Algebra Homomorphisms and the Functional Calculus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review of Commutative Ring Theory Mathematics Undergraduate Seminar: Toric Varieties
A REVIEW OF COMMUTATIVE RING THEORY MATHEMATICS UNDERGRADUATE SEMINAR: TORIC VARIETIES ADRIANO FERNANDES Contents 1. Basic Definitions and Examples 1 2. Ideals and Quotient Rings 3 3. Properties and Types of Ideals 5 4. C-algebras 7 References 7 1. Basic Definitions and Examples In this first section, I define a ring and give some relevant examples of rings we have encountered before (and might have not thought of as abstract algebraic structures.) I will not cover many of the intermediate structures arising between rings and fields (e.g. integral domains, unique factorization domains, etc.) The interested reader is referred to Dummit and Foote. Definition 1.1 (Rings). The algebraic structure “ring” R is a set with two binary opera- tions + and , respectively named addition and multiplication, satisfying · (R, +) is an abelian group (i.e. a group with commutative addition), • is associative (i.e. a, b, c R, (a b) c = a (b c)) , • and the distributive8 law holds2 (i.e.· a,· b, c ·R, (·a + b) c = a c + b c, a (b + c)= • a b + a c.) 8 2 · · · · · · Moreover, the ring is commutative if multiplication is commutative. The ring has an identity, conventionally denoted 1, if there exists an element 1 R s.t. a R, 1 a = a 1=a. 2 8 2 · ·From now on, all rings considered will be commutative rings (after all, this is a review of commutative ring theory...) Since we will be talking substantially about the complex field C, let us recall the definition of such structure. Definition 1.2 (Fields). -
CLIFFORD ALGEBRAS Property, Then There Is a Unique Isomorphism (V ) (V ) Intertwining the Two Inclusions of V
CHAPTER 2 Clifford algebras 1. Exterior algebras 1.1. Definition. For any vector space V over a field K, let T (V ) = k k k Z T (V ) be the tensor algebra, with T (V ) = V V the k-fold tensor∈ product. The quotient of T (V ) by the two-sided⊗···⊗ ideal (V ) generated byL all v w + w v is the exterior algebra, denoted (V ).I The product in (V ) is usually⊗ denoted⊗ α α , although we will frequently∧ omit the wedge ∧ 1 ∧ 2 sign and just write α1α2. Since (V ) is a graded ideal, the exterior algebra inherits a grading I (V )= k(V ) ∧ ∧ k Z M∈ where k(V ) is the image of T k(V ) under the quotient map. Clearly, 0(V )∧ = K and 1(V ) = V so that we can think of V as a subspace of ∧(V ). We may thus∧ think of (V ) as the associative algebra linearly gener- ated∧ by V , subject to the relations∧ vw + wv = 0. We will write φ = k if φ k(V ). The exterior algebra is commutative | | ∈∧ (in the graded sense). That is, for φ k1 (V ) and φ k2 (V ), 1 ∈∧ 2 ∈∧ [φ , φ ] := φ φ + ( 1)k1k2 φ φ = 0. 1 2 1 2 − 2 1 k If V has finite dimension, with basis e1,...,en, the space (V ) has basis ∧ e = e e I i1 · · · ik for all ordered subsets I = i1,...,ik of 1,...,n . (If k = 0, we put { } k { n } e = 1.) In particular, we see that dim (V )= k , and ∅ ∧ n n dim (V )= = 2n. -
A Natural Transformation of the Spec Functor
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 10, 69-91 (1968) A Natural Transformation of the Spec Functor IAN G. CONNELL McGill University, Montreal, Canada Communicated by P. Cohn Received November 28, 1967 The basic functor underlying the Grothendieck algebraic geometry is Spec which assigns a ringed space to each ring1 A; we denote the topological space by spec A and the sheaf of rings by Spec A. We shall define a functor which is both a generalization and a natural transformation of Spec, in a sense made precise below. Our setting is the category Proj, of commutative K-algebras, where k is a fixed ring, and specializations over K which are defined below. A k-algebra is, strictly speaking, a ring homomorphism pA : K -+ A (pa is called the representation or structural homomorphism) and a K-algebra homomorphism is a commutative triangle k of ring homomorphisms. As is customary we simplify this to “A is a K-algebra” and “4 : A -+ B is a K-algebra homomorphism”, when there can be no ambiguity about the p’s. When we refer to K as a K-algebra we mean of course the identity representation. 1. PRIMES AND PLACES Recall the definition of a place $ on the field A with values in the field B (cf. [6], p. 3). It is a ring homomorphism 4 : A, -+ B defined on a subring A, of A with the property that for all X, y E A, xy E A, , x 6 A, =Py E Ker 4. -
