(12) United States Patent (10) Patent No.: US 6,545,171 B2 Krafczyk Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 6,545,171 B2 Krafczyk Et Al USOO65451.71B2 (12) United States Patent (10) Patent No.: US 6,545,171 B2 Krafczyk et al. (45) Date of Patent: Apr. 8, 2003 (54) PROCESS FOR THE PRODUCTION OF (52) U.S. Cl. ....................................................... 556/427 YELLOW BIS(3-TRIALKOXYSILYALKYL) (58) Field of Search .......................................... 556/427 POLYSULEANES (56) References Cited (75) Inventors: Roland Krafczyk, Rheinfelden (DE); Ulrich Deschler, Sailauf (DE); Björn U.S. PATENT DOCUMENTS Treffeisen, Gundelfingen (DE) 6,140,524 A * 10/2000 Ichinohe et al. ............ 556/427 (73) Assignee: Degussa AG, Düsseldorf (DE) 6,384.256 B1 * 5/2002 Backer et al. .............. 556/427 * cited by examiner (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 Primary Examiner Paul F. Shaver U.S.C. 154(b) by 0 days. (74) Attorney, Agent, or Firm-Smith, Gambrell & Russell, LLP (21) Appl. No.: 10/188,033 (57) ABSTRACT (22) Filed: Jul. 3, 2002 Process for the production of yellow bis(3-trialkoxy-silyl (65) Prior Publication Data alkyl)polysulfanes with an iodine color index of s 10 mg iodine/100 ml, in which an organic acid is added to neutral US 2003/00231.06 A1 Jan. 30, 2003 chloroalkyltrialkoxysilane and then reacted with Sodium (30) Foreign Application Priority Data polysulfide (NPS) or sodium sulfide (NaS) and Sulfur or sodium polysulfide (NPS) and NaS in alcohol. Jul. 6, 2001 (DE) ... - - - - - - - - - - - - - - - - - - - - - - - - 101 32939 (51) Int. Cl." ............................... C07F 7/08; CO7F 7/18 9 Claims, No Drawings US 6,545,171 B2 1 2 PROCESS FOR THE PRODUCTION OF An object of the present invention therefore is to provide YELLOW BIS(3-TRIALKOXYSILYALKYL) an alternative process by means of which a yellow bis(3- POLYSULEANES trialkoxysilylalkyl)polysulfane can be obtained and in which the additional use of aggressive chlorosilanes can be dispensed with. INTRODUCTION AND BACKGROUND The present invention relates to a process for the produc SUMMARY OF THE INVENTION tion of yellow bis(3-trialdoxysilyl-alkyl)polysulfanes. The above and other objects of the invention can be The production of bis(3-triethoxysilyl)propyl)- achieved by a process for the production of yellow bis(3- tetrasulfanes by reacting chloropropyltriethoxysilane with trialkoxysilylalkyl)polysulfanes with an iodine color index sodium polysulfide (NPS) is known from DE 2141 159. of s 10 mg iodine/100 ml, preferably 5-7 mg iodine/100 ml, The production of bis(3-triethoxysilylpropyl)disulfane which is characterised in that an organic acid, for example by reacting chloropropyltriethoxysilane with Sodium formic acid, formyl chloride, acetyl chloride, acetic acid or polysulfide (NPS) and sodium sulfide (NaS) is known from mixtures of these acids are added to neutral chloroalkyltri DE 10034493.3. Alternatively, bis(3-triethoxysilyl-propyl) 15 alkoxysilane and then reacted with Sodium polysulfide polysulfanes can be produced by reacting chloropropyltri (NPS) or sodium sulfide (NaS) and sulfur or sodium ethoxysilane with sodium sulfide (NaS) and Sulfur. The polysulfide (NPS) and NaS in alcohol. chloropropyltriethoxysilane used in the known processes The sodium polysulfide (NPS) may be Na-S, where x=2 can be produced by ethanolysis of chloropropyl to 5 or mixtures thereof. trichlorosilane. In this connection a fully reacted product DETAILED DESCRIPTION OF INVENTION with only a very Small proportion of chloropropyl monochlorodiethoxysilane is obtained according to known In accordance with the present invention, preferably the processes such as described in DE 20 61 189 and DE 32 36 bis(3-trialkoxysilylalkyl)polysulfanes may be bis(3- 628. This completely reacted chloropropyltriethoxysilane is triethoxysilylpropyl)polysulfane, bis(3-triethoxysilyl hereinafter termed “neutral'. 