Direct Utilization of Elemental Sulfur for Novel Copolymeric Materials

Total Page:16

File Type:pdf, Size:1020Kb

Direct Utilization of Elemental Sulfur for Novel Copolymeric Materials Direct Utilization Of Elemental Sulfur For Novel Copolymeric Materials Item Type text; Electronic Dissertation Authors Griebel, Jared James Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 11/10/2021 08:01:14 Link to Item http://hdl.handle.net/10150/556819 1 DIRECT UTILIZATION OF ELEMENTAL SULFUR FOR NOVEL COPOLYMERIC MATERIALS by Jared J. Griebel ____________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN CHEMISTRY In the Graduate College THE UNIVERSITY OF ARIZONA 2015 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Jared Griebel, entitled, “Direct Utilization of Elemental Sulfur for Novel Copolymeric Materials” and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. ___________________________________________________________ Date: 4/22/2015 Jeffrey Pyun ___________________________________________________________ Date: 4/22/2015 Richard Glass ___________________________________________________________ Date: 4/22/2015 Douglas Loy ___________________________________________________________ Date: 4/22/2015 Neal Armstrong Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. ___________________________________________________________ Date: 4/22/2015 Dissertation Director: Jeffrey Pyun 3 STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of the requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: Jared J. Griebel 4 ACKNOWLEDGEMENTS The trials and tribulations I have experienced during the earning of this PhD have been many, but with the help of several amazing individuals I have succeed. However, I write these acknowledgements knowing that I cannot hope to properly thank everyone involved in my development as a chemist and as a person. I would first like to thank the members of my dissertation committee, Professor Richard Glass, Professor Douglas Loy, and Professor Neil Armstrong for taking the time to review this document. Each and every one of them has contributed greatly to my growth as a scientist and the combined knowledge the three of them possess is truly astounding and very inspiring for a young scientist. I would especially like to thank Professor Douglas Loy who graciously acted as a stand in PI during my first year as a graduate student, providing guidance and assistance as I acclimated to graduate school. I am truly indebted to my adviser, Professor Jeffrey Pyun, for being a true advocate in all of my scholarly pursuits; guiding me, coaching me, and sometimes correcting me to make for certain that I became a better scientist. No single person has toiled more in the past five years to ensure my success in the program and I am truly thankful for his commitment. Jeff was the entire reason I entered graduate school and attended the University of Arizona. He has given me so much, and I will continue to be indebted to him for every contribution I manage to make throughout my life. Throughout my time at University of Arizona I have had the opportunity to make several academic connections and collaborations all over the world. I am particularly indebted to Professor Robert Norwood and Soha Namnabat for their expertise in the field of Optical Science and their contributions to the work on developing novel polymeric materials for optics applications. To Dr. Michael Mackay and Ngoc Nguyen, who offered creative solutions for non- rheology inclined individuals and were extremely helpful in the fundamental thermomechanical and rheological characterization of our novel sulfur materials. And to Dr. Kookheon Char and Eui Tae Kim who were most helpful in colloid synthesis, copolymer formation with sulfur, and materials characterization. I have had the distinct pleasure of working with and mentoring undergraduate researchers John Ji, Kyle Arrington, Dominic Moronta, Laura Anderson, and high school student Rebecca Mulligan. Interacting with these eager individuals challenged me as a mentor and motivated me to be a better scientist. The assistance of Dominic Moronta and Laura Anderson was invaluable in aiding me in generating and characterizing the novel sulfur based materials. Both of these young scientists have bright futures and I look forward to seeing them excel in their fields. During my time at the University of Arizona, I have been surrounded by talented and motivated researchers within the Pyun group, and we have created an unusually collegial and friendly atmosphere in which to thrive. I would like to thank Dr. Bryan Korth, Dr. Pei Yuin Keng, Dr. Woo Jin Chung, Dr. Adam Simmonds, and Dr. Lawrence Hill who have each helped to train me as either an undergraduate or graduate student. I also greatly benefitted from discussions with Dr. Lawrence Hill, Philip Dirlam, Nicholas Pavlopoulos, and Tristan Kleine. We may be a small group but the ideas we generate and the research we conduct are world class 5 and no one compares to you four