Inverse and Implicit Function Theorems for Noncommutative
Inverse and Implicit Function Theorems for Noncommutative Functions on Operator Domains Mark E. Mancuso Abstract Classically, a noncommutative function is defined on a graded domain of tuples of square matrices. In this note, we introduce a notion of a noncommutative function defined on a domain Ω ⊂ B(H)d, where H is an infinite dimensional Hilbert space. Inverse and implicit function theorems in this setting are established. When these operatorial noncommutative functions are suitably continuous in the strong operator topology, a noncommutative dilation-theoretic construction is used to show that the assumptions on their derivatives may be relaxed from boundedness below to injectivity. Keywords: Noncommutive functions, operator noncommutative functions, free anal- ysis, inverse and implicit function theorems, strong operator topology, dilation theory. MSC (2010): Primary 46L52; Secondary 47A56, 47J07. INTRODUCTION Polynomials in d noncommuting indeterminates can naturally be evaluated on d-tuples of square matrices of any size. The resulting function is graded (tuples of n × n ma- trices are mapped to n × n matrices) and preserves direct sums and similarities. Along with polynomials, noncommutative rational functions and power series, the convergence of which has been studied for example in [9], [14], [15], serve as prototypical examples of a more general class of functions called noncommutative functions. The theory of non- commutative functions finds its origin in the 1973 work of J. L. Taylor [17], who studied arXiv:1804.01040v2 [math.FA] 7 Aug 2019 the functional calculus of noncommuting operators. Roughly speaking, noncommutative functions are to polynomials in noncommuting variables as holomorphic functions from complex analysis are to polynomials in commuting variables. -
Math 250A: Groups, Rings, and Fields. H. W. Lenstra Jr. 1. Prerequisites
Math 250A: Groups, rings, and fields. H. W. Lenstra jr. 1. Prerequisites This section consists of an enumeration of terms from elementary set theory and algebra. You are supposed to be familiar with their definitions and basic properties. Set theory. Sets, subsets, the empty set , operations on sets (union, intersection, ; product), maps, composition of maps, injective maps, surjective maps, bijective maps, the identity map 1X of a set X, inverses of maps. Relations, equivalence relations, equivalence classes, partial and total orderings, the cardinality #X of a set X. The principle of math- ematical induction. Zorn's lemma will be assumed in a number of exercises. Later in the course the terminology and a few basic results from point set topology may come in useful. Group theory. Groups, multiplicative and additive notation, the unit element 1 (or the zero element 0), abelian groups, cyclic groups, the order of a group or of an element, Fermat's little theorem, products of groups, subgroups, generators for subgroups, left cosets aH, right cosets, the coset spaces G=H and H G, the index (G : H), the theorem of n Lagrange, group homomorphisms, isomorphisms, automorphisms, normal subgroups, the factor group G=N and the canonical map G G=N, homomorphism theorems, the Jordan- ! H¨older theorem (see Exercise 1.4), the commutator subgroup [G; G], the center Z(G) (see Exercise 1.12), the group Aut G of automorphisms of G, inner automorphisms. Examples of groups: the group Sym X of permutations of a set X, the symmetric group S = Sym 1; 2; : : : ; n , cycles of permutations, even and odd permutations, the alternating n f g group A , the dihedral group D = (1 2 : : : n); (1 n 1)(2 n 2) : : : , the Klein four group n n h − − i V , the quaternion group Q = 1; i; j; ij (with ii = jj = 1, ji = ij) of order 4 8 { g − − 8, additive groups of rings, the group Gl(n; R) of invertible n n-matrices over a ring R. -
