Observing Summary 2006 Statistics

Total Page:16

File Type:pdf, Size:1020Kb

Observing Summary 2006 Statistics OBSERVING SUMMARY 2006 NATIONAL RADIO ASTRONOMY OBSGRVATORY NATIONAL RADIO ASTRONOMY OBSERVATORY Observing Summary 2006 Statistics Cover Image: The long tidal tail of Hydrogen gas shown in this image was shaken loose by the dance ofM51, the Whirlpool galaxy, with its companion NGC 5195. Investigators: A.H. Rots, J.M. van der Hulst, P.E. Seiden, R.C. Kennicutt, P.C. Crane, A. Bosma, L. Athanassoula, & D.M. Elmegreen. Image composition by Juan Uson. Scientific Highlights two Observing Summary 2006 VIA Reveals "Smoking Gun" Supporting One Formation Model for Multiple-Star Systems - The VLA imaged L1551 IRS5, in the Taurus star- forming region about 450 light years from Earth. A 1998 VLA study with 13 of the 27 antennas had revealed two young stars, accompanied by dust disks, orbiting each other within L1551IRS5. Imaging at 43 GHz, using the now fully outfitted VLA together with the fiber optic link to the Pie Town VLBA antenna, showed that the two primary protostellar disks are aligned with each other with the larger surrounding disk in which the stars are embedded, and with the orbital motion of the binary star system. This provides strong support for the theoretical model in which the two protostars and their surrounding dusty disks fragment from a larger parent disk, rather than being formed independently and then captured into a bound orbit. GBT Discovers New Organic Molecules in Space - Ever more complex organic molecules continue to be discovered in interstellar space, yielding increased insight into the process which produces pre-biotic molecules and chemistry under extreme conditions. The molecule acetamide, the largest interstellar molecule with a peptide bond, was discovered using GBT observations over a wide frequency range - 9 to 47 GHz. Its presence in interstellar clouds suggests that it will be present when comets form in pre-planetary systems, although this molecule has not yet been reported in comets. The first negatively charged molecule in space CeH- was also discovered this year with the GBT. While about 130 neutral and 14 positively charged molecules are known to exist in interstellar space, this is the first negative molecule, or anion, to be found. Its size is larger than most neutral and all positively-charged molecules known in space which may increase its stability in the harsh cosmic environment. The chemical process which forms CeH- may be ubiquitous, suggesting that other molecular anions are also present. VLBA Reveals Closest Pair of Supermassive Black Holes - Multi-frequency observations of the radio galaxy 0402+379 with the VLBA revealed two compact, variable, flat-spectrum active nuclei within this elliptical galaxy at redshift z = 0.055. The two nuclei represent the closest pair of supermassive black holes yet found, separated by only 7.3 pc, more than two orders of magnitude closer than any previously discovered pair. With a combined mass of 1.5 x 108 solar masses, this pair, were they to collide, would produce strong gravitational radiation. It is estimated that they will collide in no less than about 1018 years, if the orbit decays only due to emission of gravitational radiation. GBT Observations of a Remarkable Anomalous X-ray Pulsar - Anomalous X-ray pulsars are neutron stars with X-ray luminosities exceeding the energy available from braking of the star's rotation, likely generated by decay of extremely strong magnetic fields. They normally show no radio emission. Three years ago the anomalous X-ray pulsar XTE J1810-197 increased its X-ray luminosity by a factor of 100 and, a year later, was detected as a radio source at the VLA. It has recently been detected as a radio pulsar at Parkes and its properties measured at a number of frequencies with the GBT. It is a remarkable object, with relatively strong pulses visible up to 42 GHz; its radio spectrum is quite flat over a range of 100 in frequency, and above 20 GHz it is brighter than every other known neutron star. Observations of single pulses with the GBT at 42 GHz show a complex pulse structure with features as narrow as 0.2 milliseconds. The radio emission mechanism is unknown. Scientific Highlights two Observing Summary 2006 VLBA Imaging and Polarimetry Survey Completed - The VLBA Imaging and Polarimetry Survey, a 5 GHz imaging survey of more than 1100 flat- spectrum extragalactic radio sources, was observed in 2006; during the 4th quarter, the general results of this survey were accepted for publication. Automatic data reduction and classification algorithms enabled routine imaging and analysis of these 1100 images so that the survey could be published within months of the completion of the observations. A primary goal of the survey was to generate baseline images with milli- arcsec resolution of the target active galactic nuclei, most of which are expected to be detected as gamma-ray sources by the Gamma-ray Large Area Space Telescope after its launch in late 2007. In addition, approximately 