A subgroup H of a group G is called characteristic (in G) if for all automorphisms ' of G one has 'H = H. (a) Prove that any characteristic subgroup of a group is normal. (b) Give an example of a group and a normal subgroup that is not characteristic. 1.10. (a) Let H be a subgroup of a group G, and let J be a characteristic subgroup of H. Prove: if H is normal in G then J is normal in G, and if H is characteristic in G then J is characteristic in G. (b) If H is a normal subgroup of a group G, and J is a normal subgroup of H, does it follow that J is normal in G? Give a proof or a counterexample. 3 1.11. (a) Prove that there is a non-abelian group G of order 8 with the property that every subgroup of G is normal. (b) Does there exist a group that has exactly one subgroup that is not normal? Give an example, or prove that no such group exists. 1.12. Let G be a group. By Z(G) we denote the center of G, i. e.: Z(G) = x G : for all y G one has xy = yx : f 2 2 g (a) Prove that the commutator subgroup [G; G] and the center Z(G) of G are char- acteristic subgroups of G.
Recommended publications
  • Sketch Notes — Rings and Fields
    Sketch Notes — Rings and Fields Neil Donaldson Fall 2018 Text • An Introduction to Abstract Algebra, John Fraleigh, 7th Ed 2003, Adison–Wesley (optional). Brief reminder of groups You should be familiar with the majority of what follows though there is a lot of time to remind yourself of the harder material! Try to complete the proofs of any results yourself. Definition. A binary structure (G, ·) is a set G together with a function · : G × G ! G. We say that G is closed under · and typically write · as juxtaposition.1 A semigroup is an associative binary structure: 8x, y, z 2 G, x(yz) = (xy)z A monoid is a semigroup with an identity element: 9e 2 G such that 8x 2 G, ex = xe = x A group is a monoid in which every element has an inverse: 8x 2 G, 9x−1 2 G such that xx−1 = x−1x = e A binary structure is commutative if 8x, y 2 G, xy = yx. A group with a commutative structure is termed abelian. A subgroup2 is a non-empty subset H ⊆ G which remains a group under the same binary operation. We write H ≤ G. Lemma. H is a subgroup of G if and only if it is a non-empty subset of G closed under multiplication and inverses in G. Standard examples of groups: sets of numbers under addition (Z, Q, R, nZ, etc.), matrix groups. Standard families: cyclic, symmetric, alternating, dihedral. 1You should be comfortable with both multiplicative and additive notation. 2More generally any substructure. 1 Cosets and Factor Groups Definition.
    [Show full text]
  • Artinian Rings Having a Nilpotent Group of Units
    JOURNAL OF ALGEBRA 121, 253-262 (1989) Artinian Rings Having a Nilpotent Group of Units GHIOCEL GROZA Department of Mathematics, Civil Engineering Institute, Lacul Tei 124, Sec. 2, R-72307, Bucharest, Romania Communicated by Walter Feit Received July 1, 1983 Throughout this paper the symbol R will be used to denote an associative ring with a multiplicative identity. R,[R”] denotes the subring of R which is generated over R, by R”, where R, is the prime subring of R and R” is the group of units of R. We use J(R) to denote the Jacobson radical of R. In Section 1 we prove that if R is a finite ring and at most one simple component of the semi-simple ring R/J(R) is a field of order 2, then R” is a nilpotent group iff R is a direct sum of two-sided ideals that are homomorphic images of group algebras of type SP, where S is a particular commutative finite ring, P is a finite p-group, and p is a prime number. In Section 2 we study the artinian rings R (i.e., rings with minimum con- dition) with RO a finite ring, R finitely generated over its center and so that every block of R is as in Lemma 1.1. We note that every finite-dimensional algebra over a field F of characteristic p > 0, so that F is not the finite field of order 2 is of this type. We prove that R is of this type and R” is a nilpotent group iff R is a direct sum of two-sided ideals that are particular homomorphic images of crossed products.
