Mouse Brcc3 Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Brcc3 Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Brcc3 Knockout Project (CRISPR/Cas9) Objective: To create a Brcc3 knockout Mouse model (C57BL/6N) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Brcc3 gene (NCBI Reference Sequence: NM_001166457 ; Ensembl: ENSMUSG00000031201 ) is located on Mouse chromosome X. 11 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 10 (Transcript: ENSMUST00000033544). Exon 5~7 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 5 starts from about 36.2% of the coding region. Exon 5~7 covers 26.69% of the coding region. The size of effective KO region: ~2527 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 5 6 7 11 Legends Exon of mouse Brcc3 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 5 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of Exon 7 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Page 3 of 9 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(31.45% 629) | C(17.35% 347) | T(33.75% 675) | G(17.45% 349) Note: The 2000 bp section upstream of Exon 5 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(27.75% 555) | C(18.3% 366) | T(35.05% 701) | G(18.9% 378) Note: The 2000 bp section downstream of Exon 7 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chrX + 75433466 75435465 2000 browser details YourSeq 155 298 1655 2000 88.3% chr11 - 78944234 79221483 277250 browser details YourSeq 93 1379 1477 2000 97.0% chr4 - 40563644 40563742 99 browser details YourSeq 92 1179 1652 2000 76.7% chr14 + 50832482 50832844 363 browser details YourSeq 83 1540 1655 2000 89.7% chr19 + 15096424 15096543 120 browser details YourSeq 82 1540 1655 2000 90.2% chr13 - 107040645 107040763 119 browser details YourSeq 80 1540 1655 2000 86.4% chr6 - 129355255 129355375 121 browser details YourSeq 79 1540 1655 2000 86.4% chr3 - 58225056 58225177 122 browser details YourSeq 79 1534 1655 2000 83.8% chr8 + 16018738 16018862 125 browser details YourSeq 78 1179 1655 2000 71.5% chr9 - 117792831 117793164 334 browser details YourSeq 78 1540 1654 2000 88.3% chr10 + 5041919 5042036 118 browser details YourSeq 77 1540 1655 2000 91.4% chr16 - 37823720 37823838 119 browser details YourSeq 77 1540 1655 2000 86.0% chr4 + 106445608 106445728 121 browser details YourSeq 77 1540 1655 2000 88.7% chr15 + 13796820 13796937 118 browser details YourSeq 76 1540 1654 2000 87.3% chrX - 14495030 14495147 118 browser details YourSeq 76 1553 1655 2000 88.8% chr11 - 56821374 56821477 104 browser details YourSeq 75 1524 1655 2000 83.2% chr14 + 68669252 68669713 462 browser details YourSeq 74 1540 1655 2000 83.7% chr8 + 45675587 45675706 120 browser details YourSeq 74 1553 1656 2000 85.6% chr2 + 100861045 100861148 104 browser details YourSeq 74 1574 1683 2000 85.5% chr17 + 4485615 4485814 200 Note: The 2000 bp section upstream of Exon 5 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chrX + 75437993 75439992 2000 browser details YourSeq 383 60 636 2000 85.7% chr8 - 10488241 10488829 589 browser details YourSeq 378 60 640 2000 84.5% chr5 + 72628733 72629325 593 browser details YourSeq 346 57 630 2000 87.1% chr10 - 53457331 53457907 577 browser details YourSeq 345 60 538 2000 88.8% chr4 + 119398471 119398947 477 browser details YourSeq 343 60 638 2000 87.1% chr5 + 11947674 11948252 579 browser details YourSeq 342 61 589 2000 86.1% chr15 + 33503846 