gentlemen. Thanks to Evan Jones and Stephanie Jenson for taking valuable time away from research to relax and have a cup of tea on a daily basis to really start the day off right. Thank you to my family and friends who were amazingly solid support throughout my time in graduate school. I cherished my visits to see them and the time I got to spend with them even if was for just a weekend. Because of them I had the drive to finish. Thank you especially to my parents, James and Julie, for the unconditional love and support and a helping hand, and sometimes wallet, when I really needed it most. Thank you to my in-laws Mark and Grace Svilar for the trust, love, and support that you provided Katherine and I, even from 2000 miles away. And thank you to my church family who have welcomed me in and made me feel so comfortable. They have given me a place to express myself and also to remove the burden that normally comes with the hustle and bustle of graduate school. And lastly, but most certainly not least I want to thank my beautiful, amazing, supportive wife, Katherine Griebel. I never thought you would move out to the desert to be with me but I am so happy you did. Life during graduate school has been hard but with you by my side it was bearable. Coming home to you at the end of the day made it all worthwhile. Your support means the world to me. I do everything I do and work as hard as I do for you, so that I can make you proud and we can start our lives together once I am finished. I look forward to our next milestone more than anything. I love you more than I can express in words. 6 TABLE OF CONTENTS ABSTRACT..................................................................................................................................10 CHAPTER 1: Polymerizations with Elemental Sulfur: A Novel Route to High Sulfur Content Polymer for Sustainability, Energy, and Defense......................................................17 1.1. Introduction..........................................................................................................17 1.2. Elemental Sulfur Production and Consumption...............................................19 1.3. High Sulfur-Content Materials...........................................................................22 1.3.1 Polymeric Sulfur........................................................................................22 1.3.2 Polysulfides................................................................................................25 1.3.2.1 Condensation Generated Copolymers............................................26 1.3.2.2 Free-Radically Generated Copolymers..........................................28 1.3.2.3 Ionically Generated Copolymers...................................................30 1.3.3 Sulfur and Sulfur-Composite Colloids.......................................................32 1.3.4 Novel Sulfur Allotropes and Macrocycles.................................................37 1.4. Challenges in Sulfur Chemistry and Processing...............................................40 1.5. Sulfur as an Unconventional Solvent and Reaction Medium..........................42 1.5.1 In-Situ Colloid Synthesis...........................................................................42
Recommended publications
  • Anaerobic Degradation of Methanethiol in a Process for Liquefied Petroleum Gas (LPG) Biodesulfurization
    Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization Promotoren Prof. dr. ir. A.J.H. Janssen Hoogleraar in de Biologische Gas- en waterreiniging Prof. dr. ir. A.J.M. Stams Persoonlijk hoogleraar bij het laboratorium voor Microbiologie Copromotor Prof. dr. ir. P.N.L. Lens Hoogleraar in de Milieubiotechnologie UNESCO-IHE, Delft Samenstelling promotiecommissie Prof. dr. ir. R.H. Wijffels Wageningen Universiteit, Nederland Dr. ir. G. Muyzer TU Delft, Nederland Dr. H.J.M. op den Camp Radboud Universiteit, Nijmegen, Nederland Prof. dr. ir. H. van Langenhove Universiteit Gent, België Dit onderzoek is uitgevoerd binnen de onderzoeksschool SENSE (Socio-Economic and Natural Sciences of the Environment) Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization R.C. van Leerdam Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. dr. M.J. Kropff in het openbaar te verdedigen op maandag 19 november 2007 des namiddags te vier uur in de Aula Van Leerdam, R.C., 2007. Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization. PhD-thesis Wageningen University, Wageningen, The Netherlands – with references – with summaries in English and Dutch ISBN: 978-90-8504-787-2 Abstract Due to increasingly stringent environmental legislation car fuels have to be desulfurized to levels below 10 ppm in order to minimize negative effects on the environment as sulfur-containing emissions contribute to acid deposition (‘acid rain’) and to reduce the amount of particulates formed during the burning of the fuel. Moreover, low sulfur specifications are also needed to lengthen the lifetime of car exhaust catalysts.