25 ethyl)polysulfane, bis(3-trie thoxysilyl)-methyl) If the neutral chloropropyltriethoxysilane is reacted with polysulfane, bis(3-trimethoxysilylpropyl-polysulfane, bis sodium polysulfide (NPS, Na-S, where X=2 to 5 and mix (3-trimethoxysilyl)ethyl)polysulfane or bis(3- tures thereof) or sodium sulfide (Na2S) and sulfur or sodium trimethoxysilyl)methyl)polysulfane. polysulfide (NPS, Na-S, where X=2 to 5 and mixtures AS chloroalkyltrialkoxysilane there can be used thereof) and NaS for the production of bis(3-triethoxysilyl chloropropyltriethoxysilane, chloroethyltriethoxysilane, propyl)polysulfanes according to the processes specified chloromethyltriethoxysilane, chloropropyltrimethoxysilane, above, then a dark yellow to red product (iodine color index chloroethyltrimethoxysilane or chloromethyltrimethoxy 220 mg iodine/100 ml) is obtained. However, a pale yellow silane. Chloropropyltriethoxysilane may particularly prefer product has been introduced on the market that cannot be ably be used. obtained from neutral chloropropyltriethoxysilane. 35 The yellow bis(3-trialkoxysilylalkyl)polysulfanes that The disadvantage of these known processes is that a may be produced according to the invention may be a product having a dark yellow to red color is obtained. polysulfane mixture. The polysulfane chain can on average In order to obtain pale yellow bis(3-triethoxysilyl contain 1.5-10.0 sulfur, preferably 2.0-4.0 sulfur. propyl)polysulfanes (iodine color index s 10 mg iodine/100 40 The organic acid can be added in amounts of 0.1-10 ml) a so-called residual acid content in the form of chloro wt.%, preferably 0.5-5.0 wt.%, particularly preferably propylimonochlorodiethoxysilane must be present in the 10-5.0 wt.%. chloropropyltriethoxysilane. This can be achieved if the Propanol, ethanol or methanol can be used as alcohol. ethanolysis reaction is not carried out to completion. This Preferably the alcohol derived from the alkoxy group may procedure introduces a not inconsiderable additional com be used as alcohol, for example ethanol in the case of ethoxy plication in operational practice however, especially since 45 groups. Lower alkanols, i.e. containing 1 to 5 carbon atoms the residual acid content has to be kept within a very narrow are Suitable. range, and the reaction therefore has to be discontinued in a The reaction mixture can be heated before addition of very targeted manner at a specific point Shortly before sodium polysulfide (NPS) or sodium sulfide (NaS) and complete conversion. 50 sulfur or sodium polysulfide (NPS) and NaS, preferably at Also, an acidification of the neutral chloropropyltri temperatures of 20–90° C. ethoxysilane with alcoholic hydrochloric acid before the The organic acid, for example formic acid or acetic acid, reaction with the aforementioned Sulfurisation agents does can no longer be detected by means of NMR spectroscopy not lead to pale yellow bis(3-triethoxysilylpropyl)- in the product, namely bis(3-trialkoxysilylalkyl) polysulfanes, but instead to dark yellow to red bis(3- 55 polysulfane, after the working up, from which it may be triethoxysilylpropyl)polysulfanes. assumed that no organic acid remains in the product. The production of pale yellow bis(3-triethoxysilyl Bis(3-trialkoxysilylalkyl)polysulfanes produced by the propyl)polysulfanes by adding a small amount of chloro process according to the invention have an iodine color propyltrichlorosilane or chloropropylimonochloro index of s 10 mg iodine/100 ml. diethoxysilane or chloropropyldichloromonoethoxysilane to 60 The process according to the invention has the advantage chloropropyltriethoxysilane before addition of the sulfuriza that the use of aggressive