33504368 523 browser details YourSeq 340 60 637 2000 86.9% chr15 + 37089141 37089757 617 browser details YourSeq 338 60 637 2000 82.4% chr11 - 26660961 26661525 565 browser details YourSeq 333 57 630 2000 87.2% chr14 - 58790623 58791191 569 browser details YourSeq 332 60 630 2000 87.9% chr11 + 74710778 74711361 584 browser details YourSeq 326 57 637 2000 85.5% chr10 - 115789349 115789911 563 browser details YourSeq 321 63 637 2000 84.8% chr12 - 4218524 4219032 509 browser details YourSeq 316 60 620 2000 88.0% chr3 - 46676869 46677657 789 browser details YourSeq 313 60 526 2000 85.7% chr18 - 10896711 10897169 459 browser details YourSeq 312 60 572 2000 87.0% chr7 - 73711669 73712168 500 browser details YourSeq 303 60 526 2000 82.5% chr1 - 45363486 45363949 464 browser details YourSeq 301 65 589 2000 87.1% chr5 + 4338066 4338578 513 browser details YourSeq 298 60 567 2000 86.6% chr7 - 74963672 74964167 496 browser details YourSeq 298 52 637 2000 86.6% chr11 + 42778379 42779101 723 Note: The 2000 bp section downstream of Exon 7 is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 https://www.alphaknockout.com Gene and protein information: Brcc3 BRCA1/BRCA2-containing complex, subunit 3 [ Mus musculus (house mouse) ] Gene ID: 210766, updated on 24-Oct-2019 Gene summary Official Symbol Brcc3 provided by MGI Official Full Name BRCA1/BRCA2-containing complex, subunit 3 provided by MGI Primary source MGI:MGI:2389572 See related Ensembl:ENSMUSG00000031201 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as C6.1A Expression Broad expression in CNS E11.5 (RPKM 5.2), liver E14 (RPKM 5.1) and 24 other tissues See more Orthologs human all Genomic context Location: X; X A7.3 See Brcc3 in Genome Data Viewer Exon count: 12 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) X NC_000086.7 (75416628..75455702) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) X NC_000086.6 (72661967..72701040) Chromosome X - NC_000086.7 Page 6 of 9 https://www.alphaknockout.com Transcript information: This gene has 7 transcripts Gene: Brcc3 ENSMUSG00000031201 Description BRCA1/BRCA2-containing complex, subunit 3 [Source:MGI Symbol;Acc:MGI:2389572] Gene Synonyms C6.1A Location Chromosome X: 75,416,628-75,454,001 forward strand. GRCm38:CM001013.2 About this gene This gene has 7 transcripts (splice variants), 211 orthologues, 4 paralogues, is a member of 1 Ensembl protein family and is associated with 6 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Brcc3-201 ENSMUST00000033544.13 4310 291aa ENSMUSP00000033544.7 Protein coding CCDS41031 P46737 TSL:1 GENCODE basic APPRIS P2 Brcc3-202 ENSMUST00000114074.7 2473 291aa ENSMUSP00000109708.1 Protein coding CCDS41031 P46737 TSL:1 GENCODE basic APPRIS P2 Brcc3-203 ENSMUST00000118428.7 2093 247aa ENSMUSP00000114057.1 Protein coding - P46737 TSL:5 GENCODE basic APPRIS ALT2 Brcc3-205 ENSMUST00000133781.7 479 158aa ENSMUSP00000123031.1 Protein coding - A3KGA8 CDS 3' incomplete TSL:5 Brcc3-207 ENSMUST00000152228.2 473 50aa ENSMUSP00000127772.1 Protein coding - E9Q0P6 CDS 3' incomplete TSL:5 Brcc3-204 ENSMUST00000124321.1 2614 No protein - Retained intron - - TSL:1 Brcc3-206 ENSMUST00000151938.7 2521 No protein - Retained intron - - TSL:2 Page 7 of 9 https://www.alphaknockout.com 57.37 kb Forward strand 75.41Mb 75.42Mb 75.43Mb 75.44Mb 75.45Mb 75.46Mb Genes Brcc3-201 >protein coding (Comprehensive set... Brcc3-203 >protein coding