On Deterministic and Stochastic Models of Kleptoparasitism By

Total Page:16

File Type:pdf, Size:1020Kb

On Deterministic and Stochastic Models of Kleptoparasitism By On Deterministic and Stochastic Models of Kleptoparasitism By: M. Crowe, M. Fitzgerald, D. L. Remington, J. Rychtář Crowe, M., M. Fitzgerald, D.L. Remington, and J. Rychtář. 2009. On deterministic and stochastic models of kleptoparasitism. Journal of Interdisciplinary Mathematics 12:161-180 This is an Accepted Manuscript of an article published by Taylor & Francis Group in the Journal of Interdisciplinary Mathematics on May 28 2013 , available online at: http://www.tandfonline.com/10.1080/09720502.2009.10700620 . ***© Taylor & Francis & Taru Publications. Reprinted with permission. No further reproduction is authorized without written permission from Taylor & Francis. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document. *** Abstract: Kleptoparasitism, the stealing of food items, is a common biological phenomenon that has been studied mostly with the help of deterministic dynamics for infinite populations. The infinite population assumption takes the models far from the biological reality. In this paper we provide a review of the main theoretical works on kleptoparasitism and then focus on the stochastic dynamics of kleptoparasitic individuals in finite populations. We solve the dynamics analytically for populations of 2 and 3 individuals. With the help of numerical solution of the dynamics, we were able to conclude that the behavior of the uptake rate in the population is mostly determined by the uptake rates at populations of 2 and 3 individuals. If the individuals do better in a pair, then the uptake rate is a decreasing function of the population size. If the individuals do better in a triplet than in a pair, then the uptake rate is a zigzag function with lows for even population sizes and ups for uneven population sizes. Keywords: Kleptoparasitism | game theory | strategy | finite populations Article: 1. Introduction Kleptoparasitism is a behavior in which one organism steals food or other resources that another organism has caught, killed, or otherwise prepared for its own use. This process occurs across a great diversity of taxa, with recent observations from large carnivorous mammals [11], seabirds [13], scavenging bird guilds [3], insects [23], fish [14], lizards [12], snails [17] and spiders [27, 28, 1, 18]. When considering kleptoparasitism we must ask, why would a species evolve this behavior? From an evolutionary standpoint the answer to this is quite logical: in order for a behavior to evolve in a population through natural selection, the individuals who follow this behavior must enjoy greater reproductive success (higher fitness) compared to others in the population, and this trait must be passed on to their future offspring. Since not all species that seem capable of kleptoparasitism show it, and since there is strong variation between and within species in the extent to which this tactic is used, there is a need for a predictive theoretical basis to explain this variation. Hence there has been a considerable body of theory aimed a predicting the evolutionarily stable use of kleptoparasitism in different ecological circumstances. In this paper we first review seminal theoretical papers focused on intraspecific kleptoparasitism, and then study the stochastic model introduced in [29] with a special focus on small population sizes. Almost all models developed to date are deterministic, based on a certain system of ordinary differential equations (ODEs). Consequently, these models assume a very large population size. On the other hand, the majority of model organisms that exhibit kleptoparasitism are birds, mammals and fish, with relatively small populations that are likely to violate assumptions of infinite population size models. To our knowledge, only two papers to date [22] and [29] proposed stochastic models for finite and thus potentially small populations. Moreover, [22] deal with a model that differs from the mainstream deterministic models and [29] focuses on situation for medium population sizes. Hence, models that can accurately describe kleptoparasitism in smaller population sizes are needed. 2. Deterministic models of kleptoparasitism In this section, we provide an overview of the main models and summarize the major assumptions and conclusions of each. 2.1 Holmgren, 1995 One of the first models focused on intraspecific kleptoparasitism was developed in [16] and it used foraging interference as its basis. In this model, an individual’s behavior was deterministic, always fighting whenever an individual encountered another individual who had a food item. The model also had individuals encountered each other randomly but at a constant rate. Because individuals were distinct, it allowed for one to examine the effect of a given type of individuals who differed in their dominance over each other. But the model was very complex and only allowed for a numerical, but not analytical, solution. 