chlorosilanes can be avoided. The tion agents is known from DE 100 24 037.2 and DE 100 45 Small amount of organic acid required for the production of 269.8. yellow bis(3-trialkoxysilylalkyl)-polysulfanes may be pro The disadvantage of this proceSS is that chlorosilanes have Vided simply by adding for example formic acid or acetic to be handled, which on account of their properties are 65 acid to neutral chloropropyl-triethoxysilane. The use of aggressive and highly corrosive compounds that release organic acids has the advantage that no hydrogen chloride hydrogen chloride vapors in the presence of moisture. Vapors are released in the presence of moisture. US 6,545,171 B2 3 4 EXAMPLES boiled for 2 hours under reflux at 82 C. while stirring. After cooling the reaction mixture to room temperature the pre Example 1 cipitated sodium chloride is filtered off and the ethanol is 2.5 g of formic acid are added dropwise at room tem removed on a rotary evaporator. A Subsequent filtration perature to a Solution of 240.8 g of chloropropyltriethoX yields 225.0 g of pale yellow bis(3-triethoxysilylpropyl) ysilane (neutral) in 120 ml of ethanol. 87.1 g of sodium polysulfane with an iodine color index of 5-7 mg iodine/100 polysulfide (NPS, NaS) are then added and the reaction ml, whose identity is confirmed by H-NMR spectroscopy. mixture is boiled for 2 hours under reflux at 82 C. while Example 6 Stirring. After cooling the reaction mixture to room tempera ture the precipitated sodium chloride is filtered off and the Comparison Example 1 ethanol is removed on a rotary evaporator. A Subsequent filtration yields 225.2 g of pale yellow bis(3-triethoxysilyl 87.1 g of Sodium polysulfide are added at room tempera propyl)polysulfane with an iodine color index of 5-7 mg ture to a solution of 240.8 g of chloropropyltriethoxysilane iodine/100 ml, whose identity is confirmed by H-NMR (neutral) in 120 ml of ethanol and the reaction mixture is SpectroScopy. 15 boiled for 2 hours at 82 C. under reflux while stirring. After cooling the reaction mixture to room
Recommended publications
  • Anaerobic Degradation of Methanethiol in a Process for Liquefied Petroleum Gas (LPG) Biodesulfurization
    Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization Promotoren Prof. dr. ir. A.J.H. Janssen Hoogleraar in de Biologische Gas- en waterreiniging Prof. dr. ir. A.J.M. Stams Persoonlijk hoogleraar bij het laboratorium voor Microbiologie Copromotor Prof. dr. ir. P.N.L. Lens Hoogleraar in de Milieubiotechnologie UNESCO-IHE, Delft Samenstelling promotiecommissie Prof. dr. ir. R.H. Wijffels Wageningen Universiteit, Nederland Dr. ir. G. Muyzer TU Delft, Nederland Dr. H.J.M. op den Camp Radboud Universiteit, Nijmegen, Nederland Prof. dr. ir. H. van Langenhove Universiteit Gent, België Dit onderzoek is uitgevoerd binnen de onderzoeksschool SENSE (Socio-Economic and Natural Sciences of the Environment) Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization R.C. van Leerdam Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. dr. M.J. Kropff in het openbaar te verdedigen op maandag 19 november 2007 des namiddags te vier uur in de Aula Van Leerdam, R.C., 2007. Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization. PhD-thesis Wageningen University, Wageningen, The Netherlands – with references – with summaries in English and Dutch ISBN: 978-90-8504-787-2 Abstract Due to increasingly stringent environmental legislation car fuels have to be desulfurized to levels below 10 ppm in order to minimize negative effects on the environment as sulfur-containing emissions contribute to acid deposition (‘acid rain’) and to reduce the amount of particulates formed during the burning of the fuel. Moreover, low sulfur specifications are also needed to lengthen the lifetime of car exhaust catalysts.
