NJ. Department of Environmental Protectipn Worker and Community
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Portable Oxygen Dispensing Device
CIKITUSI JOURNAL FOR MULTIDISCIPLINARY RESEARCH ISSN NO: 0975-6876 Portable Oxygen Dispensing Device Mr. Pritaj Yadav, Dept. of Computer Science and Engineering Rabindranath Tagore University, Bhopal Abstract A portable oxygen dispensing device, comprises a body which comprises of six chambers to generate oxygen, and a wearable mask attached to the body , a first chamber consists of a micro-capsule comprising a sodium superoxide, a second chamber is connected to the first chamber for storing solid carbon di-oxide, a third chamber is connected with the first chamber and second chamber, and contains a solution of solution of hydrogen peroxide and non-ionic surfactant such as ethoxylated aliphatic alcohol and a and a fourth chamber is connected with the first chamber and the third chamber, consists of a hydrogen peroxide and ethoxylated aliphatic alcohol to feed the first chamber, a fifth chamber consists of a zeolite for absorbing noxious gases and a sixth chamber consists of an anti-oxidant to prevent the body from harmful reactions [1], [2]. Key words: micro-capsule, chamber, non-ionic surfactant, hydrogen peroxide. Introduction In the present scenario, environment is threatened by air pollution due to addition of harmful substances, poisonous gases and smoke that are released in the surrounding air from industries which are working on chemicals such as nitrogen dioxide, sulphur dioxide etc. To live a healthy life, fresh air is very important that is free from various poisonous gasses and other pollutants. Many devices like respirators and rebreathers are used to provide oxygen by absorbing carbon di-oxide and protect the user from respiratory problems but these devices are limited by the rate at which they provide oxygen and the conditions under which they are used. -
United States Patent 19 11 Patent Number: 5,418,243 Angerbauer Et Al
USOO5418243A United States Patent 19 11 Patent Number: 5,418,243 Angerbauer et al. 45 Date of Patent: May 23, 1995 54 SUBSTITUTED 4-PHENYL-PYRIDONES 4,215,126 7/1980. Durant et al........................ 514/345 AND 4-PHENYL-3-ALKOXYPYRIDNES 4,684,477 8/1987 Sugimori et al. ... 546/290 4,916,239 4/1990 Treiber ................. ... 549/292 75 Inventors: Rolf Angerbauer; Peter Fey; Walter 4,988,711 1/1991 Angerbauer et al. ... 514/326 Hibsch, all of Wuppertal; Thomas 5,032,602 7/1991 Fey et al. ................. ... 54/345 Philipps, Cologne; Hilmar Bischoff, 5,064,841 11/1991 Angerbauer et al. ... 514/336 Wuppertal; Hans-Peter Krause, 5,138,090 8/1992 Fey et al. .............................. 560/59 Schwelm; Jörg Peterson-von Gehr, Bochum; Delf Schmidt, Wuppertal, FOREIGN PATENT DOCUMENTS all of Germany 0373423 6/1990 European Pat. Off. 73 Assignee: Bayer Aktiengesellschaft, OTHER PUBLICATIONS Leverkusen, Germany J. Med. Chem., 1990, vol. 33, pp. 52-60; “Synthesis and 21) Appl. No.: 166,775 Biological Activity of New HGM-CoA Reductase 22 Filed: Dec. 14, 1993 Inhibitors ... ', G. Beck. Primary Examiner-C. Warren Ivy (30) Foreign Application Priority Data Assistant Examiner-A. A. Owens Dec. 21, 1992 DE Germany ........................ 4243 278.2 Attorney, Agent, or Firm-Sprung, Horn, Kramer & Jun. 28, 1993 DE Germany ........................ 43 21421.5 Woods 511 Int. Cl...................... A61K 31/44; C07D 213/64 57 ABSTRACT 52 U.S. C. ...................................... 514/345; 546/24; 546/290; 514/89 Substituted 4-phenyl-pyridones and 4-phenyl-2-alkox 58 Field of Search .................. 546/290, 24; 514/345, ypyridines are prepared by reducing corresponding 514/89 4-phenyl-pyridone and 4-phenyl-2-alkoxypyridine de rivatives. -
Chapter 3.3 Special Provisions Applicable to Certain Articles Or Substances