    [Show full text]
  • Representations of Finite Rings
    Pacific Journal of Mathematics REPRESENTATIONS OF FINITE RINGS ROBERT S. WILSON Vol. 53, No. 2 April 1974 PACIFIC JOURNAL OF MATHEMATICS Vol. 53, No. 2, 1974 REPRESENTATIONS OF FINITE RINGS ROBERT S. WILSON In this paper we extend the concept of the Szele repre- sentation of finite rings from the case where the coefficient ring is a cyclic ring* to the case where it is a Galois ring. We then characterize completely primary and nilpotent finite rings as those rings whose Szele representations satisfy certain conditions. 1* Preliminaries* We first note that any finite ring is a direct sum of rings of prime power order. This follows from noticing that when one decomposes the additive group of a finite ring into its pime power components, the component subgroups are, in fact, ideals. So without loss of generality, up to direct sum formation, one needs only to consider rings of prime power order. For the remainder of this paper p will denote an arbitrary, fixed prime and all rings will be of order pn for some positive integer n. Of the two classes of rings that will be studied in this paper, completely primary finite rings are always of prime power order, so for the completely primary case, there is no loss of generality at all. However, nilpotent finite rings do not need to have prime power order, but we need only classify finite nilpotent rings of prime power order, the general case following from direct sum formation. If B is finite ring (of order pn) then the characteristic of B will be pk for some positive integer k.
    [Show full text]
  • On the Semisimplicity of Group Algebras
    ON THE SEMISIMPLICITY OF GROUP ALGEBRAS ORLANDO E. VILLAMAYOR1 In this paper we find sufficient conditions for a group algebra over a commutative ring to be semisimple. In particular, the case in which the group is abelian is solved for fields of characteristic zero, and, in a more general case, for semisimple commutative rings which are uniquely divisible by every integer. Under similar restrictions on the ring of coefficients, it is proved the semisimplicity of group alge- bras when the group is not abelian but the factor group module its center is locally finite.2 In connection with this problem, we study homological properties of group algebras generalizing some results of M. Auslander [l, Theorems 6 and 9]. In fact, Lemmas 3 and 4 give new proofs of Aus- lander's Theorems 6 and 9 in the case C=(l). 1. Notations. A group G will be called a torsion group if every ele- ment of G has finite order, it will be called locally finite if every finitely generated subgroup is finite and it will be called free (or free abelian) if it is a direct sum of infinite cyclic groups. Direct sum and direct product are defined as in [3]. Given a set of rings Ri, their direct product will be denoted by J{Ri. If G is a group and R is a ring, the group algebra generated by G over R will be denoted by R(G). In a ring R, radical and semisimplicity are meant in the sense of Jacobson [5]. A ring is called regular in the sense of von Neumann [7].
    [Show full text]
  • The Projective Line Over the Finite Quotient Ring GF(2)[X]/⟨X3 − X⟩ and Quantum Entanglement I
    The Projective Line Over the Finite Quotient Ring GF(2)[x]/hx3 − xi and Quantum Entanglement I. Theoretical Background Metod Saniga, Michel Planat To cite this version: Metod Saniga, Michel Planat. The Projective Line Over the Finite Quotient Ring GF(2)[x]/hx3 − xi and Quantum Entanglement I. Theoretical Background. 2006. hal-00020182v1 HAL Id: hal-00020182 https://hal.archives-ouvertes.fr/hal-00020182v1 Preprint submitted on 7 Mar 2006 (v1), last revised 6 Jun 2006 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Projective Line Over the Finite Quotient Ring GF(2)[x]/hx3 − xi and Quantum Entanglement I. Theoretical Background Metod Saniga† and Michel Planat‡ †Astronomical Institute, Slovak Academy of Sciences SK-05960 Tatransk´aLomnica, Slovak Republic ([email protected]) and ‡Institut FEMTO-ST, CNRS, D´epartement LPMO, 32 Avenue de l’Observatoire F-25044 Besan¸con, France ([email protected]) Abstract 3 The paper deals with the projective line over the finite factor ring R♣ ≡ GF(2)[x]/hx −xi. The line is endowed with 18 points, spanning the neighbourhoods of three pairwise distant points. As R♣ is not a local ring, the neighbour (or parallel) relation is not an equivalence relation so that the sets of neighbour points to two distant points overlap.