20 candidate binary black holes were identified and will be followed up with the VLBA. GBT Discovers A Gigantic Eruption from the Inner Disk of the Milky Way - Winds and supemovae from clusters of massive stars can affect galaxies on global scales, altering the abundances and energetics of the interstellar medium. GBT observations of HI in the inner part of the Milky Way have discovered a coherent structure which seems to be a huge superbubble reaching higher than 3 kpc from the Galactic plane. It has been detected in both Ha and HI and mapped in detailed in HI. The total hydrogen mass within the outflow is « 106 solar masses and its energy content is of order 1053 ergs. At the top of the structure there is a peculiar cap consisting of more than 104 solar masses of hydrogen which appears to have a motion which lags behind Galactic rotation. This object offers a nearby perspective on the superbubble phenomenon. VLA Provides Evidence that X-Ray Flashes May Represent a New Class of Cosmic Explosions - An X-Ray Flash (XRF) detected by the Swift satellite on 18 February 2006 was subsequently studied with the VLA. The radio observations revealed that the ejecta from this blast are quasi- spherical, as opposed to the beamed ejecta common to Gamma-Ray Bursts (GRBs). This, along with data from other wavelengths, suggests that XRFs represent a type of burst roughly 100 times less energetic than GRBs but up to ten times more common. The observers speculate that a magnetar central engine may distinguish the subenergetic events from cosmological GRBs, which are thought to be powered by black holes. VLBA Reveals the Earliest Structure Resolved in a Nova Explosion - VLBA observations of the recurrent nova RS Ophiuchi following its 12 February 2006 outburst revealed the earliest spatially resolved structure in any nova (or indeed supernova) explosion. The observations clearly showed that, contrary to earlier assumptions of spherical explosion symmetry, the ejection is jet-like, collimated by the central binary whose orientation on the sky can be determined. The observers believe the lessons learned from this object can also be applied to supernova explosions. Teste of General Relativity from Timing the Double Pulsar - GBT observations of the remarkable pulsar-pulsar binary system J0737-3039 provide the most precise timing of its orbital parameters and consequent tests of general relativity. The double pulsar has much higher orbital velocities and accelerations than previously known pulsars in binary systems, and is unique because both neutron stars have detectable radio pulses. Observed pulse arrival times are modified by relativistic effects, which can have different form in different theories of gravity. A series of GBT observations each covering several orbits of the double pulsar have set the strictest limits to date on the accuracy of General Relatively in the strong-field limit, with agreement between measurements and the theory to within an uncertainty of 0.05%. ■si Scientific Highlights two Observing Summary 2006 VLBA Detects Magnetic Collimation of Jets from an Evolved Star - VLBA polarization measurements of the AGB star W43A, which is rapidly undergoing evolution into a planetary nebula, have produced the first direct evidence for magnetic collimation of an astrophysical jet. The VLBA observations measured the polarization of 22 GHz emission from water masers at opposing tips of the jets. The magnetic field direction was shown to be almost perfectly perpendicular to the jet, consistent with a toroidal magnetic field. The magnetic pressure in these regions is seen to dominate the gas pressure by a factor of 2-200. This result supports recent theoretical models that use magnetically collimated jets to explain the shape of asymmetric planetary nebulae. Giant, Ring-Like Structures Discovered Around Galaxy Cluster - Researchers using the VLA discovered giant, ring-like, radio-emitting structures around the galaxy cluster Abell 3376. The structures are believed to trace the elusive shock waves of cosmological large-scale matter flows. This discovery, combined with X-ray observations of the cluster, indicates the probable merger of a large group or small cluster with the main body, supporting the hierarchical-clustering model for the origin of large-scale structure. In addition, the large radio-emitting structures may be acceleration sites where magnetic shock could boost cosmic-ray particles to energies of 1018 to 1019 eV. GBT Detection of Molecular Gas at a Redshift of >3.9 - A significant fraction of high-z galaxies are undergoing starbursts at enormous rates, consistent with the formation of large elliptical galaxies. The molecular gas reservoir for such events can be studied in the ground-state transitions of CO, redshifted into the frequency range of the GBT. Several galaxies have now been detected at redshifts between 3.9 and 4.7 and indicate that very large masses of molecular gas seem concentrated in a compact nuclear region and not a luminous, extended, low surface brightness component.