2.2 Stillman et al., 1997 In [26], the authors extended the existing behavior-based foraging interference models to kleptoparasitism. In their model, an individual could engage in one of four behaviors: searching, handling, fighting or avoiding. Their model had three key components: • the response of an individual to a competitor was not fixed, • individuals did not move randomly, and • that time was not the only currency by introducing prey as another form of currency. The authors applied the model to data collected on foraging shorebirds including oystercatchers, curlew, and knots. They found the model to be robust, accurately predicting interference 85% of the time. The authors suggested that future models should incorporate the idea that an individual follows optimal decision rules when deciding their behavior. Two major limitations of this paper include the assumptions that prey items were identical, and that the handler always defended the prey. 2.3 Ruxton and Moody, 1997 In [25], authors took the advice given in [26] and used a functional response model to bridge the gap between an individual’s behavior and the evolution of a population. Their approach allowed for an analytical solution of the model, not just a numerical one. In this model, individuals in the population were engaged in one of the following behaviors: • searching for a food item, • handling a food item, ² winning a contest over a food item, • losing a contest over a food item. The fight over a food item resulted when a searcher found a handler. The model examines an individual’s behavior over varying densities of prey and competitors and when there is more than one patch of food. It predicts that the proportion of individuals wanting to forage in the best patch will always be greater than the proportion of prey available. It also predicts that an individual’s decision to forage in a given patch is dependent on two things: the proportion of food in that patch and the distribution of food between other patches in the area. Two major limitations of this model were that: (1) individuals have equal competitive ability, and (2) any time a forager encountered an individual handling a prey item, it would attempt kleptoparasitism. 2.4 Broom and Ruxton, 1998 In [9], authors take a different tack than [25]. They divide the individuals in the population into three mutually exclusive groups: • searching for a food item or for a handler, • handling a food item, • fighting over the food item. They assumed that individuals can adopt different strategies (to steal or not to steal) and they examined what strategies can be evolutionarily stable. An evolutionary stable strategy (ESS) is a strategy which if adopted by a population cannot be invaded by any competing alternative strategy, [20]. The situation can be described by the diagram on Figure 1. It should be noted that the model assumes that a food is a shell type (see Section 2.6), i.e., handled for an exponentially distributed time; and that the fights last for an exponentially distributed time. There are two main advantages to assuming the exponentially distributed time for handling. (1) One can use ODEs in the model, (2) The food item has always the same value until eaten. The latter is a consequence of the fact that the conditional expectation for an exponentially distributed random variable is the same as the original expectations. Once a handling starts, the expected time to finish handling is defined as Th . Provided the individual did not finish handling in the time t0 , then at time t0 , the expected time to finish handling is again Th . This means, in particular, that the individuals can fight over the food item as long and as many times as they choose, yet the winner always get the same food item as it would get by finding it by itself. Figure 1. Schematics of the deterministic dynamics model Using a functional response framework, the model predicts an individual’s behavior under varying prey densities. If food is plentiful, the model predicts that no kleptoparasitism will take place. Once the food density drops below a critical threshold, kleptoparasitism will occur whenever the opportunity arises. The model assumes that the behavior of an individual is deterministic; individuals either always steal or never steal, and which strategy they employ depends on either food availability or the time (length) of the encounter. The model predicts that individuals will cross a threshold level where stealing is optimal when fights are not costly and when food is hard to find. One peripheral assumption of the model, that a food item requires a specific handling time prior to receiving the energy reward, is further explored in subsequent models. The paper [9] is a foundation for a vast majority of subsequent papers. 2.5 Ruxton and Broom, 1999 The model in [24] examined the trade off between investing time (or energy) in finding food on their own or by kleptoparasitizing from others. Specifically, they examined the assumption that the time of a contest over a food item is fixed.