Chapter 3.3 Special provisions applicable to certain articles or substances 3.3.1 When Column (6) of Table A of Chapter 3.2 indicates that a special provision is relevant to a substance or article, the meaning and requirements of that special provision are as set forth below. 16 Samples of new or existing explosive substances or articles may be carried as directed by the competent authorities (see 2.2.1.1.3) for purposes including: testing, classification, research and development, qual- ity control, or as a commercial sample. Explosive samples which are not wetted or desensitized shall be limited to 10 kg in small packages as specified by the competent authorities. Explosive samples which are wetted or desensitized shall be limited to 25 kg. 23 Even though this substance has a flammability hazard, it only exhibits such hazard under extreme fire conditions in confined areas. 32 This substance is not subject to the requirements of RID when in any other form. 37 This substance is not subject to the requirements of RID when coated. 38 This substance is not subject to the requirements of RID when it contains not more than 0.1% calcium carbide. 39 This substance is not subject to the requirements of RID when it contains less than 30% or not less than 90% silicon. 43 When offered for carriage as pesticides, these substances shall be carried under the relevant pesticide entry and in accordance with the relevant pesticide provisions (see 2.2.61.1.10 to 2.2.61.1.11.2). 45 Antimony sulphides and oxides which contain not more than 0.5% of arsenic calculated on the total mass are not subject to the requirements of RID. -
Design Guidelines for Carbon Dioxide Scrubbers I
"NCSCTECH MAN 4110-1-83 I (REVISION A) S00 TECHNICAL MANUAL tow DESIGN GUIDELINES FOR CARBON DIOXIDE SCRUBBERS I MAY 1983 REVISED JULY 1985 Prepared by M. L. NUCKOLS, A. PURER, G. A. DEASON I OF * Approved for public release; , J 1"73 distribution unlimited NAVAL COASTAL SYSTEMS CENTER PANAMA CITY, FLORIDA 32407 85. .U 15 (O SECURITY CLASSIFICATION OF TNIS PAGE (When Data Entered) R O DOCULMENTATIONkB PAGE READ INSTRUCTIONS REPORT DOCUMENTATION~ PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2a. GOVT AQCMCSION N (.SAECIP F.NTTSChALOG NUMBER "NCSC TECHMAN 4110-1-83 (Rev A) A, -NI ' 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED "Design Guidelines for Carbon Dioxide Scrubbers '" 6. PERFORMING ORG. REPORT N UMBER A' 7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(S) M. L. Nuckols, A. Purer, and G. A. Deason 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK AREA 6t WORK UNIT NUMBERS Naval Coastal PanaaLSystems 3407Project CenterCty, S0394, Task Area Panama City, FL 32407210,WrUnt2 22102, Work Unit 02 II. CONTROLLING OFFICE NAME AND ADDRE1S t2. REPORT 3ATE May 1983 Rev. July 1985 13, NUMBER OF PAGES 69 14- MONI TORING AGENCY NAME & ADDRESS(if different from Controtling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED ISa. OECL ASSI FICATION/DOWNGRADING _ __N•AEOULE 16. DISTRIBUTION STATEMENT (of thia Repott) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report) IS. SUPPLEMENTARY NOTES II. KEY WORDS (Continue on reverse side If noceassry and Identify by block number) Carbon Dioxide; Scrubbers; Absorption; Design; Life Support; Pressure; "Swimmer Diver; Environmental Effects; Diving., 20. -
Revealing the Chemical Mechanism of Nao2 Decomposition by in Situ Raman Imaging
Article Cite This: Chem. Mater. XXXX, XXX, XXX−XXX pubs.acs.org/cm Revealing the Chemical Mechanism of NaO2 Decomposition by In Situ Raman Imaging Hossein Yadegari, Mohammad Norouzi Banis, Xiaoting Lin, Alicia Koo, Ruying Li, and Xueliang Sun* Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada *S Supporting Information − − ABSTRACT: Sodium oxygen (Na O2) batteries exhibit a low charging overpotential owing to the reversible formation and decomposition of sodium superoxide (NaO2) on discharge and charge cycles. However, the cycling performance of the battery system is compromised by the side reactions occurring between the reactive NaO2 discharge product with the other components of the cell including the air electrode and the organic electrolyte. In the present study, we employ a Raman imaging technique to reveal the chemical mechanism behind the decomposition reaction of NaO2 in the presence of diglyme-based electrolyte. Our results illustrate the formation of oxalate-based side products resulting from prolonged · exposure of NaO2 to the cell electrolyte. Moreover, we show that Na2O2 2H2O is not the thermodynamically favorable side product for decomposition of NaO2 and may only be formed under the high-energy beam used by the measuring probe. The fi − ndings of this study help to better understand the underlying chemical reaction mechanisms of Na O2 cells. onsidered as the next generation of the electrical energy reactions involving metallic Na are partially accountable for the − 10 C storage systems, alkali metal-O2 (Li/Na O2) cells poor cycling performance of the batteries. Accordingly, provide the highest energy densities among all the available protection of metallic Na has been the subject of multiple − batteries.1 4 However, the poor cycling performance of alkali recent studies.11,12 metal−O batteries hinders their development. -