    [Show full text]
  • Inorganic Syntheses
    INORGANIC SYNTHESES Volume 27 .................... ................ Board of Directors JOHN P. FACKLER, JR. Texas A&M University BODlE E. DOUGLAS University of Pittsburgh SMITH L. HOLT, JR. Oklahoma State Uniuersity JAY H. WORRELL University of South Florida RUSSELL N. GRIMES University of Virginia ROBERT J. ANGELIC1 Iowa State University Future Volumes 28 ROBERT J. ANGELIC1 Iowa State University 29 RUSSELL N. GRIMES University of Virginia 30 LEONARD V. INTERRANTE Rensselaer Polytechnic Institute 31 ALLEN H. COWLEY University of Texas, Austin 32 MARCETTA Y. DARENSBOURG Texas A&M University International Associates MARTIN A. BENNETT Australian National University, Canberra FAUSTO CALDERAZZO University of Pisa E. 0. FISCHER Technical University. Munich JACK LEWIS Cambridge University LAMBERTO MALATESTA University of Milan RENE POILBLANC University of Toulouse HERBERT W. ROESKY University of Gottingen F. G. A. STONE University of Bristol GEOFFREY WILKINSON Imperial College of Science and Technology. London AKlO YAMAMOTO Tokyo Institute 01 Technology. Yokohama Editor-in-Chief ALVIN P. GINSBERG INORGANIC SYNTHESES Volume 27 A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore A NOTE TO THE READER This book has been electronically reproduced from digital idormation stored at John Wiley h Sons, Inc. We are phased that the use of this new technology will enable us to keep works of enduring scholarly value in print as long as there is a reasonable demand for them. The content of this book is identical to previous printings. Published by John Wiley & Sons, Inc. Copyright $? 1990 Inorganic Syntheses, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
    [Show full text]
  • Polymer Chemistry
    Polymer Chemistry View Article Online PAPER View Journal | View Issue Solution processible hyperbranched inverse- vulcanized polymers as new cathode materials Cite this: Polym. Chem., 2015, 6, 973 in Li–S batteries† Yangyang Wei,a Xiang Li,b Zhen Xu,a Haiyan Sun,a Yaochen Zheng,a,c Li Peng,a Zheng Liu,a Chao Gao*a and Mingxia Gao*b Soluble inverse-vulcanized hyperbranched polymers (SIVHPs) were synthesized via thiol–ene addition of polymeric sulfur (S8) radicals to 1,3-diisopropenylbenzene (DIB). Benefiting from their branched molecular architecture, SIVHPs presented excellent solubility in polar organic solvents with an ultrahigh concen- tration of 400 mg mL−1. After end-capping by sequential click chemistry of thiol–ene and Menschutkin quaternization reactions, we obtained water soluble SIVHPs for the first time. The sulfur-rich SIVHPs were employed as solution processible cathode-active materials for Li–S batteries, by facile fluid infiltration into conductive frameworks of graphene-based ultralight aerogels (GUAs). The SIVHPs-based cells showed high initial specific capacities of 1247.6 mA h g−1 with 400 charge–discharge cycles. The cells also demonstrated an excellent rate capability and a considerable depression of shuttle effect with stable cou- Received 24th September 2014, lombic efficiency of around 100%. The electrochemical performance of SIVHP in Li–S batteries over- Accepted 14th October 2014 whelmed the case of neat sulfur, due to the chemical fixation of sulfur. The combination of high DOI: 10.1039/c4py01055h solubility, structure flexibility, and superior electrochemical performance opens a door for the promising www.rsc.org/polymers application of SIVHPs.
    [Show full text]
  • 1 Functional Asymmetry and Chemical Reactivity of Csor Family Persulfide
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.25.453692; this version posted July 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Functional asymmetry and chemical reactivity of CsoR family persulfide sensors Joseph N. Fakhoury1, Yifan Zhang1,2, Katherine A. Edmonds1, Mauro Bringas4, Justin L. Luebke1, Giovanni Gonzalez-Gutierrez2, Daiana A. Capdevila1,4,5 and David P. Giedroc1,2,5 †Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405- 7102, United States 2Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405 United States 3Graduate Program in Biochemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405, United States 4Fundación Instituto Leloir, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina 5Correspondence to David P. Giedroc: [email protected] or Daiana A. Capdevila: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.25.453692; this version posted July 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract CstR is a persulfide-sensing member of the functionally diverse copper-sensitive operon repressor (CsoR) superfamily that regulates the bacterial response to hydrogen sulfide (H2S) and more oxidized reactive sulfur species (RSS) in Gram-positive pathogens.