Recommended publications
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • Arxiv:0807.3747V2 [Astro-Ph] 13 Sep 2008 Prlsrcuebtltl,I N,Ogigsa Formation
    Draft version October 23, 2018 A Preprint typeset using LTEX style emulateapj v. 08/13/06 THE STELLAR POPULATIONS OF STRIPPED SPIRAL GALAXIES IN THE VIRGO CLUSTER Hugh H. Crowl1 and Jeffrey D.P. Kenney Department of Astronomy, Yale University, New Haven, CT 06520 Draft version October 23, 2018 ABSTRACT We present an analysis of the stellar populations of the gas-stripped outer disks of ten Virgo Clus- ter spiral galaxies, utilizing SparsePak integral field spectroscopy on the WIYN 3.5m telescope and GALEX UV photometry. The galaxies in our sample show evidence for being gas-stripped spiral galaxies, with star formation within a truncation radius, and a passive population beyond the trun- cation radius. We find that all of the galaxies with spatially truncated star formation have outer disk stellar populations consistent with star formation ending within the last 500 Myr. The synthe- sis of optical spectroscopy and GALEX observations demonstrate that star formation was relatively constant until the quenching time, after which the galaxies passively evolved. Large starbursts at the time of quenching are excluded for all galaxies, but there is evidence of a modest starburst in at least one galaxy. For approximately half of our galaxies, the timescales derived from our observations are consistent with galaxies being stripped in or near the cluster core, where simple ram-pressure estimates can explain the observed stripping. However, the other half of our sample galaxies were clearly stripped outside the cluster core. Such galaxies provide evidence that the intra-cluster medium is not static and smooth. For three of the most recently stripped galaxies, there are estimates for the stripping timescales from detailed gas stripping simulations.
    [Show full text]
  • Curriculum Vitae Avishay Gal-Yam
    January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award.
    [Show full text]
  • The Metallicity-Luminosity Relationship of Dwarf Irregular Galaxies
    A&A 399, 63–76 (2003) Astronomy DOI: 10.1051/0004-6361:20021748 & c ESO 2003 Astrophysics The metallicity-luminosity relationship of dwarf irregular galaxies II. A new approach A. M. Hidalgo-G´amez1,,F.J.S´anchez-Salcedo2, and K. Olofsson1 1 Astronomiska observatoriet, Box 515, 751 20 Uppsala, Sweden e-mail: [email protected], [email protected] 2 Instituto de Astronom´ıa-UNAM, Ciudad Universitaria, Apt. Postal 70 264, C.P. 04510, Mexico City, Mexico e-mail: [email protected] Received 21 June 2001 / Accepted 21 November 2002 Abstract. The nature of a possible correlation between metallicity and luminosity for dwarf irregular galaxies, including those with the highest luminosities, has been explored using simple chemical evolutionary models. Our models depend on a set of free parameters in order to include infall and outflows of gas and covering a broad variety of physical situations. Given a fixed set of parameters, a non-linear correlation between the oxygen abundance and the luminosity may be established. This would be the case if an effective self–regulating mechanism between the accretion of mass and the wind energized by the star formation could lead to the same parameters for all the dwarf irregular galaxies. In the case that these parameters were distributed in a random manner from galaxy to galaxy, a significant scatter in the metallicity–luminosity diagram is expected. Comparing with observations, we show that only variations of the stellar mass–to–light ratio are sufficient to explain the observed scattering and, therefore, the action of a mechanism of self–regulation cannot be ruled out.