    [Show full text]
  • Ring Homomorphisms Definition
    4-8-2018 Ring Homomorphisms Definition. Let R and S be rings. A ring homomorphism (or a ring map for short) is a function f : R → S such that: (a) For all x,y ∈ R, f(x + y)= f(x)+ f(y). (b) For all x,y ∈ R, f(xy)= f(x)f(y). Usually, we require that if R and S are rings with 1, then (c) f(1R) = 1S. This is automatic in some cases; if there is any question, you should read carefully to find out what convention is being used. The first two properties stipulate that f should “preserve” the ring structure — addition and multipli- cation. Example. (A ring map on the integers mod 2) Show that the following function f : Z2 → Z2 is a ring map: f(x)= x2. First, f(x + y)=(x + y)2 = x2 + 2xy + y2 = x2 + y2 = f(x)+ f(y). 2xy = 0 because 2 times anything is 0 in Z2. Next, f(xy)=(xy)2 = x2y2 = f(x)f(y). The second equality follows from the fact that Z2 is commutative. Note also that f(1) = 12 = 1. Thus, f is a ring homomorphism. Example. (An additive function which is not a ring map) Show that the following function g : Z → Z is not a ring map: g(x) = 2x. Note that g(x + y)=2(x + y) = 2x + 2y = g(x)+ g(y). Therefore, g is additive — that is, g is a homomorphism of abelian groups. But g(1 · 3) = g(3) = 2 · 3 = 6, while g(1)g(3) = (2 · 1)(2 · 3) = 12.
    [Show full text]
  • Problems from Ring Theory
    Home Page Problems From Ring Theory In the problems below, Z, Q, R, and C denote respectively the rings of integers, JJ II rational numbers, real numbers, and complex numbers. R generally denotes a ring, and I and J usually denote ideals. R[x],R[x, y],... denote rings of polynomials. rad R is defined to be {r ∈ R : rn = 0 for some positive integer n} , where R is a ring; rad R is called the nil radical or just the radical of R . J I Problem 0. Let b be a nilpotent element of the ring R . Prove that 1 + b is an invertible element Page 1 of 14 of R . Problem 1. Let R be a ring with more than one element such that aR = R for every nonzero Go Back element a ∈ R. Prove that R is a division ring. Problem 2. If (m, n) = 1 , show that the ring Z/(mn) contains at least two idempotents other than Full Screen the zero and the unit. Problem 3. If a and b are elements of a commutative ring with identity such that a is invertible Print and b is nilpotent, then a + b is invertible. Problem 4. Let R be a ring which has no nonzero nilpotent elements. Prove that every idempotent Close element of R commutes with every element of R. Quit Home Page Problem 5. Let A be a division ring, B be a proper subring of A such that a−1Ba ⊆ B for all a 6= 0 . Prove that B is contained in the center of A .
    [Show full text]
  • On Semilattice Structure of Mizar Types
    FORMALIZED MATHEMATICS Volume 11, Number 4, 2003 University of Białystok On Semilattice Structure of Mizar Types Grzegorz Bancerek Białystok Technical University Summary. The aim of this paper is to develop a formal theory of Mizar types. The presented theory is an approach to the structure of Mizar types as a sup-semilattice with widening (subtyping) relation as the order. It is an abstrac- tion from the existing implementation of the Mizar verifier and formalization of the ideas from [9]. MML Identifier: ABCMIZ 0. The articles [20], [14], [24], [26], [23], [25], [3], [21], [1], [11], [12], [16], [10], [13], [18], [15], [4], [2], [19], [22], [5], [6], [7], [8], and [17] provide the terminology and notation for this paper. 1. Semilattice of Widening Let us mention that every non empty relational structure which is trivial and reflexive is also complete. Let T be a relational structure. A type of T is an element of T . Let T be a relational structure. We say that T is Noetherian if and only if: (Def. 1) The internal relation of T is reversely well founded. Let us observe that every non empty relational structure which is trivial is also Noetherian. Let T be a non empty relational structure. Let us observe that T is Noethe- rian if and only if the condition (Def. 2) is satisfied. (Def. 2) Let A be a non empty subset of T . Then there exists an element a of T such that a ∈ A and for every element b of T such that b ∈ A holds a 6< b.