The Weyl Functional Calculus F(4)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF FUNCTIONAL ANALYSIS 4, 240-267 (1969) The Weyl Functional Calculus ROBERT F. V. ANDERSON Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Communicated by Edward Nelson Received July, 1968 I. INTRODUCTION In this paper a functional calculus for an n-tuple of noncommuting self-adjoint operators on a Banach space will be proposed and examined. The von Neumann spectral theorem for self-adjoint operators on a Hilbert space leads to a functional calculus which assigns to a self- adjoint operator A and a real Borel-measurable function f of a real variable, another self-adjoint operatorf(A). This calculus generalizes in a natural way to an n-tuple of com- muting self-adjoint operators A = (A, ,..., A,), because their spectral families commute. In particular, if v is an eigenvector of A, ,..., A, with eigenvalues A, ,..., A, , respectively, and f a continuous function of n real variables, f(A 1 ,..., A,) u = f(b , . U 0. This principle fails when the operators don’t commute; instead we have the Uncertainty Principle, and so on. However, the Fourier inversion formula can also be used to define the von Neumann functional cakuius for a single operator: f(4) = (37F2 1 (Sf)(&) exp( -2 f A,) 4 E’ where This definition generalizes naturally to an n-tuple of operators, commutative or not, as follows: in the n-dimensional Fourier inversion 240 THE WEYL FUNCTIONAL CALCULUS 241 formula, the free variables x 1 ,..,, x, are replaced by self-adjoint operators A, ,..., A, . -
What Does a Lie Algebra Know About a Lie Group?
WHAT DOES A LIE ALGEBRA KNOW ABOUT A LIE GROUP? HOLLY MANDEL Abstract. We define Lie groups and Lie algebras and show how invariant vector fields on a Lie group form a Lie algebra. We prove that this corre- spondence respects natural maps and discuss conditions under which it is a bijection. Finally, we introduce the exponential map and use it to write the Lie group operation as a function on its Lie algebra. Contents 1. Introduction 1 2. Lie Groups and Lie Algebras 2 3. Invariant Vector Fields 3 4. Induced Homomorphisms 5 5. A General Exponential Map 8 6. The Campbell-Baker-Hausdorff Formula 9 Acknowledgments 10 References 10 1. Introduction Lie groups provide a mathematical description of many naturally-occuring sym- metries. Though they take a variety of shapes, Lie groups are closely linked to linear objects called Lie algebras. In fact, there is a direct correspondence between these two concepts: simply-connected Lie groups are isomorphic exactly when their Lie algebras are isomorphic, and every finite-dimensional real or complex Lie algebra occurs as the Lie algebra of a simply-connected Lie group. To put it another way, a simply-connected Lie group is completely characterized by the small collection n2(n−1) of scalars that determine its Lie bracket, no more than 2 numbers for an n-dimensional Lie group. In this paper, we introduce the basic Lie group-Lie algebra correspondence. We first define the concepts of a Lie group and a Lie algebra and demonstrate how a certain set of functions on a Lie group has a natural Lie algebra structure. -
Model Theory of Fields with Free Operators in Positive Characteristic