    [Show full text]
  • Constraining Gas Motions in the Intra-Cluster Medium
    Noname manuscript No. (will be inserted by the editor) Constraining Gas Motions in the Intra-Cluster Medium Aurora Simionescu · John ZuHone · Irina Zhuravleva · Eugene Churazov · Massimo Gaspari · Daisuke Nagai · Norbert Werner · Elke Roediger · Rebecca Canning · Dominique Eckert · Liyi Gu · Frits Paerels Received: date / Accepted: date Aurora Simionescu SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands; E-mail: [email protected] Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan John ZuHone Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA Irina Zhuravleva Department of Astronomy & Astrophysics, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085, USA Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4085, USA Eugene Churazov Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching, Germany Space Research Institute (IKI), Profsoyuznaya 84/32, Moscow 117997, Russia Massimo Gaspari Einstein and Spitzer Fellow, Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544-1001, USA Daisuke Nagai Department of Physics, Yale University, PO Box 208101, New Haven, CT, USA Yale Center for Astronomy and Astrophysics, PO Box 208101, New Haven, CT, USA Norbert Werner MTA-E¨otv¨osLor´andUniversity Lend¨uletHot Universe Research Group, H-1117 P´azm´any P´eters´eta´ny1/A, Budapest, Hungary Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk Univer- sity, Kotl´arsk´a2, Brno, 61137, Czech Republic School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, arXiv:1902.00024v1 [astro-ph.CO] 31 Jan 2019 Japan 2 Aurora Simionescu et al.
    [Show full text]
  • Distances to PHANGS Galaxies: New Tip of the Red Giant Branch Measurements and Adopted Distances
    MNRAS 501, 3621–3639 (2021) doi:10.1093/mnras/staa3668 Advance Access publication 2020 November 25 Distances to PHANGS galaxies: New tip of the red giant branch measurements and adopted distances Gagandeep S. Anand ,1,2‹† Janice C. Lee,1 Schuyler D. Van Dyk ,1 Adam K. Leroy,3 Erik Rosolowsky ,4 Eva Schinnerer,5 Kirsten Larson,1 Ehsan Kourkchi,2 Kathryn Kreckel ,6 Downloaded from https://academic.oup.com/mnras/article/501/3/3621/6006291 by California Institute of Technology user on 25 January 2021 Fabian Scheuermann,6 Luca Rizzi,7 David Thilker ,8 R. Brent Tully,2 Frank Bigiel,9 Guillermo A. Blanc,10,11 Med´ eric´ Boquien,12 Rupali Chandar,13 Daniel Dale,14 Eric Emsellem,15,16 Sinan Deger,1 Simon C. O. Glover ,17 Kathryn Grasha ,18 Brent Groves,18,19 Ralf S. Klessen ,17,20 J. M. Diederik Kruijssen ,21 Miguel Querejeta,22 Patricia Sanchez-Bl´ azquez,´ 23 Andreas Schruba,24 Jordan Turner ,14 Leonardo Ubeda,25 Thomas G. Williams 5 and Brad Whitmore25 Affiliations are listed at the end of the paper Accepted 2020 November 20. Received 2020 November 13; in original form 2020 August 24 ABSTRACT PHANGS-HST is an ultraviolet-optical imaging survey of 38 spiral galaxies within ∼20 Mpc. Combined with the PHANGS- ALMA, PHANGS-MUSE surveys and other multiwavelength data, the data set will provide an unprecedented look into the connections between young stars, H II regions, and cold molecular gas in these nearby star-forming galaxies. Accurate distances are needed to transform measured observables into physical parameters (e.g.