A Sheffield Hallam University Thesis
Hydroboration of some organometallic systems. TOWERS, Christopher John. Available from the Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/20447/ A Sheffield Hallam University thesis This thesis is protected by copyright which belongs to the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Please visit http://shura.shu.ac.uk/20447/ and http://shura.shu.ac.uk/information.html for further details about copyright and re-use permissions. Z S 2 S Z 0 8 0 Sheffield City Polytechnic Library REFERENCE ONLY R6297 ProQuest Number: 10701093 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10701093 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 HYDROBORATION OF SOME ORGANOMETALLIC SYSTEMS CHRISTOPHER JOHN TOWERS A thesis submitted to the Council for National Academic Awards in partial fulfilment of the requirement for Ph.D. -
Peroxides, Su Peroxides, and Ozonides of Alkali and Alkaline Earth Metals
Peroxides, Su peroxides, and Ozonides of Alkali and Alkaline Earth Metals Il'ya Ivanovich Vol'nov Head, Laboratory of Peroxide Chemistry N. S. Kurnakov Institute of General and Inorganic Chemistry Academy of Sciences of the USSR, Moscow Translated from Russian by J. Woroncow Life Sciences Group General Dynamics/Convair Division San Diego, California Edited by A. W. Petrocelli Chief, Chemistry and Chemical Engineering Section General Dynamics / Electric Boat Division Groton, Connecticut PLENUM PRESS· NEW YORK· 1966 Born in 1913, Il'ya Ivanovich Vol'nov is head of the laboratory of peroxide chemistry of the N. S. Kurnakov Institute of General and Inorganic Chem istry of the Academy of Sciences of the USSR in Moscow. He joined the Institute in 1939 and since 1949 he has authored more than 50 articles dealing with the chemistry of the inorganic peroxides, superoxides, and ozonides. Vol'nov served as editor for the proceedings of the 2nd All-Union Conference on the Chemistry of Peroxide Compounds, published by the Academy of Sciences in 1963. He was also editor of T. A. Dobrynina's monograph on Lithium Peroxide, published in 1964, and edited a biblio graphical index covering the world-wide literature for the period 1956 to 1962 on the chemistry of peroxide compounds ( other than hydrogen peroxide) published under the auspices of the library of the Academy of Sciences of the USSR. ISBN 978-1-4684-8254-6 ISBN 978-1-4684-8252-2 (eBook) DOl 10.10071978-1-4684-8252-2 Library of Congress Catalog Card Number 66-22125 The original Russian text, first published for the N. -
An Investigation Into the Synthesis and Characterisation of Metal
An Investigation into the Synthesis and Characterisation of Metal Borohydrides for Hydrogen Storage by Daniel Thomas Reed A thesis submitted to the University of Birmingham For the degree of Doctor of Philosophy School of Metallurgy and Materials College of Engineering and Physical Sciences University of Birmingham October 2009 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. SYNOPSIS With relatively high gravimetric and volumetric hydrogen storage capacities, borohydride compounds are being investigated for their potential use as hydrogen storage media. A study has been made into the mechanical milling of metal chlorides with sodium borohydride to try to form homoleptic borohydrides. Various characterisation techniques have been used to characterise the composition and microstructure of the samples, and to monitor in-situ the thermal decomposition processes. It was found that rather than homoleptic borohydrides (such as Zn(BH4)2 or Mg(BH4)2), complex borohydrides of the form AM2(BH4)5 and AM(BH4)3 (where A = Li or Na and M = Zn, Mg or Ca) tend to form. Mechanical milling of zinc chloride with sodium borohydride resulted in the formation of a covalent complex NaZn2(BH4)5. -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
HDMSP00030591 R