Gm15385-201 >unprocessed pseudogene Brcc3-206 >retained intron Gm15379-201 >processed pseudogene Brcc3-202 >protein coding Brcc3-205 >protein coding Brcc3-207 >protein coding Brcc3-204 >retained intron Contigs AL671860.6 > Genes < Cmc4-201protein coding (Comprehensive set... < Cmc4-203protein coding < Cmc4-202protein coding < Mtcp1-201protein coding < Mtcp1-203lncRNA < Mtcp1-202protein coding < Mtcp1-204retained intron Regulatory Build 75.41Mb 75.42Mb 75.43Mb 75.44Mb 75.45Mb 75.46Mb Reverse strand 57.37 kb Regulation Legend CTCF Promoter Promoter Flank Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding RNA gene pseudogene processed transcript Page 8 of 9 https://www.alphaknockout.com Transcript: ENSMUST00000033544 37.37 kb Forward strand Brcc3-201 >protein coding ENSMUSP00000033... Low complexity (Seg) Coiled-coils (Ncoils) Superfamily SSF102712 SMART JAB1/MPN/MOV34 metalloenzyme domain Pfam JAB1/MPN/MOV34 metalloenzyme domain BRCC36, C-terminal helical domain PROSITE profiles MPN domain PANTHER PTHR10410 PTHR10410:SF20 Gene3D 3.40.140.10 CDD Brcc36 isopeptidase All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend synonymous variant Scale bar 0 40 80 120 160 200 240 291 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC.
Recommended publications
  • Supplementary Table S1. Upregulated Genes Differentially
    Supplementary Table S1. Upregulated genes differentially expressed in athletes (p < 0.05 and 1.3-fold change) Gene Symbol p Value Fold Change 221051_s_at NMRK2 0.01 2.38 236518_at CCDC183 0.00 2.05 218804_at ANO1 0.00 2.05 234675_x_at 0.01 2.02 207076_s_at ASS1 0.00 1.85 209135_at ASPH 0.02 1.81 228434_at BTNL9 0.03 1.81 229985_at BTNL9 0.01 1.79 215795_at MYH7B 0.01 1.78 217979_at TSPAN13 0.01 1.77 230992_at BTNL9 0.01 1.75 226884_at LRRN1 0.03 1.74 220039_s_at CDKAL1 0.01 1.73 236520_at 0.02 1.72 219895_at TMEM255A 0.04 1.72 201030_x_at LDHB 0.00 1.69 233824_at 0.00 1.69 232257_s_at 0.05 1.67 236359_at SCN4B 0.04 1.64 242868_at 0.00 1.63 1557286_at 0.01 1.63 202780_at OXCT1 0.01 1.63 1556542_a_at 0.04 1.63 209992_at PFKFB2 0.04 1.63 205247_at NOTCH4 0.01 1.62 1554182_at TRIM73///TRIM74 0.00 1.61 232892_at MIR1-1HG 0.02 1.61 204726_at CDH13 0.01 1.6 1561167_at 0.01 1.6 1565821_at 0.01 1.6 210169_at SEC14L5 0.01 1.6 236963_at 0.02 1.6 1552880_at SEC16B 0.02 1.6 235228_at CCDC85A 0.02 1.6 1568623_a_at SLC35E4 0.00 1.59 204844_at ENPEP 0.00 1.59 1552256_a_at SCARB1 0.02 1.59 1557283_a_at ZNF519 0.02 1.59 1557293_at LINC00969 0.03 1.59 231644_at 0.01 1.58 228115_at GAREM1 0.01 1.58 223687_s_at LY6K 0.02 1.58 231779_at IRAK2 0.03 1.58 243332_at LOC105379610 0.04 1.58 232118_at 0.01 1.57 203423_at RBP1 0.02 1.57 AMY1A///AMY1B///AMY1C///AMY2A///AMY2B// 208498_s_at 0.03 1.57 /AMYP1 237154_at LOC101930114 0.00 1.56 1559691_at 0.01 1.56 243481_at RHOJ 0.03 1.56 238834_at MYLK3 0.01 1.55 213438_at NFASC 0.02 1.55 242290_at TACC1 0.04 1.55 ANKRD20A1///ANKRD20A12P///ANKRD20A2///
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • BRCC3 Mutations in Myeloid Neoplasms