    [Show full text]
  • On the Reactivity of Nanoparticulate Elemental Sulfur
    ON THE REACTIVITY OF NANOPARTICULATE ELEMENTAL SULFUR: EXPERIMENTATION AND FIELD OBSERVATIONS Fotios Christos Kafantaris Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Earth Sciences, Indiana University December 2017 ii Accepted by the Graduate Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee ___________________________ Gregory K. Druschel, PhD, Chair ___________________________ Kevin Mandernack, PhD ___________________________ William P. Gilhooly III, PhD ___________________________ Gabriel Filippelli, PhD ___________________________ Steven E. Lacey, PhD October 2, 2017 ___________________________ Brandy M. Toner, PhD iii © 2017 Fotios Christos Kafantaris iv DEDICATION I would like to dedicate this work to three women. The first one is the Most Holy Theotokos and Ever-Virgin Mary, the most precious individual the human race has and will ever have, the Bridge from earth to Heaven and the Gate to Paradise. Through Her intercessions to the Holy Trinity I am still alive and safe. The second woman is my mother, Eleni, who is the angel-on-earth that protects, nourishes, teaches, provides, inspires and guides me in life. Words would be poor to attempt to describe her and her virtues in an accurate manner. My mother is the main contributor of what I have become so far in life. The third woman is my σύζυγος (spouse) Diana, who has given me life, as well as meaning for life. Diana is the main contributor of what I will hopefully do in life from this point onward, and through her help I will hopefully manage to be with the other two forever.
    [Show full text]
  • Metabolism of Hydrogen Sulfide (H2S) and Production of Reactive Sulfur Species (RSS) by Superoxide Dismutase
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IUPUIScholarWorks Redox Biology 15 (2018) 74–85 Contents lists available at ScienceDirect Redox Biology journal homepage: www.elsevier.com/locate/redox Metabolism of hydrogen sulfide (H2S) and Production of Reactive Sulfur T Species (RSS) by superoxide dismutase ⁎ Kenneth R. Olsona, , Yan Gaoa, Faihaan Arifa, Kanika Aroraa, Shivali Patela, Eric. R. DeLeona,b, Thomas R. Suttonc,d, Martin Feelischc,d, Miriam M. Cortese-Krotte, Karl D. Straubf,g a Indiana University School of Medicine - South Bend Center, South Bend, IN 46617, USA b University of Notre Dame, Notre Dame, IN 46556, USA c NIHR Southampton Biomedical Research Center, University of Southampton, Southampton, General Hospital, Southampton SO16 6YD, UK d Clinical & Experimental Sciences, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK e Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology,Medical Faculty, Heinrich Heine University of Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany f Central Arkansas Veteran's Healthcare System, Little Rock, AR 72205 USA g Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202 USA ARTICLE INFO ABSTRACT • •- Keywords: Reactive sulfur species (RSS) such as H2S, HS ,H2Sn,(n=2–7) and HS2 are chemically similar to H2O and the • •- Antioxidants reactive oxygen species (ROS) HO ,H2O2,O2 and act on common biological effectors. RSS were present in Oxidants evolution long before ROS, and because both are metabolized by catalase it has been suggested that “anti- Redox oxidant” enzymes originally evolved to regulate RSS and may continue to do so today.
    [Show full text]
  • Thiosulfoxide (Sulfane) Sulfur: New Chemistry and New Regulatory Roles in Biology
    Molecules 2014, 19, 12789-12813; doi:10.3390/molecules190812789 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Thiosulfoxide (Sulfane) Sulfur: New Chemistry and New Regulatory Roles in Biology John I. Toohey 1,* and Arthur J. L. Cooper 2 1 Cytoregulation Research, Elgin, ON K0G1E0, Canada 2 Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 8 July 2014; in revised form: 11 August 2014/ Accepted: 12 August 2014/ Published: 21 August 2014 Abstract: The understanding of sulfur bonding is undergoing change. Old theories on hypervalency of sulfur and the nature of the chalcogen-chalcogen bond are now questioned. At the same time, there is a rapidly expanding literature on the effects of sulfur in regulating biological systems. The two fields are inter-related because the new understanding of the thiosulfoxide bond helps to explain the newfound roles of sulfur in biology. This review examines the nature of thiosulfoxide (sulfane, S0) sulfur, the history of its regulatory role, its generation in biological systems, and its functions in cells. The functions include synthesis of cofactors (molybdenum cofactor, iron-sulfur clusters), sulfuration of tRNA, modulation of enzyme activities, and regulating the redox environment by several mechanisms (including the enhancement of the reductive capacity of glutathione). A brief review of the analogous form of selenium suggests that the toxicity of selenium may be due to over-reduction caused by the powerful reductive activity of glutathione perselenide. Keywords: cystamine; cystathionine γ-lyase (γ-cystathionase); garlic; glutathione persulfide; hydrogen sulfide; mercaptoethanol; perseleno selenium; persulfide; sulfane sulfur; thioglycerol Molecules 2014, 19 12790 1.