    [Show full text]
  • Inorganic Syntheses
    INORGANIC SYNTHESES Volume 27 .................... ................ Board of Directors JOHN P. FACKLER, JR. Texas A&M University BODlE E. DOUGLAS University of Pittsburgh SMITH L. HOLT, JR. Oklahoma State Uniuersity JAY H. WORRELL University of South Florida RUSSELL N. GRIMES University of Virginia ROBERT J. ANGELIC1 Iowa State University Future Volumes 28 ROBERT J. ANGELIC1 Iowa State University 29 RUSSELL N. GRIMES University of Virginia 30 LEONARD V. INTERRANTE Rensselaer Polytechnic Institute 31 ALLEN H. COWLEY University of Texas, Austin 32 MARCETTA Y. DARENSBOURG Texas A&M University International Associates MARTIN A. BENNETT Australian National University, Canberra FAUSTO CALDERAZZO University of Pisa E. 0. FISCHER Technical University. Munich JACK LEWIS Cambridge University LAMBERTO MALATESTA University of Milan RENE POILBLANC University of Toulouse HERBERT W. ROESKY University of Gottingen F. G. A. STONE University of Bristol GEOFFREY WILKINSON Imperial College of Science and Technology. London AKlO YAMAMOTO Tokyo Institute 01 Technology. Yokohama Editor-in-Chief ALVIN P. GINSBERG INORGANIC SYNTHESES Volume 27 A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore A NOTE TO THE READER This book has been electronically reproduced from digital idormation stored at John Wiley h Sons, Inc. We are phased that the use of this new technology will enable us to keep works of enduring scholarly value in print as long as there is a reasonable demand for them. The content of this book is identical to previous printings. Published by John Wiley & Sons, Inc. Copyright $? 1990 Inorganic Syntheses, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
    [Show full text]
  • Polymer Chemistry
    Polymer Chemistry View Article Online PAPER View Journal | View Issue Solution processible hyperbranched inverse- vulcanized polymers as new cathode materials Cite this: Polym. Chem., 2015, 6, 973 in Li–S batteries† Yangyang Wei,a Xiang Li,b Zhen Xu,a Haiyan Sun,a Yaochen Zheng,a,c Li Peng,a Zheng Liu,a Chao Gao*a and Mingxia Gao*b Soluble inverse-vulcanized hyperbranched polymers (SIVHPs) were synthesized via thiol–ene addition of polymeric sulfur (S8) radicals to 1,3-diisopropenylbenzene (DIB). Benefiting from their branched molecular architecture, SIVHPs presented excellent solubility in polar organic solvents with an ultrahigh concen- tration of 400 mg mL−1. After end-capping by sequential click chemistry of thiol–ene and Menschutkin quaternization reactions, we obtained water soluble SIVHPs for the first time. The sulfur-rich SIVHPs were employed as solution processible cathode-active materials for Li–S batteries, by facile fluid infiltration into conductive frameworks of graphene-based ultralight aerogels (GUAs). The SIVHPs-based cells showed high initial specific capacities of 1247.6 mA h g−1 with 400 charge–discharge cycles. The cells also demonstrated an excellent rate capability and a considerable depression of shuttle effect with stable cou- Received 24th September 2014, lombic efficiency of around 100%. The electrochemical performance of SIVHP in Li–S batteries over- Accepted 14th October 2014 whelmed the case of neat sulfur, due to the chemical fixation of sulfur. The combination of high DOI: 10.1039/c4py01055h solubility, structure flexibility, and superior electrochemical performance opens a door for the promising www.rsc.org/polymers application of SIVHPs.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,545,171 B2 Krafczyk Et Al
    USOO65451.71B2 (12) United States Patent (10) Patent No.: US 6,545,171 B2 Krafczyk et al. (45) Date of Patent: Apr. 8, 2003 (54) PROCESS FOR THE PRODUCTION OF (52) U.S. Cl. ....................................................... 556/427 YELLOW BIS(3-TRIALKOXYSILYALKYL) (58) Field of Search .......................................... 556/427 POLYSULEANES (56) References Cited (75) Inventors: Roland Krafczyk, Rheinfelden (DE); Ulrich Deschler, Sailauf (DE); Björn U.S. PATENT DOCUMENTS Treffeisen, Gundelfingen (DE) 6,140,524 A * 10/2000 Ichinohe et al. ............ 556/427 (73) Assignee: Degussa AG, Düsseldorf (DE) 6,384.256 B1 * 5/2002 Backer et al. .............. 556/427 * cited by examiner (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 Primary Examiner Paul F. Shaver U.S.C. 154(b) by 0 days. (74) Attorney, Agent, or Firm-Smith, Gambrell & Russell, LLP (21) Appl. No.: 10/188,033 (57) ABSTRACT (22) Filed: Jul. 3, 2002 Process for the production of yellow bis(3-trialkoxy-silyl (65) Prior Publication Data alkyl)polysulfanes with an iodine color index of s 10 mg iodine/100 ml, in which an organic acid is added to neutral US 2003/00231.06 A1 Jan. 30, 2003 chloroalkyltrialkoxysilane and then reacted with Sodium (30) Foreign Application Priority Data polysulfide (NPS) or sodium sulfide (NaS) and Sulfur or sodium polysulfide (NPS) and NaS in alcohol. Jul. 6, 2001 (DE) ... - - - - - - - - - - - - - - - - - - - - - - - - 101 32939 (51) Int. Cl." ............................... C07F 7/08; CO7F 7/18 9 Claims, No Drawings US 6,545,171 B2 1 2 PROCESS FOR THE PRODUCTION OF An object of the present invention therefore is to provide YELLOW BIS(3-TRIALKOXYSILYALKYL) an alternative process by means of which a yellow bis(3- POLYSULEANES trialkoxysilylalkyl)polysulfane can be obtained and in which the additional use of aggressive chlorosilanes can be dispensed with.