    [Show full text]
  • On the Progenitor of V838 Monocerotis
    A&A 441, 1099–1109 (2005) Astronomy DOI: 10.1051/0004-6361:20042485 & c ESO 2005 Astrophysics On the progenitor of V838 Monocerotis R. Tylenda1,3,N.Soker2, and R. Szczerba1 1 Department for Astrophysics, N. Copernicus Astronomical Center, Rabianska´ 8, 87-100 Torun,´ Poland e-mail: [tylenda;szczerba]@ncac.torun.pl 2 Department of Physics, Technion-Israel Institute of Technology, 32000 Haifa, Israel e-mail: [email protected] 3 Centre for Astronomy, N. Copernicus University, 87-100 Torun,´ Poland Received 6 December 2004 / Accepted 9 June 2005 ABSTRACT We summarize and analyze the available observational data on the progenitor and the environment of V838 Mon. From the available photometric data for the progenitor of V838 Mon we exclude the possibility that the object before eruption was an evolved red giant star (AGB or RGB star). We find that most likely it was a main sequence or pre-main sequence star of ∼5−10 M. From the light echo structure and evolution we conclude that the reflecting dust is of interstellar nature rather than blown by V838 Mon in the past. We discuss the IRAS and CO data for interstellar medium observed near the position of V838 Mon. Several interstellar molecular regions have radial velocities similar to that of V838 Mon, so dust seen in the light echo might be related to one of them. Key words. stars: early-type – stars: binaries: close – stars: circumstellar matter – stars: individual: V838 Mon – ISM: reflection nebulae – ISM: structure 1. Introduction binary system which can be an important fact for identifying the outburst mechanism.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • Neutral Hydrogen in Dwarf Galaxies
    A&A 389, 29–41 (2002) Astronomy DOI: 10.1051/0004-6361:20020352 & c ESO 2002 Astrophysics Neutral hydrogen in dwarf galaxies I. The spatial distribution of HI J. M. Stil1,2 andF.P.Israel1 1 Sterrewacht Leiden, PO Box 9513, 2300 RA Leiden, The Netherlands 2 Physics Department, Queen’s University, Kingston ON K7L 4P1, Canada Received 13 December 2001 / Accepted 1 March 2002 Abstract. This paper is the first in a series presenting a sample of 30 late-type dwarf galaxies, observed with the Westerbork Synthesis Radio Telescope (WSRT) in the 21-cm line of neutral atomic hydrogen (HI). The sample itself, the HI content of and the HI distribution in the sample galaxies are briefly discussed. Four sample galaxies were also detected in the continuum. Key words. galaxies: irregular – galaxies: dwarf 1. Introduction those galaxies that are in the northern hemisphere, i.e. have declinations above 14◦ (soastobeobservablewith Galaxies come in a wide variety of shapes and sizes. The the WSRT). There is no single unambiguous definition larger galaxies are usually accompanied by a number of of a dwarf galaxy. Often, a galaxy is considered to be a smaller (dwarf) galaxies, although dwarf galaxies also oc- dwarf if its absolute luminosity corresponds to the light of cur by themselves. Late-type dwarf galaxies are generally no more than half a billion suns (M > −16), about one rich in neutral atomic hydrogen (HI) gas, usually more B per cent of the luminosity of a spiral galaxy such as the so than much larger late type spiral galaxies. Their opti- Milky Way or M 31.
    [Show full text]
  • Measuring the Scatter in the Cluster Optical Richness-Mass Relation with Machine Learning
    MEASURING THE SCATTER IN THE CLUSTER OPTICAL RICHNESS-MASS RELATION WITH MACHINE LEARNING A Dissertation by STEVEN ALVARO BOADA Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Casey J. Papovich Committee Members, Wolfgang Bangerth Louis Strigari Nicholas Suntzeff Head of Department, Peter McIntyre August 2016 Major Subject: Physics Copyright 2016 Steven Alvaro Boada ABSTRACT The distribution of massive clusters of galaxies depends strongly on the total cos- mic mass density, the mass variance, and the dark energy equation of state. As such, measures of galaxy clusters can provide constraints on these parameters and even test models of gravity, but only if observations of clusters can lead to accurate estimates of their total masses. Here, we carry out a study to investigate the ability of a blind spectroscopic survey to recover accurate galaxy cluster masses through their line- of-sight velocity dispersions (LOSVD) using probability based and machine learning methods. We focus on the Hobby Eberly Telescope Dark Energy Experiment (HET- DEX), which will employ new Visible Integral-Field Replicable Unit Spectrographs (VIRUS), over 420 degree2 on the sky with a 1/4.5 fill factor. VIRUS covers the blue/optical portion of the spectrum (3500 − 5500 A),˚ allowing surveys to measure redshifts for a large sample of galaxies out to z < 0:5 based on their absorption or emission (e.g., [O II], Mg II, Ne V) features. We use a detailed mock galaxy catalog from a semi-analytic model to simulate surveys observed with VIRUS, including: (1) Survey, a blind, HETDEX-like survey with an incomplete but uniform spectroscopic selection function; and (2) Targeted, a survey which targets clusters directly, ob- taining spectra of all galaxies in a VIRUS-sized field.