    Myeloid Malignancies SUPPLEMENTARY APPENDIX BRCC3 mutations in myeloid neoplasms Dayong Huang, 1,2 * Yasunobu Nagata, 3* Vera Grossmann, 4 Tomas Radivoyevitch, 5 Yusuke Okuno, 3 Genta Nagae, 6 Naoko Hosono, 2 Susanne Schnittger, 4 Masashi Sanada, 3 Bartlomiej Przychodzen, 2 Ayana Kon, 3 Chantana Polprasert, 2 Wenyi Shen, 2 Michael J. Clemente, 2 James G. Phillips, 2 Tamara Alpermann, 4 Kenichi Yoshida, 3 Niroshan Nadarajah, 4 7 Mikkael A. Sekeres, Kevin Oakley, 8 Nhu Nguyen, 8 Yuichi Shiraishi, 9 Yusuke Shiozawa, 3 Kenichi Chiba, 9 Hiroko Tanaka, 10 H. Phillip Koeffler, 11,12 Hans-Ulrich Klein, 13 Martin Dugas, 13 Hiroyuki Aburatani, 6 Satoru Miyano, 9,10 Claudia Haferlach, 4 Wolfgang Kern, 4 Torsten Haferlach, 4 Yang Du, 8 Seishi Ogawa, 3 and Hideki Makishima 2,3 1Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; 2Department of Translational Hema - tology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA; 3Department of Pathology and Tumor Biol - ogy, Kyoto University, Japan; 4Munich Leukemia Laboratory (MLL), Germany; 5Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA; 6Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Japan; 7Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, OH, USA; 8Department of Pediatrics, Uni - formed Services University of the Health Sciences, Bethesda, MD, USA; 9Laboratory of DNA Information Analysis, Human Genome Cen - ter, Institute of Medical Science, The University of Tokyo, Japan; 10 Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan; 11 Department of Hematology/Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; 12 Cancer Science Institute of Singapore, National University of Singapore; and 13 Institute of Medical Informatics, University of Mün - ster, Germany *DH and YN contributed equally to this work.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Fusion Transcripts and Transcribed Retrotransposed Loci Discovered Through Comprehensive Transcriptome Analysis Using Paired-End Ditags (Pets)
    Downloaded from genome.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Fusion transcripts and transcribed retrotransposed loci discovered through comprehensive transcriptome analysis using Paired-End diTags (PETs) Yijun Ruan,1,6 Hong Sain Ooi,2 Siew Woh Choo,2 Kuo Ping Chiu,2 Xiao Dong Zhao,1 K.G. Srinivasan,1 Fei Yao,1 Chiou Yu Choo,1 Jun Liu,1 Pramila Ariyaratne,2 Wilson G.W. Bin,2 Vladimir A. Kuznetsov,2 Atif Shahab,3 Wing-Kin Sung,2,4 Guillaume Bourque,2 Nallasivam Palanisamy,5 and Chia-Lin Wei1,6 1Genome Technology and Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore; 2Information and Mathematical Science Group, Genome Institute of Singapore, Singapore 138672, Singapore; 3Bioinformatics Institute, Singapore 138671, Singapore; 4School of Computing, National University of Singapore, Singapore 117543, Singapore; 5Cancer Biology Group, Genome Institute of Singapore, Singapore 138672, Singapore Identification of unconventional functional features such as fusion transcripts is a challenging task in the effort to annotate all functional DNA elements in the human genome. Paired-End diTag (PET) analysis possesses a unique capability to accurately and efficiently characterize the two ends of DNA fragments, which may have either normal or unusual compositions. This unique nature of PET analysis makes it an ideal tool for uncovering unconventional features residing in the human genome. Using the PET approach for comprehensive transcriptome analysis, we were able to identify fusion transcripts derived from genome rearrangements and actively expressed retrotransposed pseudogenes, which would be difficult to capture by other means. Here, we demonstrate this unique capability through the analysis of 865,000 individual transcripts in two types of cancer cells.