MODEL THEORY OF FIELDS WITH FREE OPERATORS IN POSITIVE CHARACTERISTIC OZLEM¨ BEYARSLAN♣, DANIEL MAX HOFFMANN♦, MOSHE KAMENSKY♥, AND PIOTR KOWALSKI♠ Abstract. We give algebraic conditions about a finite commutative algebra B over a field of positive characteristic, which are equivalent to the compan- ionability of the theory of fields with “B-operators” (i.e. the operators coming from homomorphisms into tensor products with B). We show that, in the most interesting case of a local B, these model companions admit quantifier elimination in the “smallest possible” language and they are strictly stable. We also describe the forking relation there. 1. Introduction The aim of this paper is to extend the results from [18] about model theory of “free operators” on fields from the case of characteristic zero to the case of arbitrary characteristics. Throughout the paper we fix a field k, and all algebras and rings considered in this paper are assumed to be commutative with unit. Let us quickly recall the set-up from [18]. For a fixed finite k-algebra B and a field extension k ⊆ K, a B-operator on K (called a D-ring (structure on K) in [18], where D(k)= B) is a k-algebra homomorphism K → K ⊗k B (for a more precise description, see Def. 2.2). For example, a map ∂ : K → K is a k-derivation if and only if the corresponding map 2 2 2 K ∋ x 7→ x + ∂(x)X + X ∈ K[X]/(X )= K ⊗k k[X]/(X ) is a B-operator for B = k[X]/(X2). It is proved in [18] that if char(k) = 0, then a model companion of the theory of B-operators exists and the properties of this model companion are analyzed in [18] as well. -
The (Homo)Morphism Concept: Didactic Transposition, Meta-Discourse and Thematisation Thomas Hausberger
The (homo)morphism concept: didactic transposition, meta-discourse and thematisation Thomas Hausberger To cite this version: Thomas Hausberger. The (homo)morphism concept: didactic transposition, meta-discourse and the- matisation. International Journal of Research in Undergraduate Mathematics Education, Springer, 2017, 3 (3), pp.417-443. 10.1007/s40753-017-0052-7. hal-01408419 HAL Id: hal-01408419 https://hal.archives-ouvertes.fr/hal-01408419 Submitted on 20 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Noname manuscript No. (will be inserted by the editor) The (homo)morphism concept: didactic transposition, meta-discourse and thematisation Thomas Hausberger Received: date / Accepted: date Abstract This article focuses on the didactic transposition of the homomor- phism concept and on the elaboration and evaluation of an activity dedicated to the teaching of this fundamental concept in Abstract Algebra. It does not restrict to Group Theory but on the contrary raises the issue of the teaching and learning of algebraic structuralism, thus bridging Group and Ring Theo- ries and highlighting the phenomenon of thematisation. Emphasis is made on epistemological analysis and its interaction with didactics. The rationale of the isomorphism and homomorphism concepts is discussed, in particular through a textbook analysis focusing on the meta-discourse that mathematicians offer to illuminate the concepts. -
Differential Central Simple Algebras and Picard–Vessiot
Differential Central Simple Algebras and Picard–Vessiot Representations Lourdes Juan Department of Mathematics Texas Tech University Lubbock TX 79409 Andy R. Magid Department of Mathematics University of Oklahoma Norman OK 73019 March 7, 2007 Abstract A differential central simple algebra, and in particular a differential matrix algebra, over a differential field K with constants C can be trivial- ized by a Picard–Vessiot (differential Galois) extension E. In the matrix algebra case, there is a correspondence between K algebras trivialized by E and representations of the Galois group of E over K in P GLn(C), which can be interpreted as cocyles equivalent up to coboundaries. 1 Introduction Let K be a differential field with algebraically closed characteristic zero field of constants C and derivation D = DK . By a differential central simple al- gebra (DCSA) over K we mean a pair (A, D) where A is a central simple K algebra and D is a derivation of A extending the derivation D of its center K. Given two such pairs (A1, D1) and (A2, D2), we can form the differential algebra (A1 ⊗ A2, D1 ⊗ D2), where the derivation D1 ⊗ D2 is given by D1 ⊗ 1 + 1 ⊗ D2. Morphisms of DCSA’s over K are K algebra homomorphisms preserving deriva- tions. We denote the isomorphism class of (A, D) by [A, D]. The above tensor product defines a monoid operation on the isomorphism classes (the identity being the class [K, DK ]), and hence we can form the corresponding universal diff group K0 Az(K). (A central simple algebra (CSA) over a field is a special case of Azumaya, or central separable, algebras over rings; Az is an abbre- viation for Azumaya.) The corresponding object for K when derivations are not considered is the familiar K0Az(K) as defined by Bass in [1, Chapter III]. -