    [Show full text]
  • 1 Functional Asymmetry and Chemical Reactivity of Csor Family Persulfide
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.25.453692; this version posted July 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Functional asymmetry and chemical reactivity of CsoR family persulfide sensors Joseph N. Fakhoury1, Yifan Zhang1,2, Katherine A. Edmonds1, Mauro Bringas4, Justin L. Luebke1, Giovanni Gonzalez-Gutierrez2, Daiana A. Capdevila1,4,5 and David P. Giedroc1,2,5 †Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405- 7102, United States 2Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405 United States 3Graduate Program in Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405, United States 4Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina 5Correspondence to David P. Giedroc: [email protected] or Daiana A. Capdevila: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.25.453692; this version posted July 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract CstR is a persulfide-sensing member of the functionally diverse copper-sensitive operon repressor (CsoR) superfamily that regulates the bacterial response to hydrogen sulfide (H2S) and more oxidized reactive sulfur species (RSS) in Gram-positive pathogens.
    [Show full text]
  • On the Reactivity of Nanoparticulate Elemental Sulfur
    ON THE REACTIVITY OF NANOPARTICULATE ELEMENTAL SULFUR: EXPERIMENTATION AND FIELD OBSERVATIONS Fotios Christos Kafantaris Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Earth Sciences, Indiana University December 2017 ii Accepted by the Graduate Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee ___________________________ Gregory K. Druschel, PhD, Chair ___________________________ Kevin Mandernack, PhD ___________________________ William P. Gilhooly III, PhD ___________________________ Gabriel Filippelli, PhD ___________________________ Steven E. Lacey, PhD October 2, 2017 ___________________________ Brandy M. Toner, PhD iii © 2017 Fotios Christos Kafantaris iv DEDICATION I would like to dedicate this work to three women. The first one is the Most Holy Theotokos and Ever-Virgin Mary, the most precious individual the human race has and will ever have, the Bridge from earth to Heaven and the Gate to Paradise. Through Her intercessions to the Holy Trinity I am still alive and safe. The second woman is my mother, Eleni, who is the angel-on-earth that protects, nourishes, teaches, provides, inspires and guides me in life. Words would be poor to attempt to describe her and her virtues in an accurate manner. My mother is the main contributor of what I have become so far in life. The third woman is my σύζυγος (spouse) Diana, who has given me life, as well as meaning for life. Diana is the main contributor of what I will hopefully do in life from this point onward, and through her help I will hopefully manage to be with the other two forever.
    [Show full text]
  • Metabolism of Hydrogen Sulfide (H2S) and Production of Reactive Sulfur Species (RSS) by Superoxide Dismutase
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IUPUIScholarWorks Redox Biology 15 (2018) 74–85 Contents lists available at ScienceDirect Redox Biology journal homepage: www.elsevier.com/locate/redox Metabolism of hydrogen sulfide (H2S) and Production of Reactive Sulfur T Species (RSS) by superoxide dismutase ⁎ Kenneth R. Olsona, , Yan Gaoa, Faihaan Arifa, Kanika Aroraa, Shivali Patela, Eric. R. DeLeona,b, Thomas R. Suttonc,d, Martin Feelischc,d, Miriam M. Cortese-Krotte, Karl D. Straubf,g a Indiana University School of Medicine - South Bend Center, South Bend, IN 46617, USA b University of Notre Dame, Notre Dame, IN 46556, USA c NIHR Southampton Biomedical Research Center, University of Southampton, Southampton, General Hospital, Southampton SO16 6YD, UK d Clinical & Experimental Sciences, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK e Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology,Medical Faculty, Heinrich Heine University of Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany f Central Arkansas Veteran's Healthcare System, Little Rock, AR 72205 USA g Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202 USA ARTICLE INFO ABSTRACT • •- Keywords: Reactive sulfur species (RSS) such as H2S, HS ,H2Sn,(n=2–7) and HS2 are chemically similar to H2O and the • •- Antioxidants reactive oxygen species (ROS) HO ,H2O2,O2 and act on common biological effectors. RSS were present in Oxidants evolution long before ROS, and because both are metabolized by catalase it has been suggested that “anti- Redox oxidant” enzymes originally evolved to regulate RSS and may continue to do so today.