    [Show full text]
  • Istituto Di Radioastronomia Inaf
    ISTITUTO DI RADIOASTRONOMIA INAF STATUS REPORT October 2007 http://www.ira.inaf.it/ Chapter 1. STRUCTURE AND ORGANIZATION The Istituto di Radioastronomia (IRA) is presently the only INAF structure with divisions distributed over the national territory. Such an organization came about because IRA was originally a part of the National Council of Research (CNR), which imposed the first of its own reforms in 2001. The transition from CNR to INAF began in 2004 and was completed on January 1st , 2005. The Institute has its headquarters in Bologna in the CNR campus area, and two divisions in Firenze and Noto. The Medicina station belongs to the Bologna headquarters. A fourth division is foreseen in Cagliari at the Sardinia Radiotelescope site. The IRA operates 3 radio telescopes: the Northern Cross Radio Telescope (Medicina), and two 32-m dishes (Medicina and Noto), which are used primarily for Very Long Baseline Interferometry (VLBI) observations. The IRA leads the construction of the Sardinia Radio Telescope (SRT), a 64-m dish of new design. This is one of the INAF large projects nowadays. The aims of the Institute comprise: - the pursuit of excellence in many research areas ranging from observational radio astronomy, both galactic and extragalactic, to cosmology, to geodesy and Earth studies; - the design and management of the Italian radio astronomical facilities; - the design and fabrication of instrumentation operating in bands from radio to infrared and visible. Main activities of the various sites include: Bologna: The headquarters are responsible for the institute management and act as interface with the INAF central headquarters in Roma. Much of the astronomical research is done in Bologna, with major areas in cosmology, extragalactic astrophysics, star formation and geodesy.
    [Show full text]
  • NATIONAL ACADEMIES of SCIENCES and ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES of AMERICA
    NATIONAL ACADEMIES OF SCIENCES AND ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES OF AMERICA UNITED STATES NATIONAL COMMITTEE International Union of Radio Science National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI University of Colorado Boulder, Colorado U.S.A. United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE PROGRAM AND ABSTRACTS National Radio Science Meeting 4-8 January 2000 Sponsored by USNC/URSI NOTE: Programs and Abstracts of the USNC/URSI Meetings are available from: USNC/URSI National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, DC 20418 at $5 for 1983-1999 meetings. The full papers are not published in any collected format; requests for them should be addressed to the authors who may have them published on their own initiative. Please note that these meetings are national. They are not organized by the International Union, nor are the programs available from the International Secretariat. ii MEMBERSHIP United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE Chair: Gary Brown* Secretary & Chair-Elect: Umran S. !nan* Immediate Past Chair: Susan K. Avery* Members Representing Societies, Groups, and Institutes: American Astronomical Society Thomas G. Phillips American Geophysical Union Donald T. Farley American Meteorological Society vacant IEEE Antennas and Propagation Society Linda P.B. Katehi IEEE Geosciences and Remote Sensing Society Roger Lang IEEE Microwave Theory and Techniques Society Arthur A. Oliner Members-at-Large: Amalia Barrios J. Richard Fisher Melinda Picket-May Ronald Pogorzelski W. Ross Stone Richard Ziolkowski Chairs of the USNC/URSI Commissions: Commission A Moto Kanda Commission B Piergiorgio L. E. Uslenghi Commission C Alfred 0.
    [Show full text]