    [Show full text]
  • The Impact of the Ubiquitin System in the Pathogenesis of Squamous Cell Carcinomas
    cancers Review The Impact of the Ubiquitin System in the Pathogenesis of Squamous Cell Carcinomas Veronica Gatti 1, Francesca Bernassola 2, Claudio Talora 3, Gerry Melino 2 and Angelo Peschiaroli 1,* 1 National Research Council of Italy, Institute of Translational Pharmacology, 00133 Rome, Italy; [email protected] 2 Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; [email protected] (F.B.); [email protected] (G.M.) 3 Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; [email protected] * Correspondence: [email protected] Received: 20 May 2020; Accepted: 13 June 2020; Published: 16 June 2020 Abstract: The ubiquitin system is a dynamic regulatory pathway controlling the activity, subcellular localization and stability of a myriad of cellular proteins, which in turn affects cellular homeostasis through the regulation of a variety of signaling cascades. Aberrant activity of key components of the ubiquitin system has been functionally linked with numerous human diseases including the initiation and progression of human tumors. In this review, we will contextualize the importance of the two main components of the ubiquitin system, the E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs), in the etiology of squamous cell carcinomas (SCCs). We will discuss the signaling pathways regulated by these enzymes, emphasizing the genetic and molecular determinants underlying their deregulation in SCCs. Keywords: squamous cell carcinoma; E3 ubiquitin ligase; deubiquitinating enzymes; oncogenes; tumor suppressor 1. Introduction 1.1. Molecular Landscape of SCCs Squamous cell carcinomas (SCCs) are highly common and malignant solid cancers that arise from stratified and pseudo-stratified epithelia of the skin, and the aerodigestive and genitourinary tracts.
    [Show full text]
  • Functional Characterization of BRCC3 Mutations in Acute Myeloid Leukemia with T(8;21)(Q22;Q22.1)
    Leukemia (2020) 34:404–415 https://doi.org/10.1038/s41375-019-0578-6 ARTICLE Acute myeloid leukemia Functional characterization of BRCC3 mutations in acute myeloid leukemia with t(8;21)(q22;q22.1) 1 1 1 1 2 1 Tatjana Meyer ● Nikolaus Jahn ● Stefanie Lindner ● Linda Röhner ● Anna Dolnik ● Daniela Weber ● 1 1 1 1 3 1 Annika Scheffold ● Simon Köpff ● Peter Paschka ● Verena I. Gaidzik ● Dirk Heckl ● Sebastian Wiese ● 4 1 2 1 1 Benjamin L. Ebert ● Hartmut Döhner ● Lars Bullinger ● Konstanze Döhner ● Jan Krönke Received: 20 February 2019 / Revised: 28 June 2019 / Accepted: 29 July 2019 / Published online: 1 October 2019 © The Author(s) 2019. This article is published with open access Abstract BRCA1/BRCA2-containing complex 3 (BRCC3) is a Lysine 63-specific deubiquitinating enzyme (DUB) involved in inflammasome activity, interferon signaling, and DNA damage repair. Recurrent mutations in BRCC3 have been reported in myelodysplastic syndromes (MDS) but not in de novo AML. In one of our recent studies, we found BRCC3 mutations selectively in 9/191 (4.7%) cases with t(8;21)(q22;q22.1) AML but not in 160 cases of inv(16)(p13.1q22) AML. Clinically, AML patients with BRCC3 mutations had an excellent outcome with an event-free survival of 100%. Inactivation of BRCC3 1234567890();,: 1234567890();,: by CRISPR/Cas9 resulted in improved proliferation in t(8;21)(q22;q22.1) positive AML cell lines and together with expression of AML1-ETO induced unlimited self-renewal in mouse hematopoietic progenitor cells in vitro. Mutations in BRCC3 abrogated its deubiquitinating activity on IFNAR1 resulting in an impaired interferon response and led to diminished inflammasome activity.