Recommended publications
  • The Spiders Diversity from Different Habitats Around Biosciences, Vallabh Vidyanagar
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 The Spiders Diversity from Different Habitats around Biosciences, Vallabh Vidyanagar B. M. Parmar Zoology Department, Sheth M.N. Science College, Patan, Gujarat-384 265 Abstract: A preliminary study of spiders was carried out in June 2012 to July 2013 from five sites around Biosciences, Vallabh Vidyanagar. As the results of collected spiders, total 90 species belonging to 66 genera spread over 24 families are recorded from five sites of Vallabhvidyanagar. The dominant family Araneidae had the highest number of species (18); followed by Salticidae (13), Thomisidae (10) and Tetragnathidae (7), Oxyopidae (5). Most of the other families had less than 5 species. This small region has detected more than 5% of Indian spiders. Keywords: Spiders, diversity, Anand, Gujarat 1. Introduction spiders with 12 species (13.33%) and irregular web builder 12 species (13.33%), Ambusher spiders with 11 (12.22%) Spiders of Gujarat from all regions have been studied earlier species each. The funnel web spiders with 7 species (7.77%) by several researchers; viz. Patel, B. H. [16], Patel, B. H. and and foliage hunter/ runner spiders with 3 species (3.33%). R.V.Vyas. [17], Manju Saliwal et. al., [6], Nikunj Bhatt, [10], Patel et. al., [18], Vachhani et. al., [26], Parmar Bharat Table 1: Sites Descriptions N. et. al., [15], Parmar, B.M. and K.B.Patel [12], Parmar, No. Site Geographic Habitat description B.M. et. al., [13], Parmar, B.M. and A.V.R.L.N.
    [Show full text]
  • Mai Po Nature Reserve Management Plan: 2019-2024
    Mai Po Nature Reserve Management Plan: 2019-2024 ©Anthony Sun June 2021 (Mid-term version) Prepared by WWF-Hong Kong Mai Po Nature Reserve Management Plan: 2019-2024 Page | 1 Table of Contents EXECUTIVE SUMMARY ................................................................................................................................................... 2 1. INTRODUCTION ..................................................................................................................................................... 7 1.1 Regional and Global Context ........................................................................................................................ 8 1.2 Local Biodiversity and Wise Use ................................................................................................................... 9 1.3 Geology and Geological History ................................................................................................................. 10 1.4 Hydrology ................................................................................................................................................... 10 1.5 Climate ....................................................................................................................................................... 10 1.6 Climate Change Impacts ............................................................................................................................. 11 1.7 Biodiversity ................................................................................................................................................
    [Show full text]
  • Bishop Museum Occasional Papers
    NUMBER 78, 55 pages 27 July 2004 BISHOP MUSEUM OCCASIONAL PAPERS RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 2003 PART 1: ARTICLES NEAL L. EVENHUIS AND LUCIUS G. ELDREDGE, EDITORS BISHOP MUSEUM PRESS HONOLULU C Printed on recycled paper Cover illustration: Hasarius adansoni (Auduoin), a nonindigenous jumping spider found in the Hawaiian Islands (modified from Williams, F.X., 1931, Handbook of the insects and other invertebrates of Hawaiian sugar cane fields). Bishop Museum Press has been publishing scholarly books on the nat- RESEARCH ural and cultural history of Hawaiÿi and the Pacific since 1892. The Bernice P. Bishop Museum Bulletin series (ISSN 0005-9439) was PUBLICATIONS OF begun in 1922 as a series of monographs presenting the results of research in many scientific fields throughout the Pacific. In 1987, the BISHOP MUSEUM Bulletin series was superceded by the Museum's five current mono- graphic series, issued irregularly: Bishop Museum Bulletins in Anthropology (ISSN 0893-3111) Bishop Museum Bulletins in Botany (ISSN 0893-3138) Bishop Museum Bulletins in Entomology (ISSN 0893-3146) Bishop Museum Bulletins in Zoology (ISSN 0893-312X) Bishop Museum Bulletins in Cultural and Environmental Studies (NEW) (ISSN 1548-9620) Bishop Museum Press also publishes Bishop Museum Occasional Papers (ISSN 0893-1348), a series of short papers describing original research in the natural and cultural sciences. To subscribe to any of the above series, or to purchase individual publi- cations, please write to: Bishop Museum Press, 1525 Bernice Street, Honolulu, Hawai‘i 96817-2704, USA. Phone: (808) 848-4135. Email: [email protected] Institutional libraries interested in exchang- ing publications may also contact the Bishop Museum Press for more information.