    [Show full text]
  • Alternative Routes to Methyl Mercaptan from C1-Compounds
    Fakultät für Chemie, Lehrstuhl für Technische Chemie 2 Alternative routes to methyl mercaptan from C1-compounds Christoph Rudolf Erwin Kaufmann Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademisches Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. K.-O. Hinrichsen Prüfer der Dissertation: 1. Univ.-Prof. Dr. J. A. Lercher 2. Univ.-Prof. Dr. K. Köhler Die Dissertation wurde am 18.09.2015 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 12.11.2015 angenommen. Fortunato l’uom che prende Ogni cosa pel buon verso E tra i casi e le vicende Da ragion guidar si fà. Quel che suole altrui far piangere Fia per lui cagion di riso E del mondo in mezzo i turbini Bella calma troverà. (Glücklich preis ich, wer erfasset alles von der rechten Seite, der bei Stürmen niemals erblasset, wählt Vernunft als Führerin. Was im Leben andre weinen macht, ist für Ihn ein Grund zum Lachen, drohn Gefahren noch so fürchterlich, wahrt er seinen heitren Sinn.) Lorenzo da Ponte, Cosi fan tutte Acknowledgements First of all I would like to thank Johannes for giving me the opportunity to work on this interesting and challenging topic. Thank you for your trust in me, your guidance, patience and fruitful discussions. Thank you also for the opportunity to visit international conferences (Weimar, Milan). Next I want to thank Oliver. Thank you for your help with the publications and for proofreading this thesis. I am very grateful for your continuous support, be it motivational or sharing your expertise.
    [Show full text]
  • Open GYK Dissertation Final.Pdf
    The Pennsylvania State University The Graduate School College of Agricultural Sciences REACTION MECHANISMS OF TRANSITION METALS WITH HYDROGEN SULFIDE AND THIOLS IN WINE A Dissertation in Food Science by Gal Y. Kreitman 2016 Gal Y. Kreitman Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2016 The dissertation of Gal Y. Kreitman was reviewed and approved* by the following: Ryan J. Elias Associate Professor of Food Science Dissertation Advisor Chair of Committee Joshua D. Lambert Associate Professor of Food Science John N. Coupland Professor of Food Science Michela Centinari Assistant Professor of Horticulture David W. Jeffery Senior Lecturer in Wine Science Special Member John C. Danilewicz Special Signatory Robert F. Roberts Professor of Food Science Head of the Department of Food Science *Signatures are on file in the Graduate School ii ABSTRACT Sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production. These odors are a serious quality issue in wine and may result in consumer rejection. Therefore, sulfidic off-odors are generally controlled prior to bottling, and are frequently removed by the process of Cu(II) fining – a process that remains poorly understood. Cu(II) is effective at binding with sulfhydryl functionalities and forming nonvolatile complexes thereby removing aroma associated with the compound. However, this technique leaves residual copper in the wine which catalyzes non-enzymatic wine oxidations. Furthermore, elevated copper concentrations are usually associated with increased sulfidic off-odors under anaerobic aging conditions. In this work, I elucidated the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds under wine-like conditions.
    [Show full text]
  • 9 ~Thesis Supervisor
    MOLECULAR STRUCTURE AND SPFCTROSCOPY OF MINOR CHEMICAL COMPOUNDS IN THE ATMOSPHERES OF JUPITER AND VENUS by IRA ROBERT PINES A. B. (Cornell University, 1969) A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Massachusetts Institute of Technology Cambridge, Massachusetts August, 1971 Signature of author r. ... ... Department of E rth and Plan tary ciences Certified by. .... - . - .. A ,,9 ~Thesis Supervisor Accepted by . ... Chairman, Departmental Committee on ulti[F4Q-k A* a *a a Graduate Students MOLECULAR STRUCTURE AND SPECTROSCOPY OF MINOR CHEMICAL COMPOUNDS IN THE ATMOSPHERES OF JUPITER AND VENUS by IRA ROBERT PINES A thesis submitted to the Department of Earth and Planetary Sciences, August, 1971 in partial fulfillment of the requirements for the degree of Master of Science. Abstract Studies of the molecular structure and spectroscopy of various minor chemical constituents in the atmospheres of Jupiter and Venus. Molecular orbital calculations have been carried out upon CO 3 and ClOO using the INDO/CNDO method in an attempt to investigate their chemical stability as intermediates in the photolysis of CO 2 and photo- dissociation of HCl respectively. The molecular structure and spectros- copy of sulfur chains SN, N=2, 3 .. 8, has been investigated by means of U. V. and visible absorption spectroscopy and CNDO molecular orbital calculations. A new method of the preparation of ammonium polysulfides based upon the complexing power of large cations has been presented and also ESR spectra has been recorded demonstrating that ammonium polysulfide in various solvents is a free radical. The various red to brown colorations of Jupiter are attributed to a photolysis of H2 5 producing polysulfide like compounds.