    [Show full text]
  • Thiosulfoxide (Sulfane) Sulfur: New Chemistry and New Regulatory Roles in Biology
    Molecules 2014, 19, 12789-12813; doi:10.3390/molecules190812789 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Thiosulfoxide (Sulfane) Sulfur: New Chemistry and New Regulatory Roles in Biology John I. Toohey 1,* and Arthur J. L. Cooper 2 1 Cytoregulation Research, Elgin, ON K0G1E0, Canada 2 Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 8 July 2014; in revised form: 11 August 2014/ Accepted: 12 August 2014/ Published: 21 August 2014 Abstract: The understanding of sulfur bonding is undergoing change. Old theories on hypervalency of sulfur and the nature of the chalcogen-chalcogen bond are now questioned. At the same time, there is a rapidly expanding literature on the effects of sulfur in regulating biological systems. The two fields are inter-related because the new understanding of the thiosulfoxide bond helps to explain the newfound roles of sulfur in biology. This review examines the nature of thiosulfoxide (sulfane, S0) sulfur, the history of its regulatory role, its generation in biological systems, and its functions in cells. The functions include synthesis of cofactors (molybdenum cofactor, iron-sulfur clusters), sulfuration of tRNA, modulation of enzyme activities, and regulating the redox environment by several mechanisms (including the enhancement of the reductive capacity of glutathione). A brief review of the analogous form of selenium suggests that the toxicity of selenium may be due to over-reduction caused by the powerful reductive activity of glutathione perselenide. Keywords: cystamine; cystathionine γ-lyase (γ-cystathionase); garlic; glutathione persulfide; hydrogen sulfide; mercaptoethanol; perseleno selenium; persulfide; sulfane sulfur; thioglycerol Molecules 2014, 19 12790 1.
    [Show full text]
  • Alternative Routes to Methyl Mercaptan from C1-Compounds
    Fakultät für Chemie, Lehrstuhl für Technische Chemie 2 Alternative routes to methyl mercaptan from C1-compounds Christoph Rudolf Erwin Kaufmann Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademisches Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. K.-O. Hinrichsen Prüfer der Dissertation: 1. Univ.-Prof. Dr. J. A. Lercher 2. Univ.-Prof. Dr. K. Köhler Die Dissertation wurde am 18.09.2015 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 12.11.2015 angenommen. Fortunato l’uom che prende Ogni cosa pel buon verso E tra i casi e le vicende Da ragion guidar si fà. Quel che suole altrui far piangere Fia per lui cagion di riso E del mondo in mezzo i turbini Bella calma troverà. (Glücklich preis ich, wer erfasset alles von der rechten Seite, der bei Stürmen niemals erblasset, wählt Vernunft als Führerin. Was im Leben andre weinen macht, ist für Ihn ein Grund zum Lachen, drohn Gefahren noch so fürchterlich, wahrt er seinen heitren Sinn.) Lorenzo da Ponte, Cosi fan tutte Acknowledgements First of all I would like to thank Johannes for giving me the opportunity to work on this interesting and challenging topic. Thank you for your trust in me, your guidance, patience and fruitful discussions. Thank you also for the opportunity to visit international conferences (Weimar, Milan). Next I want to thank Oliver. Thank you for your help with the publications and for proofreading this thesis. I am very grateful for your continuous support, be it motivational or sharing your expertise.