    [Show full text]
  • Spider Community Composition and Structure in a Shrub-Steppe Ecosystem: the Effects of Prey Availability and Shrub Architecture
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2012 Spider Community Composition and Structure In A Shrub-Steppe Ecosystem: The Effects of Prey Availability and Shrub Architecture Lori R. Spears Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Philosophy Commons Recommended Citation Spears, Lori R., "Spider Community Composition and Structure In A Shrub-Steppe Ecosystem: The Effects of Prey Availability and Shrub Architecture" (2012). All Graduate Theses and Dissertations. 1207. https://digitalcommons.usu.edu/etd/1207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. SPIDER COMMUNITY COMPOSITION AND STRUCTURE IN A SHRUB-STEPPE ECOSYSTEM: THE EFFECTS OF PREY AVAILABILITY AND SHRUB ARCHITECTURE by Lori R. Spears A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: ___________________________ ___________________________ James A. MacMahon Edward W. Evans Major Professor Committee Member ___________________________ ___________________________ S.K. Morgan Ernest Ethan P. White Committee Member Committee Member ___________________________ ___________________________ Eugene W. Schupp Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2012 ii Copyright © Lori R. Spears 2012 All Rights Reserved iii ABSTRACT Spider Community Composition and Structure in a Shrub-Steppe Ecosystem: The Effects of Prey Availability and Shrub Architecture by Lori R.
    [Show full text]
  • Journal Threatened
    Journal ofThreatened JoTT TBuilding evidenceaxa for conservation globally 10.11609/jott.2020.12.1.15091-15218 www.threatenedtaxa.org 26 January 2020 (Online & Print) Vol. 12 | No. 1 | 15091–15218 ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) PLATINUM OPEN ACCESS ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Publisher Host Wildlife Information Liaison Development Society Zoo Outreach Organization www.wild.zooreach.org www.zooreach.org No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: [email protected] EDITORS English Editors Mrs. Mira Bhojwani, Pune, India Founder & Chief Editor Dr. Fred Pluthero, Toronto, Canada Dr. Sanjay Molur Mr. P. Ilangovan, Chennai, India Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), 12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, Web Design India Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Deputy Chief Editor Typesetting Dr. Neelesh Dahanukar Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India Mr. Arul Jagadish, ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Managing Editor Mrs. Geetha, ZOO, Coimbatore India Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India Mr. Ravindran, ZOO, Coimbatore India Associate Editors Fundraising/Communications Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Mrs. Payal B. Molur, Coimbatore, India Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road, Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Editors/Reviewers Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Subject Editors 2016–2018 Fungi Editorial Board Ms. Sally Walker Dr. B. Shivaraju, Bengaluru, Karnataka, India Founder/Secretary, ZOO, Coimbatore, India Prof.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • A Pioneering Study on the Spider (Arachnida: Araneae
    International Journal of Science, Environment ISSN 2278-3687 (O) and Technology, Vol. 3, No 3, 2014, 872 – 880 A PIONEERING STUDY ON THE SPIDER (ARACHNIDA: ARANEAE) FAUNA OF KUMARAKOM BIRD SANCTUARY *Malamel Joseph Jobi1 and Padayatty Davis Samson2 1Research Fellow, Division of Arachnology, Department of Zoology, Sacred Heart College, Thevara, Kochi–682013 2Associate Professor, Department of Zoology, Sacred Heart College, Thevara, Kochi–682013 E-mails: [email protected] (*Correspondent Author) [email protected] Abstract: Kumarakom Bird Sanctuary, a lush patch of land is situated in the eastern coast of Lake Vembanad in Kottayam district of Kerala. Spiders were collected for seven months from November, 2007 to May, 2008; bimonthly. The specimens collected were analyzed to study the general population trend and the guild structure. The seventy four species in 51 genera belonging to 19 families clearly indicate a high diversity of spiders distributed in the study area. Of these, Salticidae was the dominant family with 18 species. The spiders collected during the study were classified into 7 ecological guilds based on their foraging mode. They are orb weavers (31%), stalkers (30%), Space web builders (14%), foliage runners (9%), ground runners (8%), ambushers (5%), and sheet web builders (3%). Keywords: Kumarakom, Spiders, Population, Dominance, Guild. INTRODUCTION Kumarakom Bird Sanctuary (KBS) (9o37’46.97’’N & 76o25’25.56’’E/ 44 ft alt) a green patch of land with mangrove forests criss-crossed with channels connected to the nearby backwater which is famous for its wetland vegetation and birdlife. This area that encompasses the Kerala Tourism Development Corporation (KTDC) Complex is 90.199 acres (36.4869 hectares) in extent and forms a part of the Baker Estate.