    [Show full text]
  • Recent Advances on the Polymerization of Elemental Sulphur, Inverse Vulcanization and Methods to Functional Chalcogenide Hybrid Inorganic/Organic Polymers (Chips)
    Polymer Chemistry Recent Advances on the Polymerization of Elemental Sulphur, Inverse Vulcanization and Methods to Functional Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs) Journal: Polymer Chemistry Manuscript ID PY-REV-05-2019-000636.R1 Article Type: Review Article Date Submitted by the 11-Jun-2019 Author: Complete List of Authors: Zhang, Yueyan; University of Arizona, Chemistry & Biochemistry Glass, Richard; The University of Arizona, Department of Chemistry and Biochemistry Char, Kookheon; Seoul National University, School of Chemical and Biological Engineering Pyun, Jeff; The University of Arizona, Chemistry Page 1 of 26 PleasePolymer do not Chemistryadjust margins REVIEW Recent Advances on the Polymerization of Elemental Sulphur, In- verse Vulcanization and Methods to Functional Chalcogenide Hy- Received 00th January 20xx, Accepted 00th January 20xx brid Inorganic/Organic Polymers (CHIPs) a a b a,b DOI: 10.1039/x0xx00000x Yueyan Zhang, Richard S. Glass, Kookheon Char and Jeffrey Pyun Recent developments on the polymerization of elemental sulfur and the preparation of functional Chalcogenide Inganic/Organic Polymers (CHIPs) are reviewed. CHIPs represent a class of polymers synthesized from elemental sulfur with the incorporation of inorganic chalcogenide components (S, Se, Te) in the organic polymeric backbones. Novel CHIPs materials exhibit interesting optical, electrochemical and mechanical properties that lead to applications in thermal imaging, energy storage, self-healable materials and separation science. The emphasis
    [Show full text]
  • Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering, 2Nd Edition, Piet N.L
    Part II The Sulfur Cycle Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/772252/9781789060966_0011.pdf by guest on 27 September 2021 Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/772252/9781789060966_0011.pdf by guest on 27 September 2021 Chapter 2 The chemical sulfur cycle Ralf Steudel 2.1 INTRODUCTION Sulfur is one of the most important elements for life as well as for the chemical and pharmaceutical industries. Even in extraterrestrial space, sulfur compounds are abundant albeit in low concentrations. Sulfur contributes to only 0.07 wt% of the crust of the Earth but elemental sulfur and numerous sulfur-containing minerals occur in substantial deposits. Important sulfidic minerals are, for example, pyrite FeS2, galena PbS, zinc-blende (sphalerite) ZnS, cinnabar HgS, chalcopyrite CuFeS2, and chalcocite Cu2S. Weathering and oxidation of the sulfides has resulted in large deposits of water-insoluble or poorly soluble sulfate minerals such as gypsum Ca[SO4]·2H2O, bassanite Ca[SO4] · 0.5H2O, anhydrite Ca[SO4] and baryte Ba[SO4]. Gypsum is, by volume, the most abundant sulfate mineral on Earth. Ocean water contains 2.7 g L−1 sulfate, river waters only ca. 0.01 g L−1. Sulfur compounds are constituents of all organisms and consequently of all biomass and materials which originated from these sources such as wood, peat, coal and crude oil as well as their derivatives. Combustion of such materials releases not only sulfur dioxide (SO2) but also traces of carbonyl sulfide (COS). The latter is assimilated by plants as part of their sulfur metabolism. Dimethyl sulfide (DMS) is released to the atmosphere in enormous quantities by phytoplankton in the oceans, and hydrogen sulfide (H2S) as well as SO2 and carbon dioxide (CO2) are emitted by volcanoes.
    [Show full text]