    [Show full text]
  • Application of Microrna Database Mining in Biomarker Discovery and Identification of Therapeutic Targets for Complex Disease
    Article Application of microRNA Database Mining in Biomarker Discovery and Identification of Therapeutic Targets for Complex Disease Jennifer L. Major, Rushita A. Bagchi * and Julie Pires da Silva * Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] * Correspondence: [email protected] (R.A.B.); [email protected] (J.P.d.S.) Supplementary Tables Methods Protoc. 2021, 4, 5. https://doi.org/10.3390/mps4010005 www.mdpi.com/journal/mps Methods Protoc. 2021, 4, 5. https://doi.org/10.3390/mps4010005 2 of 25 Table 1. List of all hsa-miRs identified by Human microRNA Disease Database (HMDD; v3.2) analysis. hsa-miRs were identified using the term “genetics” and “circulating” as input in HMDD. Targets CAD hsa-miR-1 Targets IR injury hsa-miR-423 Targets Obesity hsa-miR-499 hsa-miR-146a Circulating Obesity Genetics CAD hsa-miR-423 hsa-miR-146a Circulating CAD hsa-miR-149 hsa-miR-499 Circulating IR Injury hsa-miR-146a Circulating Obesity hsa-miR-122 Genetics Stroke Circulating CAD hsa-miR-122 Circulating Stroke hsa-miR-122 Genetics Obesity Circulating Stroke hsa-miR-26b hsa-miR-17 hsa-miR-223 Targets CAD hsa-miR-340 hsa-miR-34a hsa-miR-92a hsa-miR-126 Circulating Obesity Targets IR injury hsa-miR-21 hsa-miR-423 hsa-miR-126 hsa-miR-143 Targets Obesity hsa-miR-21 hsa-miR-223 hsa-miR-34a hsa-miR-17 Targets CAD hsa-miR-223 hsa-miR-92a hsa-miR-126 Targets IR injury hsa-miR-155 hsa-miR-21 Circulating CAD hsa-miR-126 hsa-miR-145 hsa-miR-21 Targets Obesity hsa-mir-223 hsa-mir-499 hsa-mir-574 Targets IR injury hsa-mir-21 Circulating IR injury Targets Obesity hsa-mir-21 Targets CAD hsa-mir-22 hsa-mir-133a Targets IR injury hsa-mir-155 hsa-mir-21 Circulating Stroke hsa-mir-145 hsa-mir-146b Targets Obesity hsa-mir-21 hsa-mir-29b Methods Protoc.
    [Show full text]
  • Molecular Signatures Differentiate Immune States in Type 1 Diabetes Families
    Page 1 of 65 Diabetes Molecular signatures differentiate immune states in Type 1 diabetes families Yi-Guang Chen1, Susanne M. Cabrera1, Shuang Jia1, Mary L. Kaldunski1, Joanna Kramer1, Sami Cheong2, Rhonda Geoffrey1, Mark F. Roethle1, Jeffrey E. Woodliff3, Carla J. Greenbaum4, Xujing Wang5, and Martin J. Hessner1 1The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin Milwaukee, WI 53226, USA. 2The Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA. 3Flow Cytometry & Cell Separation Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA. 4Diabetes Research Program, Benaroya Research Institute, Seattle, WA, 98101, USA. 5Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, MD 20824, USA. Corresponding author: Martin J. Hessner, Ph.D., The Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA Tel: 011-1-414-955-4496; Fax: 011-1-414-955-6663; E-mail: [email protected]. Running title: Innate Inflammation in T1D Families Word count: 3999 Number of Tables: 1 Number of Figures: 7 1 For Peer Review Only Diabetes Publish Ahead of Print, published online April 23, 2014 Diabetes Page 2 of 65 ABSTRACT Mechanisms associated with Type 1 diabetes (T1D) development remain incompletely defined. Employing a sensitive array-based bioassay where patient plasma is used to induce transcriptional responses in healthy leukocytes, we previously reported disease-specific, partially IL-1 dependent, signatures associated with pre and recent onset (RO) T1D relative to unrelated healthy controls (uHC).