    [Show full text]
  • Journal of Threatened Taxa ISSN 0974-7907 (Online) ISSN 0974-7893 (Print)
    Journal of Threatened Taxa ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) 26 July 2019 (Online & Print) PLATINUM Vol. 11 | No. 9 | 14087–14246 OPEN 10.11609/jott.2019.11.9.14087-14246 ACCESS www.threatenedtaxa.org J Building TTevidence for conservation globally ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Publisher Host Wildlife Information Liaison Development Society Zoo Outreach Organization www.wild.zooreach.org www.zooreach.org No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: [email protected] EDITORS Typesetting Founder & Chief Editor Mr. Arul Jagadish, ZOO, Coimbatore, India Dr. Sanjay Molur Mrs. Radhika, ZOO, Coimbatore, India Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Mrs. Geetha, ZOO, Coimbatore India 12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, India Mr. Ravindran, ZOO, Coimbatore India Deputy Chief Editor Fundraising/Communications Dr. Neelesh Dahanukar Mrs. Payal B. Molur, Coimbatore, India Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India Editors/Reviewers Managing Editor Subject Editors 2016-2018 Mr. B. Ravichandran, WILD, Coimbatore, India Fungi Associate Editors Dr. B.A. Daniel, ZOO, Coimbatore, Tamil Nadu 641035, India Dr. B. Shivaraju, Bengaluru, Karnataka, India Ms. Priyanka Iyer, ZOO, Coimbatore, Tamil Nadu 641035, India Prof. Richard Kiprono Mibey, Vice Chancellor, Moi University, Eldoret, Kenya Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India Chamorshi Road, Gadchiroli, Maharashtra 442605, India Dr. V.B. Hosagoudar, Bilagi, Bagalkot, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Dr. Vatsavaya S.
    [Show full text]
  • Invertebrates Recorded from the Northern Marianas Islands Status 2002
    INVERTEBRATES RECORDED FROM THE NORTHERN MARIANAS ISLANDS STATUS 2002 O. BOURQUIN, CONSULTANT COLLECTIONS MANAGER : CNMI INVERTEBRATE COLLECTION CREES - NORTHERN MARIANAS COLLEGE, SAIPAN DECEMBER 2002 1 CONTENTS Page Introduction 3 Procedures 3 Problems and recommendations 5 Acknowledgements 11 Appendix 1 Policy and protocol for Commonwealth of the Northern Marianas (CNMI) invertebrate collection 12 Appendix 2 Taxa to be included in the CNMI collection 15 Appendix 3 Biodiversity of CNMI and its representation in CNMI collection 19 References 459 2 INTRODUCTION This report is based on work done under contract from March 1st 2001 to December 1st, 2002 on the CNMI Invertebrate collection, Northern Marianas College, Saipan. The collection was started by Dr. L.H. Hale during 1970, and was resurrected and expanded from 1979 due to the foresight and energy of Dr “Jack” Tenorio, who also contributed a great number of specimens. Originally the collection was intended as an insect collection to assist identification of insects affecting agriculture, horticulture and silviculture in the Northern Marianas, and to contribute to the ability of pupils and students to learn more about the subject. During 2001 the collection was expanded to include all terrestrial and freshwater invertebrates, and a collection management protocol was established (see Appendices 1 and 2). The collection was originally owned by the CNMI Department of Land and Natural Resources , and was on loan to the NMC Entomology Unit for curation. During 2001 it was transferred to the NMC by agreement with Dr. “Jack” Tenorio, who emphasized the need to maintain separate teaChing material as well as identified specimens in the main collection.