    [Show full text]
  • Open GYK Dissertation Final.Pdf
    The Pennsylvania State University The Graduate School College of Agricultural Sciences REACTION MECHANISMS OF TRANSITION METALS WITH HYDROGEN SULFIDE AND THIOLS IN WINE A Dissertation in Food Science by Gal Y. Kreitman 2016 Gal Y. Kreitman Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2016 The dissertation of Gal Y. Kreitman was reviewed and approved* by the following: Ryan J. Elias Associate Professor of Food Science Dissertation Advisor Chair of Committee Joshua D. Lambert Associate Professor of Food Science John N. Coupland Professor of Food Science Michela Centinari Assistant Professor of Horticulture David W. Jeffery Senior Lecturer in Wine Science Special Member John C. Danilewicz Special Signatory Robert F. Roberts Professor of Food Science Head of the Department of Food Science *Signatures are on file in the Graduate School ii ABSTRACT Sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production. These odors are a serious quality issue in wine and may result in consumer rejection. Therefore, sulfidic off-odors are generally controlled prior to bottling, and are frequently removed by the process of Cu(II) fining – a process that remains poorly understood. Cu(II) is effective at binding with sulfhydryl functionalities and forming nonvolatile complexes thereby removing aroma associated with the compound. However, this technique leaves residual copper in the wine which catalyzes non-enzymatic wine oxidations. Furthermore, elevated copper concentrations are usually associated with increased sulfidic off-odors under anaerobic aging conditions. In this work, I elucidated the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds under wine-like conditions.
    [Show full text]
  • 9 ~Thesis Supervisor
    MOLECULAR STRUCTURE AND SPFCTROSCOPY OF MINOR CHEMICAL COMPOUNDS IN THE ATMOSPHERES OF JUPITER AND VENUS by IRA ROBERT PINES A. B. (Cornell University, 1969) A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Massachusetts Institute of Technology Cambridge, Massachusetts August, 1971 Signature of author r. ... ... Department of E rth and Plan tary ciences Certified by. .... - . - .. A ,,9 ~Thesis Supervisor Accepted by . ... Chairman, Departmental Committee on ulti[F4Q-k A* a *a a Graduate Students MOLECULAR STRUCTURE AND SPECTROSCOPY OF MINOR CHEMICAL COMPOUNDS IN THE ATMOSPHERES OF JUPITER AND VENUS by IRA ROBERT PINES A thesis submitted to the Department of Earth and Planetary Sciences, August, 1971 in partial fulfillment of the requirements for the degree of Master of Science. Abstract Studies of the molecular structure and spectroscopy of various minor chemical constituents in the atmospheres of Jupiter and Venus. Molecular orbital calculations have been carried out upon CO 3 and ClOO using the INDO/CNDO method in an attempt to investigate their chemical stability as intermediates in the photolysis of CO 2 and photo- dissociation of HCl respectively. The molecular structure and spectros- copy of sulfur chains SN, N=2, 3 .. 8, has been investigated by means of U. V. and visible absorption spectroscopy and CNDO molecular orbital calculations. A new method of the preparation of ammonium polysulfides based upon the complexing power of large cations has been presented and also ESR spectra has been recorded demonstrating that ammonium polysulfide in various solvents is a free radical. The various red to brown colorations of Jupiter are attributed to a photolysis of H2 5 producing polysulfide like compounds.
    [Show full text]
  • Recent Advances on the Polymerization of Elemental Sulphur, Inverse Vulcanization and Methods to Functional Chalcogenide Hybrid Inorganic/Organic Polymers (Chips)
    Polymer Chemistry Recent Advances on the Polymerization of Elemental Sulphur, Inverse Vulcanization and Methods to Functional Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs) Journal: Polymer Chemistry Manuscript ID PY-REV-05-2019-000636.R1 Article Type: Review Article Date Submitted by the 11-Jun-2019 Author: Complete List of Authors: Zhang, Yueyan; University of Arizona, Chemistry & Biochemistry Glass, Richard; The University of Arizona, Department of Chemistry and Biochemistry Char, Kookheon; Seoul National University, School of Chemical and Biological Engineering Pyun, Jeff; The University of Arizona, Chemistry Page 1 of 26 PleasePolymer do not Chemistryadjust margins REVIEW Recent Advances on the Polymerization of Elemental Sulphur, In- verse Vulcanization and Methods to Functional Chalcogenide Hy- Received 00th January 20xx, Accepted 00th January 20xx brid Inorganic/Organic Polymers (CHIPs) a a b a,b DOI: 10.1039/x0xx00000x Yueyan Zhang, Richard S. Glass, Kookheon Char and Jeffrey Pyun Recent developments on the polymerization of elemental sulfur and the preparation of functional Chalcogenide Inganic/Organic Polymers (CHIPs) are reviewed. CHIPs represent a class of polymers synthesized from elemental sulfur with the incorporation of inorganic chalcogenide components (S, Se, Te) in the organic polymeric backbones. Novel CHIPs materials exhibit interesting optical, electrochemical and mechanical properties that lead to applications in thermal imaging, energy storage, self-healable materials and separation science. The emphasis
    [Show full text]