    [Show full text]
  • A Review of Commutative Ring Theory Mathematics Undergraduate Seminar: Toric Varieties
    A REVIEW OF COMMUTATIVE RING THEORY MATHEMATICS UNDERGRADUATE SEMINAR: TORIC VARIETIES ADRIANO FERNANDES Contents 1. Basic Definitions and Examples 1 2. Ideals and Quotient Rings 3 3. Properties and Types of Ideals 5 4. C-algebras 7 References 7 1. Basic Definitions and Examples In this first section, I define a ring and give some relevant examples of rings we have encountered before (and might have not thought of as abstract algebraic structures.) I will not cover many of the intermediate structures arising between rings and fields (e.g. integral domains, unique factorization domains, etc.) The interested reader is referred to Dummit and Foote. Definition 1.1 (Rings). The algebraic structure “ring” R is a set with two binary opera- tions + and , respectively named addition and multiplication, satisfying · (R, +) is an abelian group (i.e. a group with commutative addition), • is associative (i.e. a, b, c R, (a b) c = a (b c)) , • and the distributive8 law holds2 (i.e.· a,· b, c ·R, (·a + b) c = a c + b c, a (b + c)= • a b + a c.) 8 2 · · · · · · Moreover, the ring is commutative if multiplication is commutative. The ring has an identity, conventionally denoted 1, if there exists an element 1 R s.t. a R, 1 a = a 1=a. 2 8 2 · ·From now on, all rings considered will be commutative rings (after all, this is a review of commutative ring theory...) Since we will be talking substantially about the complex field C, let us recall the definition of such structure. Definition 1.2 (Fields).
    [Show full text]
  • Right Ideals of a Ring and Sublanguages of Science
    RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance.
    [Show full text]
  • CLIFFORD ALGEBRAS Property, Then There Is a Unique Isomorphism (V ) (V ) Intertwining the Two Inclusions of V
    CHAPTER 2 Clifford algebras 1. Exterior algebras 1.1. Definition. For any vector space V over a field K, let T (V ) = k k k Z T (V ) be the tensor algebra, with T (V ) = V V the k-fold tensor∈ product. The quotient of T (V ) by the two-sided⊗···⊗ ideal (V ) generated byL all v w + w v is the exterior algebra, denoted (V ).I The product in (V ) is usually⊗ denoted⊗ α α , although we will frequently∧ omit the wedge ∧ 1 ∧ 2 sign and just write α1α2. Since (V ) is a graded ideal, the exterior algebra inherits a grading I (V )= k(V ) ∧ ∧ k Z M∈ where k(V ) is the image of T k(V ) under the quotient map. Clearly, 0(V )∧ = K and 1(V ) = V so that we can think of V as a subspace of ∧(V ). We may thus∧ think of (V ) as the associative algebra linearly gener- ated∧ by V , subject to the relations∧ vw + wv = 0. We will write φ = k if φ k(V ). The exterior algebra is commutative | | ∈∧ (in the graded sense). That is, for φ k1 (V ) and φ k2 (V ), 1 ∈∧ 2 ∈∧ [φ , φ ] := φ φ + ( 1)k1k2 φ φ = 0. 1 2 1 2 − 2 1 k If V has finite dimension, with basis e1,...,en, the space (V ) has basis ∧ e = e e I i1 · · · ik for all ordered subsets I = i1,...,ik of 1,...,n . (If k = 0, we put { } k { n } e = 1.) In particular, we see that dim (V )= k , and ∅ ∧ n n dim (V )= = 2n.
    [Show full text]
  • A Natural Transformation of the Spec Functor
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 10, 69-91 (1968) A Natural Transformation of the Spec Functor IAN G. CONNELL McGill University, Montreal, Canada Communicated by P. Cohn Received November 28, 1967 The basic functor underlying the Grothendieck algebraic geometry is Spec which assigns a ringed space to each ring1 A; we denote the topological space by spec A and the sheaf of rings by Spec A. We shall define a functor which is both a generalization and a natural transformation of Spec, in a sense made precise below. Our setting is the category Proj, of commutative K-algebras, where k is a fixed ring, and specializations over K which are defined below. A k-algebra is, strictly speaking, a ring homomorphism pA : K -+ A (pa is called the representation or structural homomorphism) and a K-algebra homomorphism is a commutative triangle k of ring homomorphisms. As is customary we simplify this to “A is a K-algebra” and “4 : A -+ B is a K-algebra homomorphism”, when there can be no ambiguity about the p’s. When we refer to K as a K-algebra we mean of course the identity representation. 1. PRIMES AND PLACES Recall the definition of a place $ on the field A with values in the field B (cf. [6], p. 3). It is a ring homomorphism 4 : A, -+ B defined on a subring A, of A with the property that for all X, y E A, xy E A, , x 6 A, =Py E Ker 4.
    [Show full text]