SUMMARY OF NFORMATION ON THE SUPEROXIDES OF SODIUM, POTASSIUM AND Na K "Compiled By : E. L . Reed Liquid Metals Information Center October 16, 1969 HDMSP00030591 r i OF CONTENT' Page In .- ociuction . Sc' :cteclilYReference Abstract ~hec :_ . PC ..3SSLMan hUD 'OhldC . - F . e - . I . Sodium Superoxide . Rate of Fo_ :_i_on of Superoxides . I . .ardour C;:wmical Reactions Involving Na, K, or NaK . b , ;H_ Documcntec . ~xi)losions Attributed to Potassium Superoxide 6 VIII. INK - Pipe-Thread - Sealant Explosions . 7 IX. Recommended Cleaning Procedures for K, Rb and C s Containers . 7 a Experimental Study of NaK Hazards . 8 XI. General Reactions of Na , K, and NaK with Organi c Compounds . 9 Resc rences . 1 0 .ca , A Ti ._uty-three Technical Report Index/ Abstract Sheets A~ - Preparation of Sodium Superoxid e A- - Excerpts from Sodium and Nat1 Engineering Handbook (Should not be further dissern i .iated ) A4 - p=rivate communication from MSA Research Corp ., Evans City, Pa. regarding potassium superoxides AS - Excerpts from Manual of Hazardous Chemical Reactions (1968 ) A6 - USAF C Bulletin No . 251 , "Explosions Involving Metallic K o r Ai - USAEC Bulletin No . 222, "NaK Reacts Explosively with Pipe Thread Sealant " AS - MSA Bulletin, "Cleaning Procedures for K , Rb, and Cs , : ntainers," (May i9 :2 ) A9 - Soc .Ur- Potassium Alloy . An Experimental Study of t-s Hazards (Feb. 1957 ) Ai0 - MSA Bulletin MD-65-1, "NaK and Potassium Technical Bulletin" All - Ethyl Corporation Bulletin, Reactions of Sodium with C :ganic Compounds" HDMSP00030592 INTRODUCTIO N 'ot Muni alloys of±so.lium and potassium (NaK) wil l e a <tu fa. -
Dgp/23-Wp/27 国 际 民 用 航 空 组 织 15/8/11 工 作 文 件
DGP/23-WP/27 国 际 民 用 航 空 组 织 15/8/11 工 作 文 件 危险物品专家组(DGP) 第二十三次会议 2011年10月11日至21日,蒙特利尔 议程项目3: 拟定对《危险物品安全航空运输技术细则补篇》(Doc 9284SU号文件)的修订建 议,以便纳入2013年—2014年版 对第3类至第9类危险物品信息的修改 (由 J. McLaughlin提交) 概要 本文件建议修改技术细则补篇中关于第3类至第9类危险物品的规定。 危险物品专家组的行动:请危险物品专家组考虑召集一个工作组,在危 险物品专家组第23次会议期间开会。工作组的目的是向危险物品专家组提供 一份关于处理补篇中第3类至第9类危险物品事项的最后提案,供其通过。危 险物品专家组第23次会议期间所作修改将可纳入下一版补篇当中。 1. INTRODUCTION 1.1 The DGP Working Group of the Whole Meeting in Abu Dhabi (DGP-WG/10, 7 to 11 November 2010) began efforts to review and update Classes 3-9 dangerous goods in the Supplement to the Technical Instructions during this bienniuum (DGP/23-WP/2, paragraph 3.3.3 refers). This work involved a systematic review of how similar materials and articles are applied in the Supplement. The time and input of those panel members who participated in the numerous emails and discussions on this issue has been greatly appreciated. 1.2 In order to complete this effort, it is proposed that a working group meeting take place during DGP/23. This working paper offers the following material intended to facilitate discussion: Appendix A ⎯ Classes 3-9 Dangerous Goods List: Sorted by division for discussion purposes only, the information within this table has been reviewed for consistency with the UN Model Regulations. Appendix B ⎯ General Packing Requirements: Taken from the Technical Instructions, applicable to Classes 3-9 dangerous goods. (24 页) C1102602 - 2 - Appendix C ⎯ Summary Sheet: For Classes 3-9 dangerous goods, an outline by classes and divisions of quantities limits assigned. This can assist the working group in discussions and in arriving at final determinations. This information is not proposed for inclusion in the Supplement, however, the DGP may wish to consider information similar to the comprehensive summary offered in DGP/23-WP/73 as a basis for information presented in the guiding principles. -
Beryllium Chloride Apparatus. Figure M
Durham E-Theses Organic and hydride chemistry of beryllium Bell, N.A How to cite: Bell, N.A (1964) Organic and hydride chemistry of beryllium, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8894/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk ORGANIC AND HYDRIDE CHEMISTRY OF BERYLLIUM oy N.A. BELL. A thesis.submitted for the Degree of Doctor of Philosophy in the University- of Durham. June 196^-. I Acknowledgements. The author wishes to express his sincere thanks to Professor G-.E. Coates, M.A., D.Sc., F.R.I.C., under whose direction this research was carried out, for his constant encouragement and extremely valuable advice. ' The author is also indebted to the Department of Scien• tific and Industrial Research for a Research StudiSntshrp. I I Memorandum. The work described in this thesis was carried out in the University of Durham between September 19b1 and May 196A-.