    [Show full text]
  • Su Yong Chao Dissertation.Ready to Submit0517
    A gang of thieves — evolution of cooperative kleptoparasitism in the subfamily Argyrodinae (Araneae: Theridiidae). By Yong-Chao Su University of Kansas, 2012 Submitted to the graduate degree program in the Department of Ecology and Evolutionary Biology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ________________________________ Chairperson : Deborah R. Smith ________________________________ Member : Rafe M. Brown ________________________________ Member : Bruce Cutler ________________________________ Member : Mark T. Holder ________________________________ Member : Paul A. Selden ________________________________ Member : Matthew Buechner Date Defended : May 14th , 2012 The Dissertation Committee for Yong-Chao Su certifies that this is the approved version of the following dissertation: A gang of thieves — evolution of cooperative kleptoparasitism in the subfamily Argyrodinae (Araneae: Theridiidae). ________________________________ Chairperson : Deborah R. Smith Date approved: May 16th, 2012 ii Abstract This is the first comprehensive study of group-living behavior in kleptoparasitic Argyrodinae, and the first species level molecular phylogenetic analysis of the Argyrodinae (Araneae: Theridiidae). I included four research chapters in this dissertation. In Chapter 2, I showed the first empirical study of cooperative kleptoparasitism in Argyrodes miniaceus. The results showed that, at least at the level of foraging, group- living behavior has adaptive
    [Show full text]
  • Spiders of Odisha: a Preliminary Checklist
    PLATINUM The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservaton globally by publishing peer-reviewed artcles online OPEN ACCESS every month at a reasonably rapid rate at www.threatenedtaxa.org. All artcles published in JoTT are registered under Creatve Commons Atributon 4.0 Internatonal License unless otherwise mentoned. JoTT allows allows unrestricted use, reproducton, and distributon of artcles in any medium by providing adequate credit to the author(s) and the source of publicaton. Journal of Threatened Taxa Building evidence for conservaton globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Communication Spiders of Odisha: a preliminary checklist Sudhir Ranjan Choudhury, Manju Siliwal & Sanjay Keshari Das 26 July 2019 | Vol. 11 | No. 9 | Pages: 14144–14157 DOI: 10.11609/jot.3786.11.9.14144-14157 For Focus, Scope, Aims, Policies, and Guidelines visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Artcle Submission Guidelines, visit htps://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientfc Misconduct, visit htps://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <[email protected]> The opinions expressed by the authors do not refect the views of the Journal of Threatened Taxa, Wildlife Informaton Liaison Development Society, Zoo Outreach Organizaton, or any of the partners. The journal, the publisher, the host, and the part- Publisher & Host ners are not responsible for the accuracy of the politcal boundaries shown in the maps by the authors. Partner Member Threatened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 July 2019 | 11(9): 14144–14157 Spiders of Odisha: a preliminary checklist Communication Sudhir Ranjan Choudhury 1 , Manju Siliwal 2 & Sanjay Keshari Das 3 ISSN 0974-7907 (Online) 1,3 ISSN 0974-7893 (Print) University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078, India.
    [Show full text]
  • Estimate of the Daily Catch of Prey by the Wasp Spider Argiope Bruennichi (Scopoli) in the Field: Original Data and Minireview
    Estimate of the daily catch of prey by the wasp spider Argiope bruennichi (Scopoli) in the field: Original data and minireview Martin nyffeler ABSTRACt Contrib. Nat. Hist. 12: 1007–1020. Prey capture by the large orb-weaving spider Argiope bruennichi (Scopoli) (aranei- dae) was investigated in uncut grassland (heavily infested with flowering weeds and shrubs) in the outskirts of Zurich, switzerland, on three consecutive days in early august (between 09:00 and 18:00 hours). A. bruennichi was found to be a predomin- antly diurnal predator of larger-sized grassland insects (Hymenoptera and ortho- ptera composing approx. 90% of the total prey biomass). on average, 38% of the encountered spiders were feeding. it is estimated that adult female A. bruennichi captured, on average, approx. 90 mg (fresh weight) prey web-1 day-1, which is the equivalent of the weight of a worker honey bee. My results were compared with the published estimates of other researchers. Keywords: Wasp spider, Argiope bruennichi, Araneidae, feeding frequency, prey cap- ture rate, uncut grassland, Zurich, Switzerland. introduction In recent years, orb-weaving spiders have become popular model systems to address questions in various fields of biology such as evolutionary biology, ecology, ethology, neurobiology, physiology, and even silk and venom chem- istry (e.g., Craig 1994; Elgar & al. 2000; Herberstein & al. 2005; Blackledge & Hayashi 2006; Schneider & al. 2005, 2006; Blamires & al. 2007, 2008; Brooks & al. 2008; Foellmer 2008), which makes it necessary to keep/breed these spiders under laboratory conditions (Zschokke & Herberstein 2005). "…Natural prey capture rates may provide helpful starting points when design- ing feeding regimes in the laboratory…" (Zschokke & Herberstein 2005).
    [Show full text]