    [Show full text]
  • Developing Caspase-1 Biosensors to Monitor Inflammation in Vitro and in Vivo
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2020 Developing Caspase-1 Biosensors to Monitor Inflammation in Vitro and in Vivo Sarah Talley Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Immunology and Infectious Disease Commons Recommended Citation Talley, Sarah, "Developing Caspase-1 Biosensors to Monitor Inflammation in Vitro and in Vivo" (2020). Dissertations. 3827. https://ecommons.luc.edu/luc_diss/3827 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2020 Sarah Talley LOYOLA UNIVERSITY CHICAGO DEVELOPING CASPASE-1 BIOSENSORS TO MONITOR INFLAMMATION IN VITRO AND IN VIVO A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN INTEGRATIVE CELL BIOLOGY BY SARAH TALLEY CHICAGO, IL AUGUST 2020 TABLE OF CONTENTS LIST OF FIGURES v CHAPTER ONE: INTRODUCTION 1 CHAPTER TWO: REVIEW OF THE LITERATURE 5 Overview 5 Structure of Inflammasomes 6 Function of Inflammasomes 8 NLRP1 8 NLRP3 14 NLRC4 21 AIM2 24 PYRIN 28 Noncanonical Inflammasome Activation and Pyroptosis 31 Inflammatory Caspases 36 Caspase-1 36 Other Inflammatory Caspases 40 Biosensors and Novel Tools to Monitor
    [Show full text]
  • Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase
    BASIC RESEARCH www.jasn.org Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase † ‡ Yifei Zhong,* Edward Y. Chen, § Ruijie Liu,*¶ Peter Y. Chuang,* Sandeep K. Mallipattu,* ‡ ‡ † | ‡ Christopher M. Tan, § Neil R. Clark, § Yueyi Deng, Paul E. Klotman, Avi Ma’ayan, § and ‡ John Cijiang He* ¶ *Department of Medicine, Mount Sinai School of Medicine, New York, New York; †Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; ‡Department of Pharmacology and Systems Therapeutics and §Systems Biology Center New York, Mount Sinai School of Medicine, New York, New York; |Baylor College of Medicine, Houston, Texas; and ¶Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York ABSTRACT The Connectivity Map database contains microarray signatures of gene expression derived from approximately 6000 experiments that examined the effects of approximately 1300 single drugs on several human cancer cell lines. We used these data to prioritize pairs of drugs expected to reverse the changes in gene expression observed in the kidneys of a mouse model of HIV-associated nephropathy (Tg26 mice). We predicted that the combination of an angiotensin-converting enzyme (ACE) inhibitor and a histone deacetylase inhibitor would maximally reverse the disease-associated expression of genes in the kidneys of these mice. Testing the combination of these inhibitors in Tg26 mice revealed an additive renoprotective effect, as suggested by reduction of proteinuria, improvement of renal function, and attenuation of kidney injury. Furthermore, we observed the predicted treatment-associated changes in the expression of selected genes and pathway components. In summary, these data suggest that the combination of an ACE inhibitor and a histone deacetylase inhibitor could have therapeutic potential for various kidney diseases.
    [Show full text]
  • Dissertation Submitted to the Combined Faculties for The
    Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Meher Vinay Krishna Mohan Majety, M.Sc. in Biotechnology Born in Vijayawada, India Oral-examination: Development and application of a high throughput cell based assay to identify novel modulators of ERK1/2 activation and, Functional characterisation of the candidate Radial spokehead like (Rshl1) Referees: PD. Dr. Stefan Wiemann Prof. Dr. Ingrid Grummt To my Grandfather Contents SUMMARY............................................................................................................................... 1 ZUSAMENFASSUNG ............................................................................................................. 2 1 INTRODUCTION............................................................................................................ 3 1.1 The Mitogen Activated Protein Kinase pathway ................................................................................. 3 1.1.1 The Extra-cellular signal regulated Kinase (ERK) pathway and its mediators.................................... 4 1.1.2 Cytosolic substrates ............................................................................................................................. 6 1.1.3 Nuclear Targets of ERK1/2.................................................................................................................. 7 1.2 Regulation of ERK1/2 pathway
    [Show full text]