The Holomorphic Functional Calculus Approach to Operator Semigroups
THE HOLOMORPHIC FUNCTIONAL CALCULUS APPROACH TO OPERATOR SEMIGROUPS CHARLES BATTY, MARKUS HAASE, AND JUNAID MUBEEN In honour of B´elaSz.-Nagy (29 July 1913 { 21 December 1998) on the occasion of his centenary Abstract. In this article we construct a holomorphic functional calculus for operators of half-plane type and show how key facts of semigroup theory (Hille- Yosida and Gomilko-Shi-Feng generation theorems, Trotter-Kato approxima- tion theorem, Euler approximation formula, Gearhart-Pr¨usstheorem) can be elegantly obtained in this framework. Then we discuss the notions of bounded H1-calculus and m-bounded calculus on half-planes and their relation to weak bounded variation conditions over vertical lines for powers of the resolvent. Finally we discuss the Hilbert space case, where semigroup generation is char- acterised by the operator having a strong m-bounded calculus on a half-plane. 1. Introduction The theory of strongly continuous semigroups is more than 60 years old, with the fundamental result of Hille and Yosida dating back to 1948. Several monographs and textbooks cover material which is now canonical, each of them having its own particular point of view. One may focus entirely on the semigroup, and consider the generator as a derived concept (as in [12]) or one may start with the generator and view the semigroup as the inverse Laplace transform of the resolvent (as in [2]). Right from the beginning, functional calculus methods played an important role in semigroup theory. Namely, given a C0-semigroup T = (T (t))t≥0 which is uni- formly bounded, say, one can form the averages Z 1 Tµ := T (s) µ(ds) (strong integral) 0 for µ 2 M(R+) a complex Radon measure of bounded variation on R+ = [0; 1). -
Hoo Functional Calculus of Second Order Elliptic Partial Differential Operators on LP Spaces
91 Hoo Functional Calculus of Second Order Elliptic Partial Differential Operators on LP Spaces Xuan Thinh Duong Abstract. Let L be a strongly elliptic partial differential operator of second order, with real coefficients on LP(n), 1 < p <"",with either Dirichlet, or Neumann, or "oblique" boundary conditions. Assume that n is an open, bounded domain with cz boWldary. By adding a oonstmt, if necessa_ry, we then establish an H., fnnctioMI. calculus which associates an operator m(L) to each bounded liolomorphic fooction m so that II m (L)II ~ M II m II.,., where M is a constmt independent of m. Under suitable asumpl.ions on L, we can also obtain a similar result in the case of Dirichlet boundary conditioos where n is a non-smooth domain. 1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 47A60, 42B15 , 35125 1. Introduction 1imd Notation We denote the sectors Se = { z e C I z = 0 or I arg z I $; 6 ) 0 S 9 = {z e ll::lz;!f;Oorlargzi<S} A linear operator L is of type ro in a Banach space X if L is closed, densely defined, G(L) is a subset of S00u{ "" } and for each S e (ro ,n:], there exists Ce < = such that ii (L-rl) "1 11 s; Ce I z 1-1 for all z ~ S ~· z:;<: 0. For 0 < !J. < x, denote H""(S ~) ={ f: S ~ ~ [I fanalytic and II fll~<-} 0 where II f II .. = sup { I f(z)l I z e S !!. } , • V(S ~) ={ f e H"" (S ~) i 3s>O, c 2:0 such that I f(z)i $; 1 ::~,:8 } • Let r be the contour defined by 92 -t exp(i8) for -- < t < 0 g(t) { t exp(i8) for Os:;t<+"" Assume that Lis of type ro, ro < 8 < :n:.